首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil carbon stock changes induced by land-use change play an essential role in the global greenhouse effect and carbon circulation. This paper studies the urban expanding patterns and spatial characteristics of soil organic carbon (SOC) and soil inorganic carbon (SIC) distribution and evolution during the urbanization process of Shanghai, China, based on the data of the regional geochemical survey. Urbanization process in Shanghai, China, has been quickening greatly since the 1980s. The urban area expanded from 193.08 km2 in 1980 to 1,570.52 km2 in 2005, or up from 3.05 to 24.77% in the past 25 years, and the urban expansion circled the central city region according to the RS images acquired in the periods of 1980, 2000 and 2005. The urban topsoil is slightly enriched with SOC and SIC, which shows obvious spatial variability. By comparison of SOC and SIC distribution in the central urban area, urbanized area during 1980–2000, 2000–2005 and the suburban area, the SOC obviously accumulates in the central urban area, while SOC density in the urbanized area decreases; similarly, the SIC obviously accumulates in central urban area; furthermore, the SIC density increases with urban land use duration extending and urban ecosystem evolving. This paper provides the characteristics of SOC and SIC distribution and evolution during the course of urbanization, which may be useful for assessing the impact of land use and urban development on SOC and SIC pools in urban ecosystem.  相似文献   

2.
Most U.S. metropolitan regions have experienced urban “sprawl,” or the outward spreading of urban development from city centers. For cities lying in areas prone to severe weather, the sprawl phenomenon exposes greater numbers of developed areas and inhabitants to a variety of thunderstorm hazards. This study’s principal goal is to determine how urbanization growth patterns affect a region’s vulnerability to severe weather events. To assess how sprawl may impact vulnerability to tornadoes, hail, and convective wind events, an analysis examining potential loss may be utilized. This study employs two distinct approaches to examine how the Atlanta area’s rapid and extensive development during the latter half of the twentieth Century has affected its overall potential exposure to thunderstorm hazards. First, archived census data are used to estimate overall impacts from hypothetical significant tornado, nontornadic convective wind, and hail events occurring at different time periods throughout several locations in the Atlanta metropolitan region. Second, economic factors are integrated into the analysis, which assists in determining how these hypothetical severe event scenarios may have changed from a cost standpoint if they were to occur in 2006 as opposed to 1960.  相似文献   

3.
A study was conducted to estimate the runoff in urbanized zone using Soil Conservation Services Curve Number (SCS-CN) method through remote sensing and GIS techniques. In this study, the region was identified as Cochin Corporation (Kerala State, India) with an aerial extent of 96.44 km2. The spatial and non-spatial data were collected from different sources, and the thematic layers of soil hydrologic group and land-use maps were prepared and overlaid with one other. The overlaid output results were assigned by curve numbers with respect to soil and land-use categories, and the CN map was prepared with the help of Visual Basic (VB) language in ArcGIS platform. Through supervised classifications, 13 different land-use classes were identified from Quickbird data for the year of 2005 and 2010. The most prominent land-use classes were water bodies, residential, mixed crops, commercial and industrial, and 3 types of soil hydrologic groups were identified namely A, B, and C categories. The B group is most prominent occupying 60 km2 of the study area. The CN map shows the ranges that 92–100 is the major CN area with high runoff potential zone of the study region. At the final stage, the runoff was estimated by the maximum successive rainfall received in this study area in two different years—2005 and 2010 along with their land-use pattern. The runoff model is applied for temporal variation in land-use change, and impact of runoff was studied. The study area showed significant changes in land-use pattern between 2005 and 2010 particularly in the land-use change from agricultural into industrial, commercial, and residential (high density). The area covered by the highest runoff depth with the range of 92–100 CN values increased from 43.87 to 45.32 km2 from 2005 to 2010. The volume of runoff was increased from 135.56 to 141.49 Mm3 from 2005 to 2010 due to the land-use change pattern.  相似文献   

4.
Rapid land-use change has taken place in many arid and semi-arid regions of China over the last decade as the result of demand for food for its growing population. The Heihe River Basin, a typical inland river basin of temperate arid zone in northwestern China, was investigated to assess land-use change dynamics by the combined use of satellite remote sensing and geographical information systems (GIS), and to explore the interaction between these changes and the environment. Images were classified into six land-use types: cropland, forestland, grassland, water, urban or built-up land, and barren land. The objectives were to assess and analyze landscape change of land use/cover in Heihe River Basin over 15 years from 1987 to 2002. The results show that (1) grassland and barren land increase greatly by 22.3, and 268.2 km2, respectively, but water area decreased rapidly by 247.2 km2 in the upper reaches of Heihe River Basin; (2) cropland and urban or built-up land increased greatly by 174.9, and 64.6 km2, respectively, but grassland decreased rapidly by 210.3 km2 in the middle reaches of Heihe River Basin; and (3) barren land increased largely by 397.4 km2, but grassland degraded seriously and water area decreased obviously by 313.3, and 21.7 km2, respectively in the lower reaches of Heihe River Basin. These results show that significant changes in land-use occur within the whole basin over the study period and cause severe environmental degradation, such as water environmental changes (including surface water runoff change, decline of groundwater table and degeneration of surface water and groundwater quality), land desertification and salinization, and vegetation degeneracy.  相似文献   

5.
Retrospective understanding of the magnitude and pace of urban expansion is necessary for effective growth management in metropolitan regions. The objective of this paper is to quantify the spatial–temporal patterns of urban expansion in the Greater Kumasi Sub-Region (GKSR)—a functional region comprising eight administrative districts in Ghana, West Africa. The analysis is based on Landsat remote sensing images from 1986, 2001 and 2014 which were classified using supervised maximum likelihood algorithm in ERDAS IMAGINE. We computed three complementary growth indexes namely; Average Annual Urban Expansion Rate, Urban Expansion Intensity Index (UEII) and Urban Expansion Differentiation Index to estimate the amount and intensity of expansion over the 28-year period. Overall, urban expansion in the GKSR has been occurring at an average annual rate of 5.6 %. Consequently, the sub-region’s built-up land increased by 313 km2 from 88 km2 in 1986 to 400 km2 in 2014. The analysis further show that about 72 % of the total built-up land increase occurred in the last 13 years alone, with UEII value of 0.605 indicating a moderate intensity of urban expansion. Moreover, the metropolitan-core of the sub-region, being the focal point of urban development and the historical origins of expansion, accounted for more than half of the total built-up land increase over the 28-year period. Over the last decade and half however, urban expansion has spilled into the neighbouring peripheral districts, with the highest intensity and fastest rate of expansion occurring in districts located north and north east of the sub-regional core. We recommend a comprehensive regional growth management strategy grounded in effective strategic partnerships among the respective administrative districts to curb unsustainable urban expansion.  相似文献   

6.
The Yangtze River is the China’s longest river and the third-longest river in the world. The river’s source region in the Qinghai-Tibet Plateau is especially sensitive to global environmental change because of its high elevation and cold environment. Under the influence of global warming, aeolian desertified land has expanded rapidly in this area. To assess the trends in aeolian desertification from 1975 to 2005, remote-sensing and GIS technology were used to monitor the extent of aeolian desertification in 1975, 1990, 2000, and 2005. The data sources included Landsat multi-spectral scanner images acquired in 1975, Enhanced Thematic Mapper (ETM+) images acquired in 2000, and Thematic Mapper (TM) images acquired in 1990 and 2005. Images recorded between June and October were selected, when vegetation grew well, because aeolian desertified land was more easily recognized during this period. Thematic maps, including land use and geomorphologic maps, were used as supplementary data. Aeolian desertification maps (1:100000) were produced for each year from the Landsat images through visual interpretation. The area of aeolian desertified land increased by 2,678.43 km2 from 1975 to 2005, accounting for 8.8% of the total area of aeolian desertified land in 1975, an increase of 89.28 km2 a−1. Increasing mean annual temperature and the combination of a dry, cold, and windy climate in winter and spring were mainly responsible for the expansion of desertified land.  相似文献   

7.
Accurate prediction of future sea level rise requires models that accurately reproduce and explain the recent observed dramatic ice sheet behaviours. This study presents a new multi-phase, multiple-rheology, scalable and extensible geofluid model of the Greenland ice sheet that shows the credential of successfully reproducing the mass loss rate derived from the Gravity Recovery and Climate Experiment (GRACE), and the microwave remote sensed surface melt area over the past decade. Model simulated early 21st century surface ice flow compares satisfactorily with InSAR measurements. Accurate simulation of the three metrics simultaneously cannot be explained by fortunate model tuning and give us confidence in using this modelling system for projection of the future fate of Greenland Ice Sheet (GrIS). Based on this fully adaptable three dimensional, thermo-mechanically coupled prognostic ice model, we examined the flow sensitivity to granular basal sliding, and further identified that this leads to a positive feedback contributing to enhanced mass loss in a future warming climate. The rheological properties of ice depend sensitively on its temperature, thus we further verified modelâ?s temperature solver against in situ observations. Driven by the NCEP/NCAR reanalysis atmospheric parameters, the ice model simulated GrIS mass loss rate compares favourably with that derived from the GRACE measurements, or about ?147 km3/yr over the 2002–2008 period. Increase of the summer maximum melt area extent (SME) is indicative of expansion of the ablation zone. The modeled SME from year 1979 to 2006 compares well with the cross-polarized gradient ratio method (XPGR) observed melt area in terms of annual variabilities. A high correlation of 0.88 is found between the two time series. In the 30-year model simulation series, the surface melt exhibited large inter-annual and decadal variability, years 2002, 2005 and 2007 being three significant recent melt episodes.  相似文献   

8.
The present study combined remote sensing with geographical information system (GIS) technology to interpret Landsat TM images from 1996 to 2000 and establish a land cover database for the Hexi Corridor of China’s Gansu Province. The areas of sand and dust emission and trends in their change were extracted by analyzing the database, with the following results: In 2000, the source area for sand and dust storms totaled nearly 170,000 km2, accounting for 75.1% of the study region. The emission area decreases from as much as 70,000 km2 in winter and spring to around 58,000 km2 in summer and autumn, accounting for 41.1 and 34.1% of the source area, respectively. During the 4 years of the study period, the emission area decreased by nearly 57 km2 in winter and spring (a 0.1% change); however, the vulnerability of the land surface to wind erosion increased in ca. 190 km2 and decreased in ca. 102 km2. Although the area of dust emission decreased from 1996 to 2000, the area vulnerable to wind erosion increased by ca. 87 km2, and the increased number of sand and dust storm days in the region between 2000 and 2003 appears to be correlated with this increase.  相似文献   

9.
The dynamics of desertification in the Horqin Sandy Land between 2000 and 2005 were analyzed using Landsat TM/ETM images and the data-processing function of geographical information software. The results showed that the extent of desertified land decreased at a rate of slightly more than 0.1 km2 year−1, from 22,423.1 km2 in 2000 to 22,422.4 km2 in 2005, indicating that desertification has been controlled in this area and that desert areas may be approaching a steady state. The dynamics of desertification differed among land types. Desertification decreased most obviously in areas of previous desert land. The area in which desertification was ameliorated was higher than the area that underwent further degradation, but non-desertified land (113.3 km2) deteriorated at a rate of 22.7 km2 year−1 during this period. This significant change requires careful attention by managers in the study area.  相似文献   

10.
Garg  Vaibhav  Anand  Aishwarya 《GeoJournal》2022,87(4):973-997

Rispana River flows through the heart of Dehradun, the capital city of Uttarakhand State, India. Uttarakhand had separated from Uttar Pradesh State in the year 2000; since then, Dehradun City has witnessed numerous changes. Both urban sprawl and densification were noticed, with around a 32% increase in population. The city had faced recurrent high runoff and urban flood situations in these last 2 decades. Therefore, the study was conducted to detect the change in land use/land cover (LULC), especially urbanization, through remote sensing data; and later to determine the impacts of such changes on the Rispana watershed hydrology. The LULC maps for the year 2003 and the 2017 were generated through supervised classification technique using the Landsat Series satellite datasets. The LULC change analysis depicted that mainly the urban settlement class increased with significant area among other classes from the year 2003–2017. It was noticed that majorly agriculture and fallow land (8.18 km2, which is 13.52% of total watershed area) converted to urban, increasing the impervious area. Almost all the municipal wards, falling in the Rispana watershed, showed urbanization during the said period, with an increase of as high as 71%. The change in LULC or effect of urbanization on the hydrological response of the watershed was assessed using the most widely used Natural Resources Conservation Services Curve Number method. It was noticed that the area under moderated runoff potential (approx. 10.23 km2) steeply increased during the lean season, whereas, high runoff potential zones (5 km2) increased significantly under wet season. Therefore, it was concluded that an increase in impervious surface resulted in high runoff generation. Further, such LULC change along with climate might lead to high runoff within the watershed, which the present storm drainage network could not withstand. The situation generally led to urban floods and affected urban dwellers regularly. Therefore, it is critical to assess the hydrological impacts of LULC change for land use planning and water resource management. Furthermore, under the smart city project, the local government has various plans to improve present infrastructure; therefore, it becomes necessary to incorporate such observations in the policies.

  相似文献   

11.
《China Geology》2021,4(3):455-462
The Luanhe River Delta is located in the center of the Circum-Bohai Sea Economic Zone. It enjoys rapid economic and social development while suffering relatively water scarcity. The overexploitation of groundwater in the Luanhe River Delta in recent years has caused the continuous drop of groundwater level and serious environmental and geological problems. This study systematically analyzes the evolution characteristics of the population, economy, and groundwater exploitation in the Luanhe River Delta and summarizes the change patterns of the groundwater flow regime in different aquifers in the Luanhe River Delta according to previous water resource assessment data as well as the latest groundwater survey results. Through comparison of major source/sink terms and groundwater resources, the study reveals the impacts of human activities on the groundwater resources and ecological environment in the study area over the past 30 years from 1990 to 2020. The results are as follows. The average annual drop rate of shallow groundwater and the deep groundwater in the centers of depression cones is 0.4 m and 1.64 m, respectively in the Luanhe River Delta in the past 30 years. The depression cones of shallow and deep groundwater in the study area cover an area of 545.32 km2 and 548.79 km2, respectively, accounting for more than 10% of the total area of the Luanhe River Delta. Overexploitation of groundwater has further aggravated land subsidence. As a result, two large-scale subsidence centers have formed, with a maximum subsidence rate of up to 120 mm/a. The drop of groundwater level has induced some ecological problems in the Luanhe River Delta area, such as the zero flow and water quality deterioration of rivers and continuous shrinkage of natural wetlands and water. Meanwhile, the proportion of natural wetland area to the total wetland area has been decreased from 99% to 8% and the water area from 1776 km2 to 263 km2. These results will provide data for groundwater overexploitation control, land subsidence prevention, and ecological restoration in plains and provide services for water resources management and national land space planning.© 2021 China Geology Editorial Office.  相似文献   

12.
Roy  Bhaswati  Kasemi  Nuruzzaman 《GeoJournal》2022,87(4):869-884

In the study of new towns and cities, spatial assimilation and the complex nature of urban development hold issues of special importance. At present, in developing countries like India, rapid development as well as urbanization in medium sized cities is a noticeable phenomenon. However,researchers in the field of urban study,lay emphasis on larger cities in our country. Therefore,more studies are essential to identify the problem and future prospect and also to suggest satisfactory policies for the betterment of medium sized cities.The current paper assesses the spatial expansion of the Siliguri (a fast growing medium sized city of Eastern India) designed for the year 1990, 2000, 2010 as well as 2019 using satellite imagery and field investigation.The research quantifies the urban growth and sprawling pattern in the study area using statistical techniques and spatial matrices.The other objectives of this study are to predict and analyze the urban growth of Siliguri Urban Agglomeration (UA) of 2030 with the help of a Future Land Use Simulation (FLUS) model. This simulation model was chosen by using a technique to evaluate the classified images in three maps: a time 1 reference map, a time 2 reference map and a simulation map of time 3. Spatial metrics and Shannon entropy results revealed that Siliguri (UA) is experiencing rapid sprawl. In contrast, the degree of freedom results revealed a significant gulf between the observed and planned urban development.The simulation model also showed that the unsustainable trend will likely to remain intact in the future, with the built-up area rising to 78.496 km2 by 2030, potentially resulting in loss of major cultivated land, fallow land and flora.

  相似文献   

13.
Ismael  Hemin Mohammed 《GeoJournal》2021,86(4):1785-1796

There is a large body of research on urban forms. This review paper focuses on the urban sprawl using new and old approaches and new techniques from the subfield of urban Geography. There has been a debate among researchers about the definition of the sprawl, which makes it difficult to suggest a reliable model of the urban sprawl. This review is extremely selective. Numerous papers have focused on measuring the in terms of its physical cost or the environmental and transportation measures linked to this phenomenon. Several attempts have been made to improve the measurement of the sprawl using new approaches. Furthermore, this paper show that certain researchers did not attempt to explore new methods to investigate the urban sprawl in the past and present overlay layers for many years, researchers may use cartography techniques, for example, thereby collecting 20 years of data to match layers and show the differences in any metropolitan area. Several problems remain like differences in the understanding of the sprawl among planners and between other researchers interested in this issue. Also, it is problematic to find one measure, such as mixing different measures together to distinguish between car density and resident density. This study evaluated and reviewed old and recent studies to show that the most important issue in the urban sprawl relates to measurements. Incorporates inform and which measure is best. This article argues that urban spatial expansion reviews some of articles written on urban sprawl and showing the different approaches to studying.

  相似文献   

14.
Das  Tapas  Jana  Antu  Mandal  Biswajit  Sutradhar  Arindam 《GeoJournal》2021,87(4):765-795

Urbanization produces substantial land use changes by causing the construction of different urban infrastructures in the city region for habitation, transportation, industry, and other reasons. As a result, it has a significant impact on Land Surface Temperature (LST) by disrupting the surface energy balance. The objective of this paper is to assess the impact of land-use/land-cover (LU/LC) dynamics on urban land surface temperature (LST) of Bhubaneswar City in Eastern India during 30 years (1991–2021) using Landsat data (TM, ETM + , and OLI/TIRS) and machine learning algorithms (MLA). The finding reveals that the mean LST over the entire study domain grows significantly between 1991 and, 2021due to urbanization (β coefficient 0.400, 0.195, 0.07, and 0.06 in 1991, 2001, 2011, and 2021 respectively) and loss of green space (β coefficient − 0.295, − 0.025, − 0.125 and − 0.065 in 1991, 2001, 2011 and 2021 respectively). The highest class recorded for agricultural land (49.60 km2, accounting for 33.94% of the total land area) was in 1991 followed by vegetation (41.27 km2, 28.19% of the total land area), and built-up land (27.59 km2, 18.84% of the total land area). The sharp decline of vegetation cover will continue until 2021 due to increasing built-up areas (r = − 0.531, − 0.329, − 0.538, and − 0.063 in the 1991, 2001, 2011 and 2021 respectively). Built-up land (62.60 km2, accounting for 42.76% of the total land area, an increase of 35.01 km2 from 1991) as the highest class followed by water bodies (21.57%, 32.60 km2 of the land area), and agricultural land (31.57 km2, 21.57% of the land area) in 2021. Remote sensing techniques proved to be an important tool to urban planners and policymakers to take adequate steps to promote sustainable development and minimize urbanization influence on LST. Urban green space (UGS) can help improve the overall liveability and environmental sustainability of Bhubaneswar city.

  相似文献   

15.
Peter Congdon 《GeoJournal》2016,81(2):211-229
This paper discusses measurement of the main dimensions of the urban environment that have been proposed as relevant to explaining geographic variations in obesity and inactivity. It considers urban sprawl, food access and exercise access as latent constructs, defined by sets of observed indicators for areas. In an application to 993 US metropolitan counties, the paper shows how these latent constructs may be incorporated in an ecological (area-scale) model, which recognizes spatial aspects in the patterning of both outcomes and environmental factors. Urban sprawl and area socioeconomic status emerge from regression modelling as leading influences on obesity and inactivity.  相似文献   

16.
近15a乌鲁木齐市城市用地扩展动态及其空间特征研究   总被引:2,自引:0,他引:2  
黄粤  陈曦  包安明  马勇刚 《冰川冻土》2006,28(3):364-370
以乌鲁木齐市为例,在遥感和GIS技术的支持下,对干旱区城市土地利用结构、空间格局动态变化与城市扩展的空间特征进行定量分析.采用1987年、2002年两期陆地卫星影像为基础数据源,提取了研究时段内乌鲁木齐城市土地利用变化信息;结合景观生态学原理和方法,对研究区城市景观的动态变化进行定量分析.并引入建成区空间密度作为定量指标,分析总结了乌鲁木齐市扩展变化的空间特征.结果表明,1987-2002年间乌鲁木齐城市土地利用状况发生了较大的变化:城市建成区和绿地面积增长,水体面积减少;景观斑块分离度增强,边界构成曲折化,整体格局趋于复杂;在空间上,城市扩展主要沿西、西北及东北3个主要方向进行,并形成了建成区密度由内而外递减的空间分异特征.  相似文献   

17.
Land cover and vegetation in Lake Baikal basin (LBB) are considered to be highly susceptible to climate change. However, there is less information on the change trends in both climate and land cover in LBB and thus less understanding of the watershed sensitivity and adaptability to climate change. Here we identified the spatial and temporal patterns of changes in climate (from 1979 to 2016), land cover, and vegetation (from 2000 to 2010) in the LBB. During the past 40 years, there was a little increase in precipitation while air temperature has increased by 1.4 °C. During the past 10 years, land cover has changed significantly. Herein grassland, water bodies, permanent snow, and ice decreased by 485.40 km2, 161.55 km2 and 2.83 km2, respectively. However, forest and wetland increased by 111.40 km2 and 202.90 km2, respectively. About 83.67 km2 area of water bodies has been converted into the wetland. Also, there was a significant change in Normalized Difference Vegetation Index (NDVI), the NDVI maximum value was 1 in 2000, decreased to 0.9 in 2010. Evidently, it was in the mountainous areas and in the river basin that the vegetation shifted. Our findings have implications for predicting the safety of water resources and water eco-environment in LBB under global change.  相似文献   

18.
国土空间开发适宜性评价是国土空间规划编制的重要基础,市县是落实主体功能区划的基本单元,市县级国土空间开发适宜性评价可为国土资源与空间更精细化的管理提供有效支撑。本研究从自然因素和社会经济因素两个方面构建了国土空间开发适宜性评价指标体系,对宜昌市农业生产适宜性及城镇建设适宜性进行了评价,划分出适宜、较适宜、一般适宜、较不适宜和不适宜5类区域。结果表明宜昌市适宜开展农业生产的土地面积为3412 km2,不适宜土地面积为7143 km2;适宜进行城镇建设的土地面积为748 km2,不适宜土地面积为14679 km2。农业生产和城镇建设适宜性评价结果均呈现出典型的区域特征,适宜区主要分布在东部的平原区,区域整体的国土空间开发条件好;不适宜区主要分布在西部山区,区域整体的国土空间开发难度大。适宜性评价结果与规划数据有部分出入,与土地利用现状相差不大,农业生产适宜等级的土地面积比耕地保有量红线面积多132 km2,分布于农业生产适宜和较适宜区的现状耕地占耕地总面积的73.98%;城镇建设适宜等级的土地面积比建设用地底线面积少611 km2,分布于城镇建设适宜和较适宜区的现状建设用地占建设用地总面积的77.99%。将评价结果叠加在谷歌卫星图上,在空间上观察是否与土地现状一致,结果表明农业生产适宜区的评价结果准确率达100%,不适宜区的准确率为93%;城镇建设适宜区和不适宜区评价结果准确率达100%。  相似文献   

19.
The October 2005 earthquake triggered several thousand landslides in the Lesser Himalaya of Kashmir in northern Pakistan and India. Analyses of ASTER satellite imagery from 2001 were compared with a study undertaken in 2005; the results show the extent and nature of pre- and co-/post-seismic landsliding. Within a designated study area of ~2,250 km2, the number of landslides increased from 369 in 2001 to 2,252 in October 2005. Assuming a balanced baseline landsliding frequency over the 4 years, most of the new landslides were likely triggered by the 2005 earthquake and its aftershocks. These landslides mainly happened in specific geologic formations, along faults, rivers and roads, and in shrubland/grassland and agricultural land. Preliminary results from repeat photographs from 2005 and 2006 after the snowmelt season reveal that much of the ongoing landsliding occurred along rivers and roads, and the extensive earthquake-induced fissuring. Although the susceptibility zoning success rate for 2001 was low, many of the co-/post-seismic landsliding in 2005 occurred in areas that had been defined as being potentially dangerous on the 2001 map. While most of the area in 2001 was (very) highly susceptible to future landsliding, most of the area in 2005 was only moderate to low susceptible, that is, most of the landsliding in 2005 actually occurred in the potentially dangerous areas on the 2001 map. This study supports the view that although susceptibility zoning maps represent a powerful tool in natural hazard management, caution is needed when developing and using such maps.  相似文献   

20.
In this study, the Variable Infiltration Capacity model and Palmer Drought Severity Index (PDSI) were combined for drought identification on the Loess Plateau. The calibration method of climatic characteristic (K j ) in PDSI was improved. Land cover datasets in 1980 and 2005 were used to drive the model. The driest periods over the past four decades of the study region emerged in 1976–1982, 1997–2001 and 2003–2008. Regardless of ranking by duration, spatial extent or severity, most of the prominent droughts occurred in the detected driest periods. The drought severity and area over the upper reaches of the Yellow River were higher than other domains. A total of 53 droughts with area greater than the 25,000 km2 threshold were identified with durations longer than 3 months using clustering algorithm. Most regions of the study area exhibited spatially increasing trends in drought severity and frequency, indicating that the Loess Plateau has experienced apparent drying and warming processes between 1971 and 2010.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号