共查询到10条相似文献,搜索用时 62 毫秒
1.
天山乌一号冰川物质平衡特征的统计分析 总被引:4,自引:1,他引:4
利用天山乌鲁木齐河源一号冰川物质平衡的多年观测资料,通过数学统计方法提取主成分,获得影响该冰川物质平衡的主要因素,通过成分矩阵的旋转获得表示冰川物质平衡特征的两个主因子,其中第一主因子为影响冰川物质平衡的常年因子,代表该冰川的多年持续变化方向与趋势,第二主因子为影响冰川物质平衡的年际因子,代表该冰川在平衡年内的物质平衡变化特征。常年因子的持续下降反映了冰川持续后退的现实,年际因子在上世纪80年代中期以后突然强劲上升,实际上是冰川物质平衡水平提高,平衡年内积累量和消融量都增加的表现,清晰地指示了西北地区气候由暖干向暖湿的转型。常年因子是冰川物质平衡变化的主导因子,控制了冰川变化的方向。常年因子具有较好的周期性,以6年周期最为明显,但其形成原因尚不明。年际因子周期性不明显,但可以看出其周期与太阳黑子变化具有相关性,同时受到常年因子的影响。 相似文献
2.
3.
应用天山北坡乌鲁木齐河源区1 号冰川、空冰斗和总控3 个水文断面2011 年5-9 月每10min 实测水位数据、15 min 的气温、降水数据、1 号冰川消融及空冰斗区积雪观测数据,采用排除和不排除降水对冰雪消融产流影响的研究方法,系统分析了不同冰川覆盖率下水文断面冰雪消融特征及产汇流过程。结果表明:(1) 乌鲁木齐河源区3 个水文断面流量昼夜差异明显,1 号冰川水文断面白天径流大于夜晚径流,空冰斗和总控断面则相反;3 个断面流量亦具有显著日变化过程,且流量峰值大小和到来的时间存在差异。(2) 在排除与不排除降水两种天气影响下,1 号冰川最大流量滞后最高气温分别为1~3 h 和0~1 h;空冰斗断面分别为10~16 h和13 h,总控断面分别为5~11 h 和6~7 h,反映了1 号冰川从消融产流到汇流时间最短,空冰斗积雪消融产流时间最长,总控位于二者之间,同时亦反映伴随降水过程冰雪融水汇流迅速,即从产流到汇流时间有一定的缩短。(3) 影响3 个水文断面流量变化的因素不同,冰川区热量条件是影响1 号冰川水文断面的关键,1 号冰川在过去20 余年间,冰内、冰下排水道变得更为单一,对融水的阻滞和贮存作用弱化,融水汇流过程变得更为迅速。(4) 冰川覆盖山区流域水文断面在冰川消融期的流量过程线变化及最大流量与最高气温时滞变化规律在一定程度上对于认识冰川覆盖率有差异背景下的流域下垫面水系演化、冰雪消融过程及水文断面径流补给具有重要的指示意义。 相似文献
4.
Hydrological processes of glacier and snow melting and runoff in the Urumqi River source region,eastern Tianshan Mountains,China 总被引:1,自引:0,他引:1
Hydrological processes were compared, with and without the influence of precipitation on discharge, to identify the differences between glacierized and non-glacierized catchments in the Urumqi River source region, on the northern slope of the eastern Tianshan Mountains, during the melting season (May-September) in 2011. The study was based on hydrological data observed at 10-min intervals, meteorological data observed at 15-min intervals, and glacier melting and snow observations from the Empty Cirque, Zongkong, and Urumqi Glacier No.1 gauging stations. The results indicated that the discharge differed markedly among the three gauging stations. The daily discharge was more than the nightly discharge at the Glacier No.1 gauging station, which contrasted with the patterns observed at the Zongkong and Empty Cirque gauging stations. There was a clear daily variation in the discharge at the three gauging stations, with differences in the magnitude and duration of the peak discharge. When precipitation was not considered, the time-lags between the maximum discharge and the highest temperature were 1-3 h, 10-16 h, and 5-11 h at the Glacier No.1, Empty Cirque, and Zongkong gauging stations, respectively. When precipitation was taken into consideration, the corresponding time-lags were 0-1 h, 13 h, and 6-7 h, respectively. Therefore, the duration from the generation of discharge to confluence was the shortest in the glacierized catchment and the longest in the catchment where was mainly covered by snow. It was also shown that the hydrological process from the generation of discharge to confluence shortened when precipitation was considered. The factors influencing changes in the discharge among the three gauging stations were different. For Glacier No.1 station, the discharge was mainly controlled by heat conditions in the glacierized region, and the discharge displayed an accelerated growth when the temperature exceeded 5°C in the melt season. It was found that the englacial and subglacial drainage channel of Glacier No.1 had become simpler during the past 20 years. Its weaker retardance and storage of glacier melting water resulted in rapid discharge confluence. It was also shown that the discharge curve and the time-lag between the maximum discharge and the highest temperature could be used to reveal the evolution of the drainage system and the process of glacier and snow melting at different levels of glacier coverage. 相似文献
5.
YongChao Lan ZhengYao M YongPing Shen ChengFang L Jie Song XingLin Hu HongWei Din 《寒旱区科学》2011,3(3):0274-0280
The mountain watersheds of Kaidu River and Urumqi River, which separately originate from the south and north-side of the Tianshan Mountains in Xinjiang, are selected as the study area. The characteristics and trends on variation of temperature, precipitation and runoff, and the correlativity between temperature, precipitation, and runoff were analyzed based on the past 40 years of observational data from the correlative hydrological and weather stations in the study areas. Various weather scene combinations are assumed and the response models of runoff to climate change are established in order to evaluate the sensitivity of runoff to climate change in the study areas based on the foregoing analysis. Results show that all variations of temperature, precipitation, and runoff overall present an oscillating and increasing trend since the 1960s and this increase are quite evident after 1990. There is a markedly positive correlation between mountain runoff, temperature, and precipitation while there are obvious regional differences of responding degree to precipitation and temperature between mountain runoff of Urumqi River and Kaidu River Basins. Also, mountain runoff of Urumqi River Basin is more sensitive to precipitation change than that of Kaidu River Basin, and mountain runoff of Kaidu River Basin is more sensitive to temperature change than that of Urumqi River Basin. 相似文献
6.
Against the background of climate change, alpine permafrost active layers have shown a gradual thickening trend and the hydrothermal conditions have undergone significant changes in the Tianshan Mountains and the Qinghai-Tibet Plateau, China. At the ice-free cirque basins in the headwaters of the Urumqi River(hereafter referred to as the Ice-Free Cirque) in eastern Tianshan, China, the hydrological effects of the alpine permafrost active layers appear to have also exhibited significant changes recently. The increasing trend of local precipitation is clear in May and June. The onset of winter and spring snowmelt runoff clearly lags behind increases of air temperature, and the runoff peak appears near the beginning of the melting season, which results in the spring runoff increasing. In summer, runoff decreases strongly and the maximum runoff occurs earlier. In our analysis of meteorological and hydrologic data from 1959 to 2010, the runoff and precipitation changes are significantly correlated. In the initial stage of runoff, the runoff-producing process is mainly under the control of the soil water content and soil temperature in the 0–30 cm active layers. Spring precipitation and snowmelt water are mainly involved in the processes of infiltration and evaporation while some melt water infiltrates into the seasonal thawed layer and stays above the frozen layers. During the strong ablation period in summer, the runoff-generating process is mainly controlled by soil water content in the active layers deeper than 60 cm. In the active layer, precipitation and seasonal snowmelt water infiltrates, migrates, collects, and then forms runoff. 相似文献
7.
60-year changes and mechanisms of Urumqi Glacier No. 1 in the eastern Tianshan of China,Central Asia
ZhongQin Li HuiLin Li ChunHai Xu YuFeng Jia FeiTeng Wang PuYu Wang XiaoYing Yue 《寒旱区科学》2020,12(6):380-388
Worldwide examination of glacier change is based on detailed observations from only a small number of glaciers. The ground-based detailed individual glacier monitoring is of strong need and extremely important in both regional and global scales. A long-term integrated multi-level monitoring has been carried out on Urumqi Glacier No. 1 (UG1) at the headwaters of the Urumqi River in the eastern Tianshan Mountains of Central Asia since 1959 by the Tianshan Glaciological Station, Chinese Acamedey of Sciences (CAS), and the glaciological datasets promise to be the best in China. The boundaries of all glacier zones moved up, resulting in a shrunk accumulation area. The stratigraphy features of the snowpack on the glacier were found to be significantly altered by climate warming. Mass balances of UG1 show accelerated mass loss since 1960, which were attributed to three mechanisms. The glacier has been contracting at an accelerated rate since 1962, resulting in a total reduction of 0.37 km2 or 19.3% from 1962 to 2018. Glacier runoff measured at the UG1 hydrometeorological station demonstrates a significant increase from 1959 to 2018 with a large interannual fluctuation, which is inversely correlated with the glacier's mass balance. This study analyzes on the changes in glacier zones, mass balance, area and length, and streamflow in the nival glacial catchment over the past 60 years. It provides critical insight into the processes and mechanisms of glacier recession in response to climate change. The results are not only representative of those glaciers in the Tianshan mountains, but also for the continental-type throughout the world. The direct observation data form an essential basis for evaluating mountain glacier changes and the impact of glacier shrinkage on water resources in the interior drainage rivers within the vast arid and semi-arid land in northwestern China as well as Central Asia. 相似文献
8.
天山阿特奥依纳克河流域冰川沉积序列 总被引:1,自引:0,他引:1
阿特奥依纳克河位于我国天山的最西段,最大现代冰川作用中心托木尔峰的南麓。在第四纪冰期与间冰期的气候旋回中,该处留下了形态较为完整的6套冰川沉积。应用ESR测年技术 (辅以OSL测年技术) 对冰碛物及其相应的冰水沉积物进行了定年,测得6套冰碛年龄分别为7.3±0.8ka BP (OSL,冰水沙);12.3±1.2ka BP (OSL) 与15~29ka BP;46~54ka BP;56~65ka BP;155.8±15.6ka BP与234.8±23.5ka BP;453.0±45.3ka BP,测年结果表明它们分别形成于新冰期、海洋同位素阶段(MIS)2、3b、4、6、12。第三套冰碛测年结果表明该处MIS3b冰进规模较大,其规模基本上与末次盛冰期 (MIS2) 的规模相当。此处最老冰碛测年结果与我国中段天山乌鲁木齐河源高望峰冰碛的测年结果 (459.7±46ka BP与477.1ka BP) 遥相呼应,老冰碛的年龄显示我国天山西段与中段至少于MIS12进入了冰冻圈,开始发育冰川。 相似文献
9.
天山木扎尔特河流域的冰川地貌与冰期 总被引:1,自引:0,他引:1
木扎尔特河流域位于天山最大现代冰川作用中心托木尔峰的东南坡,在第四纪冰期与问冰期气候旋回中,河谷与山麓带留下了4套形态清晰的冰川沉积.冰碛地形包含着丰富的古环境变化信息,对它们进行研究有助于认识该流域的冰川演化与重建该地区的古环境.应用ESR测年技术.选用石英颗粒中对光照与研磨较敏感的Ge心作为测年信号,对该流域的第三套破城子多列终碛垅及其冰水沉积,第四套克孜布拉克冰碛剥蚀平原上覆河流相砾石沉积以及一出露完整的沉积剖面进行测年.结合地貌地层学原理以及其他古环境研究资料进行综合分析可得出:河谷中第一套3-4列终碛垅形成于小冰期;第二套高大的吐盖别里齐终碛垅为新冰期冰进产物;破城子终碛垅沉积于MIS2-4;克孜布拉克冰碛形成于MIS6.破城子终碛垅地形及测年结果表明末次冰期冰川作用过程中该处至少存在3次大的冰进,可分别对应于MIS4、MIS3b与MIS2.MIS2与MIS3b时冰川为复合山谷冰川.MIS4与MIS6时为山麓冰川.末次冰期冰川作用过程中,古木扎尔特冰川长约92-99 km.克孜布拉克冰期最盛时的古木扎尔特冰川长约120 km. 相似文献
10.
西北干旱区石羊河流域表土花粉分析 总被引:4,自引:0,他引:4
干旱区石羊河流域不同植被带55个表土样的花粉分析结果显示,本流域表土花粉组合可以分为两部分,第一部分是荒漠草原带以上的山地植被花粉组合,其特征是云杉花粉占绝对优势,除森林带以外,基本不反映当地植被;第二部分是荒漠带以下的表土花粉组合,主要以灌木和草本植物花粉占优势,基本能反映当地的植被状况。影响石羊河流域表土花粉组合的主要因素是风力。主要科属花粉的浓度与植被状况对应良好,峰值区基本都位于其母体植物占优势的植被带中,但花粉百分含量受研究区气候、植被分布等因素影响,与现代植被的对应关系稍差。大部分灌木和草本花粉的含量变化基本能反映植被,但乔木花粉含量不能正确反映森林分布状况。 相似文献