首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper presents the sediment, landform and dynamic context of four avalanche-fed valley glaciers (Khumbu, Imja, Lhotse and Chukhung) in the Mount Everest (Sagarmatha) region of Nepal. All four glaciers have a mantle of debris dominated by sandy boulder-gravel that suppresses melting to an increasing degree towards the snout, leading to a progressive reduction in the overall slope of their longitudinal profile. Prominent lateral–terminal moraine complexes, also comprising sandy bouldergravel, enclose the glaciers. These terminal moraines originally grew by accretion of multiple sedimentary facies of basal glacial and supraglacial origin, probably by folding and thrusting when the glaciers were more dynamic during the Little Ice Age. The four glaciers are in various stages of recession, and demonstrate a range of scenarios from down-wasting of the glacier tongue, through morainedammed lake development, to post-moraine-dam breaching. Khumbu Glacier is at the earliest stage of supraglacial pond formation and shows no sign yet of developing a major lake, although one is likely to develop behind its >250 m high composite terminal moraine. Imja Glacier terminates in a substantial body of water behind a partially ice-cored moraine dam (as determined from geophysical surveys), but morphologically appears unlikely to be an immediate threat. Chukhung Glacier already has a breached moraine and a connected debris fan, and therefore no longer poses a threat. Lhotse Glacier has an inclined, free-draining tongue that precludes hazardous lake development. From the data assembled, a conceptual model, applicable to other Himalayan glaciers, is proposed to explain the development of large, lateral-terminal moraine complexes and associated potentially hazardous moraine dams. – 2008 Elsevier Ltd. All rights reserved.  相似文献   

2.
Quaternary glaciation of Mount Everest   总被引:1,自引:0,他引:1  
The Quaternary glacial history of the Rongbuk valley on the northern slopes of Mount Everest is examined using field mapping, geomorphic and sedimentological methods, and optically stimulated luminescence (OSL) and 10Be terrestrial cosmogenic nuclide (TCN) dating. Six major sets of moraines are present representing significant glacier advances or still-stands. These date to >330 ka (Tingri moraine), >41 ka (Dzakar moraine), 24–27 ka (Jilong moraine), 14–17 ka (Rongbuk moraine), 8–2 ka (Samdupo moraines) and ~1.6 ka (Xarlungnama moraine), and each is assigned to a distinct glacial stage named after the moraine. The Samdupo glacial stage is subdivided into Samdupo I (6.8–7.7 ka) and Samdupo II (~2.4 ka). Comparison with OSL and TCN defined ages on moraines on the southern slopes of Mount Everest in the Khumbu Himal show that glaciations across the Everest massif were broadly synchronous. However, unlike the Khumbu Himal, no early Holocene glacier advance is recognized in the Rongbuk valley. This suggests that the Khumbu Himal may have received increased monsoon precipitation in the early Holocene to help increase positive glacier mass balances, while the Rongbuk valley was too sheltered to receive monsoon moisture during this time and glaciers could not advance. Comparison of equilibrium-line altitude depressions for glacial stages across Mount Everest reveals asymmetric patterns of glacier retreat that likely reflects greater glacier sensitivity to climate change on the northern slopes, possibly due to precipitation starvation.  相似文献   

3.
西天山托木尔峰南麓大型山谷冰川冰舌区消融特征分析   总被引:4,自引:3,他引:1  
基于对托木尔峰南麓托木尔型山谷冰川的野外考察和典型冰川的定位观测,对冰面被表碛广泛覆盖的所谓“托木尔型”冰川冰舌区表碛与冰面消融的关系进行了研究. 结果表明:表碛对冰面消融、冰川水文过程、冰川变化等均具有重要影响,当表碛厚度超过3 cm时,表碛对冰面消融就产生明显抑制作用,且随着厚度增加,冰面消融显明减弱. 科其喀尔冰川表面的观测表明,由末端向上,表碛厚度逐渐减薄. 受表碛影响,科其喀尔冰川区最大的消融量出现在海拔3 800~3 900 m之间、表碛物厚度小于10 cm的区域内;冰川消融强度由此向上随着海拔的升高而下降,向下随表碛厚度的增大而减弱. 冰面湖的发育是表碛覆盖冰川的又一主要特征,湖水对冰面的融蚀和快速排泄成为冰面产汇流的主要过程. 科其喀尔冰川研究表明,两三个冰面湖排泄形成的融蚀冰量就相当于冰川末端退缩造成的冰量损失. 因此,冰面湖等热喀斯特地形的形成、扩张融蚀、融穿排泄、形成湖区低地,这一周而复始的过程不仅是其主要消融方式之一,而且也强烈的影响着冰川水文及冰川变化. 托木尔峰南麓地区大型冰川变化主要以厚度减薄为主,而不是像大多数冰川显著的变化主要表现在末端和面积减少方面.  相似文献   

4.
This paper focuses on the structural glaciology, dynamics, debris transport paths and sedimentology of the forefield of Soler Glacier, a temperate outlet glacier of the North Patagonian Icefield in southern Chile. The glacier is fed by an icefall from the icefield and by snow and ice avalanches from surrounding mountain slopes. The dominant structures in the glacier are ogives, crevasses and crevasse traces. Thrusts and recumbent folds are developed where the glacier encounters a reverse slope, elevating basal and englacial material to the ice surface. Other debris sources for the glacier include avalanche and rockfall material, some of which is ingested in marginal crevasses. Debris incorporated in the ice and on its surface controls both the distribution of sedimentary facies on the forefield and moraine ridge morphology. Lithofacies in moraine ridges on the glacier forefield include large isolated boulders, diamictons, gravel, sand and fine-grained facies. In relative abundance terms, the dominant lithofacies and their interpretation are sandy boulder gravel (ice-marginal), sandy gravel (glaciofluvial), angular gravel (supraglacial) and diamicton (basal glacial). Proglacial water bodies are currently developing between the receding glacier and its frontal and lateral moraines. The presence of folded sand and laminites in moraine ridges in front of the glacier suggests that, during a previous advance, Soler Glacier over-rode a former proglacial lake, reworking lacustrine deposits. Post-depositional modification of the landform/sediment assemblage includes melting of the ice-core beneath the sediment cover, redistribution of finer material across the proglacial area by aeolian processes and fluvial reworking. Overall, the preservation potential of this landform/sediment assemblage is high on the centennial to millennial timescale.  相似文献   

5.
中国境内冰川成冰作用的研究进展   总被引:1,自引:0,他引:1  
冰川是由降雪积累形成,具有一定规模且运动着的自然冰体,是气候变化最敏感的指示器。从雪演化成冰的过程、机理和结果统称为成冰作用。成冰作用的研究可以揭示冰川的发育条件、形成过程和物理特征等;成冰作用的空间变化又是冰川变化的一种反映,对气候变化具有很好的指示作用。中国境内冰川的成冰作用研究开始于1962年谢自楚等对天山乌鲁木齐河源1号冰川开展的成冰作用研究,随后不同学者对祁连山等地区冰川的成冰作用亦进行了研究。随着研究的深入和发展现已形成具有中国特色的冰川成冰作用概念。主要回顾了冰川成冰带研究的发展历程和在中国的发展状况以及自20世纪60年代开始中国境内祁连山、天山、阿尔泰山、西昆仑山、喜马拉雅山、藏东南地区和横断山区冰川的成冰作用研究的主要成果,展望了今后冰川成冰作用研究的发展及其重要意义,并提出了以前研究中存在的缺陷和不足以及今后在成冰作用研究中应该注意的问题。  相似文献   

6.
We have investigated the geochemistry of supraglacial streams on the Canada Glacier, Taylor Valley, Antarctica during the 2001–2002 austral summer. Canada Glacier supraglacial streams represent the link between primary precipitation (i.e. glacier snow) and proglacial Lake Hoare. Canada Glacier supraglacial stream geochemistry is intermediate between glacier snow and proglacial stream geochemistry with average concentrations of 49.1 μeq L−1 Ca2+, 19.9 μeq L−1 SO42−, and 34.3 μeq L−1 HCO3. Predominant west to east winds lead to a redistribution of readily soluble salts onto the glacier surface, which is reflected in the geochemistry of the supraglacial streams. Western Canada Glacier supraglacial streams have average SO42−:HCO3 equivalent ratios of 1.0, while eastern supraglacial streams average 0.5, suggesting more sulfate salts reach and dissolve in the western supraglacial streams. A graph of HCO3 versus Ca2+ for western and eastern supraglacial streams had slopes of 0.87 and 0.72, respectively with R2 values of 0.84 and 0.83. Low concentrations of reactive silicate (> 10 μmol L−1) in the supraglacial streams suggested that little to no silicate weathering occurred on the glacier surface with the exception of cryoconite holes (1000 μmol L−1). Therefore, the major geochemical weathering process occurring in the supraglacial streams is believed to be calcite dissolution. Proglacial stream, Anderson Creek, contains higher concentrations of major ions than supraglacial streams containing 5 times the Ca2+ and 10 times the SO42−. Canada Glacier proglacial streams also contain higher concentrations (16.6–30.6 μeq L−1) of reactive silicate than supraglacial streams. This suggests that the controls on glacier meltwater geochemistry switch from calcite and gypsum dissolution to both salt dissolution and silicate mineral weathering as the glacier meltwater evolves. Our chemical mass balance calculations indicate that of the total discharge into Lake Hoare, the final recipient of Canada Glacier meltwater, 81.9% is from direct glacier runoff and 19.1% is from proglacial Andersen Creek. Although during a typical, low melt ablation season Andersen Creek contributes over 40% of the water added to Lake Hoare, its overall chemical importance is diluted by the direct inputs from Canada Glacier during high flow years. Decadal warming events, such as the 2001–2002 austral summer produce supraglacial streams that are a major source of water to Lake Hoare.  相似文献   

7.
现代冰川体积变化研究方法综述   总被引:2,自引:0,他引:2  
冰川作为气候变化的指示器,在气候变暖的趋势下呈加速退缩的趋势。冰川消融加速对海平面上升、区域水循环和水资源可获取性均有重要影响。冰川体积作为冰川研究的一项重要内容,越来越被研究者关注。围绕极地冰盖、山地冰川体积研究概况,较系统地总结分析研究冰川体积变化的方法,主要包括传统测量方法、统计公式法、冰川地形测量法和遥感监测法,现代冰川体积变化的研究也由传统的实地测量、统计公式法等向遥感监测研究发展,并分析各方法在主要冰川类型中的应用情况。借助遥感手段监测冰川动态变化可有效解决高寒山区资料受限的问题,成为冰川学发展的重要趋势。  相似文献   

8.
In Arctic alpine regions, glacio‐lacustrine environments respond sensitively to variations in climate conditions, impacting, for example,glacier extent and rendering former ice‐contact lakes into ice distal lakes and vice versa. Lakefloors may hold morphological records of past glacier extent, but remoteness and long periods of ice cover on such lakes make acquisition of high‐resolution bathymetric datasets challenging. Lake Tarfala and Kebnepakte Glacier, located in the Kebnekaise mountains, northern Sweden, comprise a small, dynamic glacio‐lacustrine system holding a climate archive that is not well studied. Using an autonomous surface vessel, a high‐resolution bathymetric dataset for Lake Tarfala was acquired in 2016, from which previously undiscovered end moraines and a potential grounding line feature were identified. For Kebnepakte Glacier, structure‐from‐motion photogrammetry was used to reconstruct its shape from photographs taken in 1910 and 1945. Combining these methods connects the glacial landform record identified at the lakefloor with the centennial‐scale dynamic behaviour of Kebnepakte Glacier. During its maximum 20th century extent, attained c. 1910, Kebnepakte Glacier reached far into Lake Tarfala, but had retreated onto land by 1945, at an average of 7.9 m year–1. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents the first detailed sedimentological study of annual moraines formed by an alpine valley glacier. The moraines have been forming since at least AD 1980 by a subsidiary lobe of Gornergletscher, Switzerland that advances up a reverse bedrock slope. They reach heights of 0.5–1.5 m, widths of up to 6 m and lengths of up to several hundreds of metres. Sediments in these moraines are composed of proglacial outwash and debris flow units; subglacial traction till is absent entirely. Based on four representative sections, three genetic process combinations have been identified: (i) inefficient bulldozing of a gently sloping ice margin transfers proglacial sediments onto the ice, causing differential ablation and dead‐ice incorporation upon retreat; (ii) terrestrial ice‐contact fans are formed by the dumping of englacial and supraglacial material from point sources such as englacial conduit fills; debris flows and associated fluvial sediments are stacked against a temporarily stationary margin at the start, and deformed during glacier advance in the remainder, of the accumulation season; (iii) a steep ice margin without supraglacial input leads to efficient bulldozing and deformation of pre‐existing foreland sediments by wholesale folding. Ice‐surface slope appears to be a key control on the type of process responsible for moraine formation in any given place and year. The second and third modes result in stable and higher moraines that have a higher preservation potential than those containing dead ice. Analysis of the spacing and climatic records at Gornergletscher reveals that winter temperature controls marginal retreat and hence moraine formation. However, any climatic signal is complicated by other factors, most notably the presence of a reverse bedrock slope, so that the extraction of a clear climatic signal is not straightforward. This study highlights the complexity of annual moraine formation in high‐mountain environments and suggests avenues for further research.  相似文献   

10.
The macro‐ and micro‐sedimentology of a supraglacial melt‐out till forming at the Matanuska Glacier was examined in relationship to the properties of the stratified basal zone ice and debris from which it is originating. In situ melting of the basal ice has produced a laminated to bedded diamicton consisting mainly of silt. Macroscopic properties include: discontinuous laminae and beds; lenses of sand, silt aggregates and open‐work gravel; deformed and elongate clasts of clay; widely dispersed pebbles and cobbles, those that are prolate usually with their long axes subparallel to parallel to the bedding. Evidence for deformation is absent except for localized bending of beds over or under rock clasts. Microscopic properties are a unique element of this work and include: discontinuous lineations; silt to granule size laminae; prolate coarse sand and rock fragments commonly with their long axis subparallel to bedding; subangular to subrounded irregular shaped clay clasts often appearing as bands; sorted and unsorted silt to granule size horizons, sometimes disrupted by pore‐water pathways. Limited deformation occurs around rock clasts and thicker parts of lamina. This study shows that in situ melting of debris‐rich basal ice can produce a laminated and bedded diamicton that inherits and thereby preserves stratified basal ice properties. Production and preservation of supraglacial melt‐out till require in situ melting of a stagnant, debris‐rich basal ice source with a low relief surface that becomes buried by a thick, stable, insulating cover of ice‐marginal sediment. Also required are a slow melt rate and adequate drainage to minimize pore‐water pressures in the till and overlying sediment cover to maintain stability and uninterrupted deposition. Many modern and ancient hummocky moraines down glacier of subglacial overdeepenings probably meet these process criteria and their common occurrence suggests that both modern and pre‐modern supraglacial melt‐out tills may be more common than previously thought.  相似文献   

11.
基于GIS的冰川中流线自动提取方法设计与实现   总被引:4,自引:2,他引:2  
冰川长度是冰川编目的重要组成部分, 在冰川变化研究中具有十分重要的作用. 基于冰川轮廓矢量数据和数字高程模型数据, 从冰川形态角度提出了针对单一盆地与单一出口、复式盆地与单一出口、冰帽三种类型冰川的中流线自动提取方案, 并在GIS软件支持下实现了冰川海拔最高点与最低点、冰川中流线的自动提取. 以乌鲁木齐河源1号冰川、喀纳斯冰川、古里雅冰帽和野牛沟冰帽为例, 分别提取了各条冰川的中流线, 结果表明SRTM和ASTER GDEM两类数字高程模型数据对冰川海拔最高点与最低点的位置判别影响较小; 对单一盆地与单一出口类型冰川中流线实现了自动化提取, 而对于复式盆地与单一出口冰川类型和冰帽类型, 在冰川中流线提取中仍需专家知识支撑. 与我国第一次冰川编目中的长度数据相比, 本方法提取的冰川长度数据更加合理, 对于补充与完善我国第二次冰川编目数据集具有一定的参考价值.  相似文献   

12.
Understanding the processes that deposit till below modern glaciers provides fundamental information for interpreting ancient subglacial deposits. A process‐deposit‐landform model is developed for the till bed of Saskatchewan Glacier in the Canadian Rocky Mountains. The glacier is predominantly hard bedded in its upper reaches and flows through a deep valley carved into resistant Palaeozoic carbonates but the ice margin rests on a thick (<6 m) soft bed of silt‐rich deformation till that has been exposed as the glacier retreats from its Little Ice Age limit reached in 1854. In situ tree stumps rooted in a palaeosol under the till are dated between ca 2900 and 2700 yr bp and record initial glacier expansion during the Neoglacial. Sedimentological and stratigraphic observations underscore the importance of subglacial deformation of glaciofluvial outwash deposited in front of the advancing glacier and mixing with glaciolacustrine carbonate‐rich silt to form a soft bed. The exposed till plain has a rolling drumlinoid topography inherited from overridden end moraines and is corrugated by more than 400 longitudinal flute ridges which record deformation of the soft bed and fall into three genetically related types: those developed in propagating incipient cavities in the lee of large subglacial boulders embedded in deformation till, and those lacking any originating boulder and formed by pressing of wet till up into radial crevasses under stagnant ice. A third type consists of U‐shaped flutes akin to barchan dunes; these wrap around large boulders at the downglacier ends of longitudinal scours formed by the bulldozing of boulders by the ice front during brief winter readvances across soft till. Pervasive subglacial deformation during glacier expansion was probably facilitated by large boulders rotating within the soft bed (‘glacioturbation’).  相似文献   

13.
玉龙雪山白水河1号冰川消融期表面流速特征分析   总被引:4,自引:4,他引:0  
2016年7月15号在玉龙雪山白水河1号冰川表面布设了16根花杆(stakes),建立了冰川运动速率观测网;用TrimbleGeoXT型手持差分GPS对花杆位置坐标进行测量,获取了2016年7月-10月玉龙雪山白水河1号冰川花杆的观测数据,并分析其表面运动特征。结果表明:冰川运动速度方面,横剖面上由主流线附近向两侧变小;纵剖面上由末端到冰川粒雪盆逐渐减小,与一般山岳冰川的运动规律不同;冰川运动方向上,速度矢量大多沿主流线向下运动或者稍微偏离主流线一定方向;冰川的运动速度与冰川的消融速度变化不同步,相比之下运动速度的变化有一定的滞后性;强烈发育的冰裂隙分隔了两侧的冰体,影响了冰川的整体运动方式,使该冰川的运动方式较为特殊。冰川末端退缩速度不断加快且退缩趋势将持续。  相似文献   

14.
Mountain glacier is one of the extremely sensitive indicators for climate change, and its surface motion distribution and corresponding variation are valuable information for understanding ice mass exchange and glacier dynamics. This paper presents the long-term ice velocity distributions of Inylchek Glacier in the Tianshan region by pixel-tracking algorithm with time-series Landsat imagery acquired during 2006–2016. Then the monitored ice motion fields of Inylchek Glacier were carefully analyzed and revealed a generally similar spatial distribution characteristic. Most of the ice of the North Inylchek Glacier remains in a stagnant state except for the upstream part, but a relatively high velocity of 20–40 cm/day with an RMSE of 3 cm/day was observed on most part of the South Inylchek Glacier, except for the slow-moving glacier terminus. We also state the glacier dynamics around Lake Merzbacher and their possible effect on its glacier lake outburst flood (GLOF) risk. Besides, the surface velocity distribution on South Inylchek Glacier surface during the ablation period from 2014 to 2016 was also established and also compared with annual velocity. The corresponding difference yields that there is a positive relation between ice motion and temperature variation. Therefore, the time-series ice surface motion yielded by the Landsat imagery thus could provide us an efficient and low-cost way to analyze the current state and changes in glaciers, thanks to the continuous and regular spaceborne observations provided by the Landsat satellites.  相似文献   

15.
Debris‐covered glaciers may host several biological forms that colonize the debris cover, especially if the glacier tongue reaches sufficiently low altitudes (down to about 1700 m a.s.l. at Miage Glacier, Western Italian Alps) thus allowing also tree growth. Supraglacial trees colonizing the debris‐covered tongue are strongly influenced in growth and distribution by substrate characteristics and instability. The tree age distribution at Miage Glacier presents a positive gradient towards the glacier terminus, which was found to be related to the decreasing glacier surface velocity. By analysing tree‐ring growth anomalies on the glacier and at a control site at the tree line over the 20‐year period 1987–2006, it was found that trees growing on the glacier presented the highest percentages of abrupt growth changes (AGCs)>+70% with respect to the four previous years. Considering tree displacement on the glacier surface over the same 20‐year period and the recorded AGCs, it was found that the central‐lower portion of the southern lobe towards the margins was the most unstable. The temporal analysis of AGC>+40% confirmed a period of higher glacier surface instability, reaching a maximum in the years 1988 (on lobe S) and 1989 (on lobe N), probably related to the passage of a kinematic wave in the glacier tongue. Our analysis suggests that supraglacial trees hold useful information on the glacier tongue dynamics and that both AGC>+70% and AGC>+40% may be used as a proxy for substrate instability in spatio‐temporal reconstructions in the Alpine environment.  相似文献   

16.
This study investigated the surge dynamics of Aavatsmarkbreen, a glacier in Svalbard and its geomorphological impact based on remote sensing data and field observations. The main objective was to analyse and classify subglacial and supraglacial landforms in the context of glacial deformation and basal sliding over a thin layer of thawed, water‐saturated deposits. The study also focused on the geomorphological evidence of surge‐related sub‐ and supraglacial crevassing and glacier front fracturing. From 2006 to 2013, the average recession of Aavatsmarkbreen was 363 m (52 m a−1). A subsequent surge during 2013–2015 resulted in a substantial advance of the glacier front of over 1 km and an increase in its surface area of more than 2 km2. The surface of Aavatsmarkbreen was severely fractured. Significant ice‐flow acceleration was noted whereby the highest surface velocity reached 4.9 m day1. The ephemeral water‐escape structures and mini‐flutings on the fine‐grained till surface that formed during the surge are indicative of high subglacial pore‐water pressure and enhanced basal sliding. Two genetic types of clast pavements occur in the marginal zone of Aavatsmarkbreen. The results of this study will help to constrain glaciological and geomorphological processes involved in surge phenomena. Understanding the scale and effects of these processes provides insight into the behaviour of fast‐flowing glaciers and ice streams and reveals their relationships with external factors.  相似文献   

17.
Glacier thermal regime is shown to have a significant influence on the formation of ice‐marginal moraines. Annual moraines at the margin of Midtdalsbreen are asymmetrical and contain sorted fine sediment and diamicton layers dipping gently up‐glacier. The sorted fine sediments include sands and gravels that were initially deposited fluvially directly in front of the glacier. Clast‐form data indicate that the diamictons have a mixed subglacial and fluvial origin. Winter cold is able to penetrate through the thin (<10 m) ice margin and freeze these sediments to the glacier sole. During winter, sediment becomes elevated along the wedge‐shaped advancing glacier snout before melting out and being deposited as asymmetrical ridges. These annual moraines have a limited preservation potential of ~40 years, and this is reflected in the evolution of landforms across the glacier foreland. Despite changing climatic conditions since the Little Ice Age and particularly within the last 10 years when frontal retreat has significantly speeded up, glacier dynamics have remained relatively constant with moraines deposited via basal freeze‐on, which requires stable glacier geometry. While the annual moraines on the eastern side of Midtdalsbreen indicate a slow steady retreat, the western foreland contains contrasting ice‐stagnation topography, highlighting the importance of local forcing factors such as shielding, aspect and debris cover in addition to changing climate. This study indicates that, even in temperate glacial environments, restricted or localised areas of cold‐based ice can have a significant impact on the geomorphic imprint of the glacier system and may actually be more widespread within both modern and ancient glacial environments than previously thought.  相似文献   

18.
The Lambert Graben is occupied by the world’s largest fjord system, through which flows the Lambert Glacier, the Amery Ice Shelf and their tributaries. Along the western margin of the graben, in the northern Prince Charles Mountains, remnants of uplifted Miocene and Pliocene strata of the glacigenic fjordal Pagodroma Group total more than 800 m in thickness. These sediments provide evidence for a dynamic East Antarctic ice sheet during the Neogene Period. Each of the four Pagodroma Group formations defined from this region rests unconformably on either Proterozoic or Permo‐Triassic rocks. The unconformity surfaces represent parts of the walls and floors of Neogene fjords. For these surfaces to have been eroded, the ice must have been grounded out as far as the continental shelf in Prydz Bay. The Pagodroma Group was deposited by wet‐based glaciers discharging into a fjordal setting and includes lithofacies that are quite different from those produced by modern Antarctic ice masses. The principal lithofacies are massive diamicts and soulder gravels, deposited both close to a calving, grounded glacier terminus and from icebergs. The few stratified diamicts are the product of more distal iceberg sedimentation. An ice‐transported gravel lithofacies includes rockfall debris derived from palaeofjord walls and mixed with subglacially derived diamicts. Some lithofacies contain evidence of subaquatic slumping and gravity flowage. Volumetrically minor lithofacies include laminites, with some exposures exhibiting large ice‐rafted clasts. The laminites represent less proximal, mainly ice‐free fjordal sediments, resulting either from tidal‐current sorting of suspended sediment originating from subaquatic glaciofluvial discharge, or from turbidity currents derived from unstable subaquatically deposited glacigenic sediment. The Pagodroma Group provides a record of multiple glaciation by dynamic, sliding glaciers carrying large amounts of both basal and supraglacial debris. The closest modern analogues, in terms of the thermal and dynamic characteristics of the Neogene Lambert Glacier, appear to be the fast‐flowing tidewater glaciers of East Greenland. These glaciers originate from the interior ice sheet and discharge large volumes of icebergs; the resulting lithofacies are predominantly diamicts.  相似文献   

19.
冰川表面水文过程研究进展   总被引:1,自引:1,他引:0  
杨康  刘巧 《冰川冻土》2016,38(6):1666-1678
冰面水文过程是冰川径流过程的重要组成部分,对于冰川运动与物质平衡具有重要影响。冰川表面在太阳辐射、冰川物理性质、冰面地形和成冰带空间分布等多种因素影响下消融,形成以冰面水系为主线,锅穴、冰裂隙、冰面湖等为端点的冰面融水输送与分配体系。深入理解冰面水文过程,掌握冰川表面融水的输送、存储与释放,对于研究短时间尺度的冰川融水径流过程、探索冰川动态响应机理具有重要意义。总结回顾了目前国内外冰面水文过程的研究现状,提出了该领域有待解决的主要科学问题。  相似文献   

20.
合成孔径雷达(synthetic aperture radar, SAR)具有其全天候、全天时、穿云透雾的工作能力, 广泛应用于山地冰川动态监测中. 利用2006年6-9月三期ALOS/PALSAR雷达影像, 采用偏移量跟踪技术, 提取了喜马拉雅山珠穆朗玛峰(珠峰)区域的冰川运动速度, 分析了区域内冰川运动速度空间差异及其影响因素. 结果表明: 研究区31条山谷冰川平均运动速度为9.3 cm·d-1, 总体上以珠峰-洛子峰南北向山脊线为界限, 东侧和东南侧冰川日均运动速度(11.1 cm·d-1)普遍高于北部和西北部冰川日均运动速度(5.4 cm·d-1). 冰川消融区非表碛区冰川平均运动速度为表碛覆盖区平均运动速度的2.2倍, 冰面湖的发育在一定程度上加剧冰川运动速度波动. 在气候与非气候因子共同作用和相互间的此消彼长中, 研究区65%的冰川的运动速度自中值高度往下显著减小, 16%的冰川自中值高度往下呈显著增大趋势, 19%冰川消融区运动速度无显著变化趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号