首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Typical Ca---Cl brines occur in crystalline and metamorphic rocks below freshwater horizons at various localities in Sweden and Finland. Total dissolved solids (TDS) range in concentration between 2 and 120 gl−1 and have long been thought to derive from water-rock interactions. The relationships between Na, Cl and Br in these brines suggest, however, that they were derived from freezing of seawater during glacial periods. The brines were subsequently diluted by meteoric waters and their Ca/Mg ratio was increased through water-rock interactions in the subsurface. The hydrogeological model for both the formation of freeze-derived marine brines and their lateral intrusion involves restricted inland marine basins in recent and subrecent polar climatic belts. Seawater in such basins gradually freezes in response to glaciation. The solutes which concentrate in the remaining water body are residual after precipitation of a sequence of minerals which include carbonates, mirabilite and hydrohalite. Hydraulic pressure of the growing ice sheet over the frozen seas is gradually added to the ambient hydrostatic pressure exerted on the brines. This, together with their increased density, increases the intrusional potential of the brines. As the land ice cannot exert hydraulic pressure on continental groundwater in the aquifers, the balance of pressure favours deep landward intrusion of brines. Post-glacial processes cause the subsurface dilution and replacement of the brines both by seawater and fresh waters. The presence of such brines also far from present-day coastal settings reflects the shifting of coastlines as a result of isostatic movements and eustatic sea-level changes associated with glaciation and deglaciation.  相似文献   

2.
In-Chang Ryu 《Island Arc》2002,11(3):149-169
Abstract Carbonate breccias occur sporadically in the Lower–Middle Ordovician Maggol Limestone exposed in the Taebacksan Basin in the northeastern part of the northeast–southwest‐trending Ogcheon Belt, South Korea. These carbonate breccias have been previously interpreted as intraformational or fault‐related breccias. Thus, little attention has been focused on tectonic and stratigraphic significance of these carbonate breccias. The present study, however, indicates that the majority of these carbonate breccias are solution–collapse breccias, which are causally linked to paleokarstification. Carbonate facies analysis in conjunction with conodont biostratigraphy suggests that an overall regression toward the top of the Maggol Limestone probably culminated in subaerial exposure of platform carbonates during the early Middle Ordovician (earliest Darriwilian). Extensive subaerial exposure of platform carbonates resulted in paleokarst‐related solution–collapse breccias in the upper Maggol Limestone. This subaerial exposure event is manifested as a major paleokarst unconformity at the Sauk–Tippecanoe sequence boundary elsewhere beneath the Middle Ordovician succession and its equivalents, most notably North America and North China. Due to its global extent, this paleokarst unconformity has been viewed as a product of second‐ or third‐order eustatic sealevel drop during the early Middle Ordovician. Although a paleokarst breccia zone is recognized beneath the Middle Ordovician succession in South Korea, the Sauk–Tippecanoe sequence boundary appears to be a conformable transgressive surface on the top of the paleokarst breccia zone in the upper Maggol Limestone. The paleokarst breccia zone beneath the conformable transgressive surface is represented by a thinning‐upward stack of exposure‐capped tidal flat‐dominated cycles that are closely associated with multiple occurrences of paleokarst‐related solution–collapse breccias. This paleokarst breccia zone was a likely consequence of repeated fourth‐ and fifth‐order sealevel fluctuations. It suggests that second‐ and third‐order eustatic sealevel drop may have been significantly tempered by substantial tectonic subsidence near the end of the Maggol deposition. The tectonic subsidence in the basin is also evidenced by the occurrence of coeval off‐platform lowstand siliciclastic quartzite lenses as well as debris flow carbonate breccias (i.e. the Yemi Breccia). With the continued tectonic subsidence, subsequent rise in the eustatic cycle caused drowning and deep flooding of carbonate platform, forming a transgressive surface on the top of the paleokarst breccia zone. This tectonic implication contrasts notably with the slowly subsiding carbonate platform model for the basin as has been previously interpreted. Thus, it is proposed that the Taebacksan Basin in the northeastern part of the Ogcheon Belt evolved from a slowly subsiding carbonate platform to a rapidly subsiding intracontinental rift basin during the early Middle Ordovician. The proposed tectonic model in the basin gives much better insight to unravel the stratigraphic response to tectonic evolution of the Ogcheon Belt, which remains an enigmatic feature in formulating a tectonic framework of the Korean peninsula. The present study also provides a good example that the falling part of the eustatic sealevel cycle may not produce a significant event in a rapidly subsiding basin where the rate of eustatic fall always remained lower than the rate of subsidence.  相似文献   

3.
Geochemical evaluation of the sources and movement of saline groundwater in coastal aquifers can aid in the initial mapping of the subsurface when geological information is unavailable. Chloride concentrations of groundwater in a coastal aquifer near San Diego, California, range from about 57 to 39,400 mg/L. On the basis of relative proportions of major‐ions, the chemical composition is classified as Na‐Ca‐Cl‐SO4, Na‐Cl, or Na‐Ca‐Cl type water. δ2H and δ18O values range from ?47.7‰ to ?12.8‰ and from ?7.0‰ to ?1.2‰, respectively. The isotopically depleted groundwater occurs in the deeper part of the coastal aquifer, and the isotopically enriched groundwater occurs in zones of sea water intrusion. 87Sr/86Sr ratios range from about 0.7050 to 0.7090, and differ between shallower and deeper flow paths in the coastal aquifer. 3H and 14C analyses indicate that most of the groundwater was recharged many thousands of years ago. The analysis of multiple chemical and isotopic tracers indicates that the sources and movement of saline groundwater in the San Diego coastal aquifer are dominated by: (1) recharge of local precipitation in relatively shallow parts of the flow system; (2) regional flow of recharge of higher‐elevation precipitation along deep flow paths that freshen a previously saline aquifer; and (3) intrusion of sea water that entered the aquifer primarily during premodern times. Two northwest‐to‐southeast trending sections show the spatial distribution of the different geochemical groups and suggest the subsurface in the coastal aquifer can be separated into two predominant hydrostratigraphic layers.  相似文献   

4.
Abstract   The lithology of shallow-water carbonates collected from 19 sites on 16 seamounts in six areas of the northwestern Pacific Ocean using the Deep-sea Boring Machine System are described. The areas include the Amami Plateau, Daito Ridge, Oki-Daito Ridge, Urdaneta Plateau, Kyushu-Palau Ridge and Ogasawara Plateau. Chronological constraint is provided by calcareous nannofossil biostratigraphy, planktonic foraminiferal biostratigraphy, larger foraminiferal biostratigraphy and strontium (Sr) isotope stratigraphy. Large amounts of shallow-water carbonates accumulated on the seamounts during the Oligocene, a relatively cool period, whereas limited carbonate deposits formed during the Early Miocene, a relatively warm period. This might indicate that deposition of shallow-water carbonates on seamounts in the northwestern Pacific Ocean was not necessarily controlled by climatic conditions, but was related to volcanism and tectonics that served as foundations for reef/carbonate-platform formation. Remarkable differences in biotic composition exist between Cretaceous and Cenozoic shallow-water carbonates. Late Cretaceous shallow-water carbonates are distinguished by the occurrence of rudists, solenoporacean algae and microencrusters. Middle Eocene to Early Oligocene shallow-water carbonates are dominated by Halimeda or nummulitid and discocyclinid larger foraminifers. Scleractinian corals became common from the Oligocene onward. Nongeniculate coralline algae and larger foraminifers were common to abundant throughout the Eocene to the Pleistocene. The replacement of major carbonate producers in the shallow-water carbonate factory during post-Cretaceous time is in accordance with previous studies and is considered to reflect a shift in seawater chemistry.  相似文献   

5.
Understanding the nature of communication between aquifers can be challenging when using traditional physical and geochemical groundwater sampling approaches. This study uses two multiport wells completed within Edwards and Trinity aquifers in central Texas to determine the degree of groundwater inter‐flow between adjacent aquifers. Potentiometric surfaces, hydraulic conductivities, and groundwater major ion concentrations and Sr isotope values were measured from multiple zones within three hydrostratigraphic units (Edwards and Upper and Middle Trinity aquifers). Physical and geochemical data from the multiport wells were combined with historical measurements of groundwater levels and geochemical compositions from the region to characterize groundwater flow and identify controls on the geochemical compositions of the Edwards and Trinity aquifers. Our results suggest that vertical groundwater flow between Edwards and Middle Trinity aquifers is likely limited by low permeability, evaporite‐rich units within the Upper and Middle Trinity. Potentiometric surface levels in both aquifers vary with changes in wet vs. dry conditions, indicating that recharge to both aquifers occurs through distinct recharge areas. Geochemical compositions in the Edwards, Upper, and Middle Trinity aquifers are distinct and likely reflect groundwater interaction with different lithologies (e.g., carbonates, evaporites, and siliceous sediments) as opposed to mixing of groundwater between the aquifers. These results have implications for the management of these aquifers as they indicate that, under current conditions, pumping of either aquifer will likely not induce vertical cross‐formational flow between the aquifers. Inter‐flow between the Trinity and the Edwards aquifers, however, should be reevaluated as pumping patterns and hydrogeologic conditions change.  相似文献   

6.
Over the past 60 years, road deicers (i.e. road salt) have been applied to roadways in high latitudes to improve road conditions in winter weather. However, the dissolution of road deicers in highway runoff creates waters with high concentrations of sodium, which can mobilize soil metals via soil cation‐exchange reactions. While several studies have detailed the interactions of road salt‐rich solutions and surface and ground waters, less attention has been given to how local hydrologic flowpaths can impact the delivery of these solutions to near‐road soils. Between 2013 and 2014, soil water samples were collected from a roadside transect of lysimeter nests in Pittsburgh, Pennsylvania (USA). Soil water samples were analysed for metal concentrations and resulting data used to examine cation dynamics. While patterns in soil water calcium and magnesium concentrations follow patterns in soil water sodium concentrations, additional processes influence patterns in soil water potassium concentrations. Specifically, we observe the highest calcium and magnesium concentrations in the deepest lysimeters, suggesting divalent cations are mobilized to, and potentially accumulate in, deeper soil horizons. In contrast, soil water potassium concentrations do not follow this pattern. Additionally, in all examined elements (Ca, Mg, K, Na, and Cl), the timing of concentration peaks appears be influenced by a combination of both distance from the roadside and sampling depth. These relationships not only suggest that multiple soil water flowpaths interact with our study transect but also confirm that road salt plumes persist and migrate following the road salting season. Characterizing the interactions of sodium‐rich solutions and roadside soil cation pools clarifies our understanding of metal dynamics in the roadside environment. A deeper understanding of these processes is necessary to effectively restore and manage watersheds as high total dissolved solid solutions (e.g. road deicing melt, unconventional natural gas brines, and marginal irrigation water) continue to influence hydrological systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Advances over the past 40 years have resulted in a clear understanding of how dissolution processes in carbonate rocks enhance aquifer permeability. Laboratory experiments on dissolution rates of calcite and dolomite have established that there is a precipitous drop in dissolution rates as chemical equilibrium is approached. These results have been incorporated into numerical models, simulating the effects of dissolution over time and showing that it occurs along the entire length of pathways through carbonate aquifers. The pathways become enlarged and integrated over time, forming self‐organized networks of channels that typically have apertures in the millimeter to centimeter range. The networks discharge at point‐located springs. Recharge type is an important factor in determining channel size and distribution, resulting in a range of aquifer types, and this is well demonstrated by examples from England. Most carbonate aquifers have a large number of small channels, but in some cases large channels (i.e., enterable caves) can also develop. Rapid velocities found in ground water tracer tests, the high incidence of large‐magnitude springs, and frequent microbial contamination of wells all support the model of self‐organized channel development. A large majority of carbonate aquifers have such channel networks, where ground water velocities often exceed 100 m/d.  相似文献   

8.
The precipitation of freshwater carbonates (tufa) along karstic rivers is enhanced by degassing of carbon dioxide (CO2) downstream of karstic springs. However, in most karstic springs CO2 degassing is not enough to force the precipitation of tufa sediments. Little is known about the role of dissolution of gypsum or dolomite in the hydrochemistry of these systems and how this affects the formation of tufa deposits. Here we present a monitoring study conducted over a year in Trabaque River (Spain). The river has typical karst hydrological dynamics with water sinking upstream and re‐emerging downstream of the canyon. Mixing of calcium–magnesium bicarbonate and calcium sulphate waters downstream of the sink enhances the dissolution of carbonates and potentially plays a positive role in the formation of tufa sediments. However, due to the common‐ion effect, dissolution of dolomite and/or gypsum causes precipitation of underground calcite cements as part of the incongruent dissolution of dolomite/dedolomitization process, which limits the precipitation of tufa sediments. Current precipitation of tufa is scant compared to previous Holocene tufa deposits, which likely precipitated from solutions with higher saturation indexes of calcite (SIcc values) than nowadays. Limited incongruent dissolution of dolomite/dedolomitization favours higher SIcc values. This circumstance occurs when waters with relatively high supersaturation of dolomite and low SO42? composition sink in the upper sector of the canyon. In such a scenario, the process of mixing waters enhances the exclusive dissolution of limestones, preventing the precipitation of calcite within the aquifer and favouring the increase of SIcc values downstream of the springs. Such conditions were recorded during periods of high water level of the aquifers and during floods. This research shows that the common‐ion effect caused by the dissolution of gypsum and/or dolomite rocks can limit [or favour] the precipitation of tufa sediments depending on the occurrence [or not] of incongruent dissolution of dolomite/dedolomitization. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
Salt marshes have recently been considered to be a major part of the coastal system and have played a key role in the development of the UK coastal management strategy. Managed Retreat (MR) is a process aimed to restore salt marshes by realignment of the seawalls allowing tidal inundation of low value agricultural land. The resultant marshes are expected to function both as an integral part of the flood defence system and as an ecological conservation area. We report on the effects of salt marsh restoration on metal and nutrient loading of the sediment at the Orplands Farm MR site, Essex, UK. Surficial grab and sediment cores were collected from the two fields that comprise the site. The heavy metals, Cd, Cr, Cu, Hg, Pb, Ni and Zn were analysed to determine changes in anthropogenic inputs to sediments. The major ions, Al, Ca, Fe, K, Mg, Mn and Na were also monitored to identify changes in sediment geochemistry. Analysis of the cored sediments after inundation for Na and Sr demonstrated that penetration of estuarine water had, within 2 yr of exposure, reached an average depth of 20 cm. The study observed that input of heavy metals had occurred to the sediments with the most significant being that of Pb, however increases were also observed for Cr and Cu. However, concentrations of Cd in the MR sediments decreased from 1995 to 1997. For the major metals within both fields it was found that the dominant changes were those of enrichment of marine associated metals, Ca, K, Mg and Na via inputs from tidal inundation. The concentration of Ca in the sediments was further enriched by the deposition of carbonates to the sediments. One field demonstrated a significant loss of Fe from sediments which corresponded to changes in redox potential of the sediments. Differences observed in geochemical profiles between the two fields of the site were attributed to differences in land use prior to flooding.  相似文献   

10.
Characterization and identification of na-cl sources in ground water   总被引:6,自引:0,他引:6  
Elevated concentrations of sodium (Na+) and chloride (Cl-) in surface and ground water are common in the United States and other countries, and can serve as indicators of, or may constitute, a water quality problem. We have characterized the most prevalent natural and anthropogenic sources of Na+ and Cl- in ground water, primarily in Illinois, and explored techniques that could be used to identify their source. We considered seven potential sources that included agricultural chemicals, septic effluent, animal waste, municipal landfill leachate, sea water, basin brines, and road deicers. The halides Cl-, bromide (Br), and iodide (I) were useful indicators of the sources of Na+-Cl- contamination. Iodide enrichment (relative to Cl-) was greatest in precipitation, followed by uncontaminated soil water and ground water, and landfill leachate. The mass ratios of the halides among themselves, with total nitrogen (N), and with Na+ provided diagnostic methods for graphically distinguishing among sources of Na+ and Cl- in contaminated water. Cl/Br ratios relative to Cl- revealed a clear, although overlapping, separation of sample groups. Samples of landfill leachate and ground water known to be contaminated by leachate were enriched in I and Br; this provided an excellent fingerprint for identifying leachate contamination. In addition, total N, when plotted against Cl/Br ratios, successfully separated water contaminated by road salt from water contaminated by other sources.  相似文献   

11.
In variably confined carbonate platforms, impermeable confining units collect rainfall over large areas and deliver runoff to rivers or conduits in unconfined portions of platforms. Runoff can increase river stage or conduit heads in unconfined portions of platforms faster than local infiltration of rainfall can increase groundwater heads, causing hydraulic gradients between rivers, conduits and the aquifer to reverse. Gradient reversals cause flood waters to flow from rivers and conduits into the aquifer where they can dissolve limestone. Previous work on impacts of gradient reversals on dissolution has primarily emphasized individual caves and little research has been conducted at basin scales. To address this gap in knowledge, we used legacy data to assess how a gradient of aquifer confinement across the Suwannee River Basin, north‐central Florida affected locations, magnitudes and processes of dissolution during 2005–2007, a period with extreme ranges of discharge. During intense rain events, runoff from the confining unit increased river stage above groundwater heads in unconfined portions of the platform, hydraulically damming inputs of groundwater along a 200 km reach of river. Hydraulic damming allowed allogenic runoff with SICAL < ?4 to fill the entire river channel and flow into the aquifer via reversing springs. Storage of runoff in the aquifer decreased peak river discharges downstream and contributed to dissolution within the aquifer. Temporary storage of allogenic runoff in karst aquifers represents hyporheic exchange at a scale that is larger than found in streams flowing over non‐karst aquifers because conduits in karst aquifers extend the area available for exchange beyond river beds deep into aquifers. Post‐depositional porosity in variably confined carbonate platforms should thus be enhanced along rivers that originate on confining units. This distribution should be considered in models of porosity distribution used to manage water and hydrocarbon resources in carbonate rocks. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Studies on the hydrogeological conditions of the Mesogea basin in east Attica reveal that the aquifers developed on the post‐alpine formations at the inner part of the coastal brackish zone exhibit positive hydraulic head. These Neogene and Quaternary deposits present high salt concentrations. Selected points were sampled (total 85: 51 wells and 34 boreholes) in order to obtain hydrogeological and hydrochemical data for a better understanding of the structure, operation and dynamics of the aquifer of the area. Statistical methods, R‐mode factor analysis and scatter‐plot diagrams were used for the hydrochemical analysis and presentation of the data. The groundwater resources are relatively weak and there is significant quality degradation due to the geological structure of the greater area, as well as the bad management of the aquifer and anthropogenic activities. Groundwater is characterized by high salt concentrations. Electrical conductivity values range between 260 and 6970 µS cm?1. High salt concentrations at the coastal aquifers are due to sea intrusion, whereas they are attributed to the dissolution of minerals of the geological environment in the inland area. The groundwaters of the study area can be classified into five water types: Ca–HCO3, Mg–HCO3, Na–HCO3, Na–Cl and Mg–Cl. They are saturated in dolomite and calcite, whereas they are unsaturated in anhydrite. High ion concentrations, e.g. ] (0‐221 mg l?1), ] (0·01‐1·88 mg l?1), ] (0·01‐6·75 mg l?1), as well as high heavy metals concentrations are attributed to anthropogenic impacts. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Formation of extensive phreatic caves in eogenetic karst aquifers is widely believed to require mixing of fresh and saltwater. Extensive phreatic caves also occur, however, in eogenetic karst aquifers where fresh and saltwater do not mix, for example in the upper Floridan aquifer. These caves are thought to have formed in their modern settings by dissolution from sinking streams or by convergence of groundwater flow paths on springs. Alternatively, these caves have been hypothesized to have formed at lower water tables during sea level low‐stands. These hypotheses have not previously been tested against one another. Analyzing morphological data and water chemistry from caves in the Suwannee River Basin in north‐central Florida and water chemistry from wells in the central Florida carbonate platform indicates that phreatic caves within the Suwannee River Basin most likely formed at lower water tables during lower sea levels. Consideration of the hydrological and geochemical constraints posed by the upper Floridan aquifer leads to the conclusion that cave formation was most likely driven by dissolution of vadose CO2 gas into the groundwater. Sea level rise and a wetter climate during the mid‐Holocene lifted the water table above the elevation of the caves and placed the caves tens of meters below the modern water table. When rising water tables reached the land surface, surface streams formed. Incision of surface streams breached the pre‐existing caves to form modern springs, which provide access to the phreatic caves. Phreatic caves in the Suwannee River Basin are thus relict and have no causal relationship with modern surficial drainage systems. Neither mixing dissolution nor sinking streams are necessary to form laterally extensive phreatic caves in eogenetic karst aquifers. Dissolution at water tables, potentially driven by vadose CO2 gas, offers an underappreciated mechanism to form cavernous porosity in eogenetic carbonate rocks. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Malov  A. I. 《Water Resources》2001,28(6):618-623
Three types of brines with a characteristic composition have been distinguished in the Mezen Syneclise: with increased Na+, with relatively decreased Ca2+, and with relatively increased Ca2+. Rock salt dissolution has been shown to be substantial in the first-type brine formation. It has been noted that these brines are very dynamic and extremely young. The second-type brines have been shown to be of sedimentation origin and have a stagnant regime at relatively low temperatures; gypsum dissolution and metamorphization under stagnant conditions at increased temperatures have been shown to be substantial at the first and the following stages of formation of the third-type brines.  相似文献   

15.
Environmental concerns regarding the potential for drinking water contamination in shallow aquifers have accompanied unconventional energy development in the northern Appalachian Basin. These activities have also raised several critical questions about the hydrogeological parameters that control the naturally occurring presence and migration of hydrocarbon gases in shallow aquifers within petroliferous basins. To interrogate these factors, we analyzed the noble gas, dissolved ion, and hydrocarbon gas (molecular and isotopic composition) geochemistry of 98 groundwater samples from south‐central New York. All samples were collected ?1km from unconventional drilling activities and sample locations were intentionally targeted based on their proximity to various types of documented fault systems. In agreement with studies from other petroliferous basins, our results show significant correlations between elevated levels of radiogenic [4He], thermogenic [CH4], and dissolved ions (e.g., Cl, Br, Sr, Ba). In combination, our data suggest that faults have facilitated the transport of exogenous hydrocarbon‐rich brines from Devonian source rocks into overlying Upper Devonian aquifer lithologies over geologic time. These data conflict with previous reports, which conclude that hydrodynamic focusing regulates the occurrence of methane and salt in shallow aquifers and leads to elevated levels of these species in restricted flow zones within valley bottoms. Instead, our data suggest that faults in Paleozoic rocks play a fundamental role in gas and brine transport from depth, regulate the distribution of their occurrence in shallow aquifers, and influence the geochemistry of shallow groundwater in this petroliferous basin.  相似文献   

16.
Clastic sedimentary rocks are generally considered non‐karstifiable and thus less vulnerable to pathogen contamination than karst aquifers. However, dissolution phenomena have been observed in clastic carbonate conglomerates of the Subalpine Molasse zone of the northern Alps and other regions of Europe, indicating karstification and high vulnerability, which is currently not considered for source protection zoning. Therefore, a research program was established at the Hochgrat site (Austria/Germany), as a demonstration that karst‐like characteristics, flow behavior, and high vulnerability to microbial contamination are possible in this type of aquifer. The study included geomorphologic mapping, comparative multi‐tracer tests with fluorescent dyes and bacteria‐sized fluorescent microspheres, and analyses of fecal indicator bacteria (FIB) in spring waters during different seasons. Results demonstrate that (1) flow velocities in carbonate conglomerates are similar as in typical karst aquifers, often exceeding 100 m/h; (2) microbial contaminants are rapidly transported toward springs; and (3) the magnitude and seasonal pattern of FIB variability depends on the land use in the spring catchment and its altitude. Different groundwater protection strategies that currently applied are consequently required in regions formed by karstified carbonatic clastic rocks, taking into account their high degree of heterogeneity and vulnerability.  相似文献   

17.
The use of reclaimed water and its impact on groundwater quality in the middle and southern parts of the Jordan Valley are investigated. The chemical analyses indicate that nitrate and bacteriological pollution is widespread, and thus, seriously affects groundwater use. During the study, 365 water samples were collected from wells and springs to determine the water chemistry and the extent of nitrate pollution. Three hydrochemical facies are identifed, i. e., (Ca–(Mg)–Na–HCO3), (Ca–Na–SO4–Cl) and (Ca–Na–Cl). The change of facies is accompanied by a gradual increase in the groundwater total dissolved solids (TDS), which is mainly controlled by evaporates and carbonates dissolution in the aquifer matrix. Water analyses indicate that the shallow aquifer in the study area is affected by non‐point pollution sources, primarily from natural (manure) and chemical nitrogen (N)‐fertilizers and treated wastewater used for agriculture. The concentration of nitrate in the groundwater ranges from 10 to 355 mg/L. Considerable seasonal fluctuations in groundwater quality are observed as a consequence of agricultural practices and other factors such as annual rainfall distribution and the Zarqa River flow. The noticeable levels of total coliform and Escherichia coli in the northern part of the study area may be attributed to contamination from the urban areas, intensive livestock production, and illegal dumping of sewage. Heavy metal concentrations in all samples were found to be significantly lower than the permissible limits for drinking water standards.  相似文献   

18.
Marie A  Vengosh A 《Ground water》2001,39(2):240-248
One of the major problems in the lower Jordan Valley is the increasing salinization (i.e., chloride content) of local ground water. The high levels of salinity limit the utilization of ground water for both domestic and agriculture applications. This joint collaborative study evaluates the sources and mechanisms for salinization in the Jericho area. We employ diagnostic geochemical fingerprinting methods to trace the potential sources of the salinity in (1) the deep confined subaquifer system (K2) of Lower Cenomanian age; (2) the upper subaquifer system (K1) of Upper Cenomanian and Turonian ages; and (3) the shallow aquifer system (Q) of Plio-Pleistocene ages. The chemical composition of the saline ground water from the two Cenomanian subaquifers (K1 and K2) point to a single saline source with Na/Cl approximately 0.5 and Br/Cl approximately 7 x 10(-3). This composition is similar to that of thermal hypersaline spring that are found along the western shore of the Dead Sea (e.g., En Gedi thermal spring). We suggest that the increasing salinity in both K1 and K2 subaquifers is derived from mixing with deep-seated brines that flow through the Rift fault system. The salinization rate depends on the discharge volume of the fresh meteoric water in the Cenomanian Aquifer. In contrast, the chemical composition of ground water from the Plio-Pleistocene Aquifer shows a wide range of Cl- (100-2000 mg/L), Na/Cl (0.4-1.0), Br/Cl (2-6 x 10(-3)), and SO4/Cl (0.01-0.4) ratios. These variations, together with the high SO4(2-), K+, and NO3- concentrations, suggest that the salinity in the shallow aquifer is derived from the combination of (1) upconing of deep brines as reflected by low Na/Cl and high Br/Cl ratios; (2) leaching of salts from the Lisan Formation within the Plio-Pleistocene Aquifer, as suggested by the high SO4(2-) concentrations; and (3) anthropogenic contamination of agriculture return flow and sewage effluents with distinctive high K+ (80 mg/L) and NO3- (80 mg/l) contents and low Br/Cl ratios (2 x 10(-3)). Our data demonstrates that the chemical composition of salinized ground water can be used to delineate the sources of salinity and hence to establish the conceptual model for explaining salinization processes.  相似文献   

19.
CO2 injection and storage in deep saline aquifers involves many coupled processes, including multiphase flow, heat and mass transport, rock deformation and mineral precipitation and dissolution. Coupling is especially critical in carbonate aquifers, where minerals will tend to dissolve in response to the dissolution of CO2 into the brine. The resulting neutralization will drive further dissolution of both CO2 and calcite. This suggests that large cavities may be formed and that proper simulation may require full coupling of reactive transport and multiphase flow. We show that solving the latter may suffice whenever two requirements are met: (1) all reactions can be assumed to occur in equilibrium and (2) the chemical system can be calculated as a function of the state variables of the multiphase flow model (i.e., liquid and gas pressure, and temperature). We redefine the components of multiphase flow codes (traditionally, water and CO2), so that they are conservative for all reactions of the chemical system. This requires modifying the traditional constitutive relationships of the multiphase flow codes, but yields the concentrations of all species and all reaction rates by simply performing speciation and mass balance calculations at the end of each time step. We applied this method to the H2O–CO2–Na–Cl–CaCO3 system, so as to model CO2 injection into a carbonate aquifer containing brine. Results were very similar to those obtained with traditional formulations, which implies that full coupling of reactive transport and multi-phase flow is not really needed for this kind of systems, but the resulting simplifications may make it advisable even for cases where the above requirements are not met. Regarding the behavior of carbonate rocks, we find that porosity development near the injection well is small because of the low solubility of calcite. Moreover, dissolution concentrates at the front of the advancing CO2 plume because the brine below the plume tends to reach high CO2 concentrations quite rapidly. We conclude that carbonate dissolution needs not to be feared.  相似文献   

20.
Authigenic carbonates were sampled in methane-enriched piston core sediments collected from gas venting sites on the western continental slope of the Ulleung Basin, East Sea of Korea. Multidisciplinary investigations on these carbonates, including the scanning electronic microscope (SEM) observations and mineralogical-geochemical compositions, were carried out to identify the carbon and oxygen sources and the forming mechanism of these carbonates. The authigenic carbonates from the study area correspond to semi-consolidated, compact concretions or nodules ranging from 2 to 9 cm in size. X-ray diffraction and electron microprobe analyses showed that most of the sampled carbonate concretions were composed of almost purely authigenic high-Mg calcite (10.7–14.3 mol% MgCO3). Characteristically, microbial structures such as filaments and rods, which were probably associated with the authigenic minerals, were abundantly observed within the carbonate matrix. The carbonates were strongly depleted in δ13C (−33.85‰ to −39.53‰ Peedee Belemnite (PDB)) and were enriched in δ18O (5.16–5.60‰ PDB), indicating that the primary source of carbon is mainly derived from the anaerobic oxidation of methane. Such methane probably originated from the destabilization of the underlying gas hydrates as strongly supporting from the enriched 18O levels. Furthermore, the strongly depleted δ13C values (−60.7‰ to −61.6‰ PDB) of the sediment void gases demonstrate that the majority of the gas venting at the Ulleung Basin is microbial methane by CO2 reduction. This study provides another example for the formation mechanism of methane-derived authigenic carbonates associated with gas-hydrate decomposition in gas-seeping pockmark environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号