首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
新疆艾比湖地区盐尘的沉积通量及其物质组成   总被引:1,自引:0,他引:1  
以新疆准噶尔盆地西部的艾比湖地区为研究区,通过野外降尘监测、采样分析等方法,研究了艾比湖地区含盐粉尘的沉积通量和物质组成特征.结果表明:艾比湖干涸湖底是盐尘的输出源,盐尘的化学组成主要是无水芒硝、白钠镁矾、氯化钠等盐碱粉尘及Cr、Pb、Mn、Cu、Ni等潜在毒性元素.艾比湖地区盐尘的沉积通量约为79~381 g·m-2·a-1,盐的沉积通量约为4~61 g·m-2·a-1.盐尘的粒径分布以2~63μm的粉砂粒级为主,大于63μm的砂粒级所占比例很小.特殊的地形条件、大风天气、稀疏的植被覆盖、疏松的大面积尘源是艾比湖湖底风蚀和盐尘输送的有利条件.  相似文献   

2.
Salt mounds are commonly distributed along playa margins and typically comprise alternating layers of loose fine sand and slightly hard halite-rich sediments as a result of long-term underground spring activity. A model of salt mound development was constructed for this study. It suggests that wind-blown sand supply and upward recharge of underground springs are two important factors in salt mound construction. Furthermore, it proposes that salt mound height is mainly controlled by the vertical transport range of underground springs and the thickness of the capillary fringe. A 1.5 m representative profile dug from the center of salt mound LP1 in the Lop Nor playa revealed a fairly complicated mineral assemblage including halite, gypsum, anhydrite, glauberite, epsomite, anhydrite, calcite, bischofite, polyhalite, schoenite, kieserite and carnallite. This matches closely with the assemblage predicted by the EQL/EVP model. The groundwater in the area is highly concentrated brine rich in Cl and Na+ and poor in Ca2+, displaying low alkalinity, and containing considerable amounts of SO42−, Mg2+ and K+. Chemical analysis of groundwater revealed considerable variation in the salinity and chemical composition of groundwater over time. The Cs-137 technique was used to measure the accumulated ages of the salt mounds. This method may prove useful in the research of relatively young playa environments where carbon dating techniques are unworkable because of an absence of carbon-rich materials in recent saline sediments.  相似文献   

3.
In late Pleistocene time Lake Dieri (ancestral ‘Greater Lake Eyre') was permanently filled during a wet climatic phase. Towards the close of Pleistocene time the watertable fell, Lake Dieri dried up, and its sediments deflated. Later the watertable rose, establishing ephemeral Lake Eyre in the deflated area, and Holocene sedimentation commenced. At about this time Lake Eyre tilted to the south and three sedimentary environments developed: (1) a saline playa environment without saltcrusts in the northern end of the lake, where water drains away before wholly evaporating; (2) a terminal salina environment in the south end, where evaporation of brines leaves saltcrusts overlying gypseous sediments; and (3) a saline flocculation environment between the playa and salina environments, where sediments are deposited by flocculation when muddy floodwater from the north meets highly saline water of the southern salina.

In the northern playa environment, sedimentation is limited to the top of the capillary fringe above the watertable, below which sediments remain moist and protected from aeolian erosion, but above which they dry and blow out of the lake. In the southern salina environment sedimentation has not kept pace with the Holocene rise in watertable. If and when it does reach such a level, downward leaching of salt and deflation of exposed sediments is likely to occur. In the flocculation environment new deposits of clay are added but kept permanently wet by rising groundwater. When flocculated sediment builds too high, its excess is transferrred by surface water into the salina deposits to the south.  相似文献   

4.
Little work has been done on the influence of seiments on the basic chemical composition of overlying water mass.This paper deals with the vertical profile of the basic constituents such as Ca^ ,K^ ,Na^ ,and HCO3^-,as well as of pH in the overlying water mass and sediment porewater of Lake Lugu-a semi-closed,deep lake in Yunnan Province.The reand sediment porewater of Lake Lugu- a semi-closed,deep lake in Yunnan Province.The results revealed that those basic constituents may diffuse and transport from bottom sediments to overlying water mass through porewater.In the paper are also quantitatively evaluated the diffusive fluxes and the extent of their influence on overlying water mass,indicating that the lake sediment-water interface diffusion plays an important role in controlling the basic chemical composition of water in the whole lake.  相似文献   

5.
R. W. RENAUT 《Sedimentology》1993,40(2):271-301
Late Quaternary fluviolacustrine siltstones, mudstones and claystones (Loboi Silts) on the northern margins of the saline, alkaline Lake Bogoria in the Kenya Rift Valley contain up to c. 40% authigenic analcime and minor natrolite. The zeolitic sediments are reddish brown and up to 1 m thick. The amount of analcime increases upward in the profile, but decreases with distance from the lake. The altered sediments show many pedogenic features including zeolitic root mats, rootmarks, concretions and carbonate rhizoliths. Residual patches of calcrete locally cap the zeolitic rocks. The profile is interpreted as an exhumed palaeosol and land surface on the former margins of the lake. The analcime occurs as submicroscopic (0–5–2–5 μ.m) subhedral and euhedral crystals, which have an average Si/A 1 ratio of 2–33 (as determined by X-ray microanalysis) or 2–18 (d-value of 639 analcime peak). The analcime formed in lake marginal sediments (soils) by reaction of silicate detritus with Na2CO3 rich pore waters concentrated close to the land surface by evaporative pumping and evapotranspiration. Poorly ordered clay minerals were probably the main reactants. Authigenic illite may have been a by-product of the reactions. Chemical analyses suggest that pore waters supplied some of Na+, and possibly K+ and SiO2. The associated calcrete and rhizoliths were formed during or shortly after the main period of zeolitic alteration. The Ca2+ may have originated from infiltrating dilute runoff and groundwater. Authigenic smectite was precipitated in open porosity following analcime formation. The zeolitic alteration at Lake Bogoria provides a relatively recent analogue for lake marginal zeolites found in many ancient saline, alkaline lake sediments.  相似文献   

6.
The results of eight radiocarbon datings of Lake Chapala sediments (site T46) are presented, the age inversions (AI) observed and their age progression discussed. As deduced from some AIs and the 210Pb activity (site CHP4), the bioturbation zone in the lake varies over a depth of 5–25 cm. The linear sedimentation rates (LSRs) calculated from 14C ages do not match the LSR calculated from unsupported 210Pb activity for the upper sediments. This demonstrates the usefulness of dating sediments with complementary radiometric techniques such as short-lived isotope counting (SLIC), i.e., 210Pb and 137Cs. This approach leads to the following conclusions: (1) The incorporation of detrital particles with ancient carbon into the sedimentary column of the lake occurred by a combination of: (a) the presence of outcrops of hydrothermal petroleum with ages >40 ka (ka = thousands of years) in the lake, and (b) mass transport due to the presence of two elongated gyre circulation patterns integrated by cyclonic circulation (counterclockwise) in the north portion of the lake and anticyclonic circulation in the southern part. (2) Consequently, the 14C ages of shallow lake sediments have geologic ages one order of magnitude greater compared to their ages determined by the 210Pb method. (3) A bioturbation mechanism is not necessary to explain the 14C AI in the top 70 cm and from 110 to 150 cm depth of the sediments. (4) According to the biological proxies data for the last 600 years B.P., the paleoclimate at Lake Chapala has changed from sub-humid to dry environmental conditions, and eutrophication has increased over the past 100 years due to local input from ongoing agricultural activities.  相似文献   

7.
Pollution of groundwater by seawater intrusion poses a threat to sustainable agriculture in the coastal areas of Korea. Therefore, seawater intrusion monitoring stations were installed in eastern, western, and southern coastal areas and have been operated since 1998. In this study, groundwater chemistry data obtained from the seawater intrusion monitoring stations during the period from 2007 to 2009 were analyzed and evaluated. Groundwater was classified into fresh (<1,500 μS/cm), brackish (1,500–3,000 μS/cm), and saline (>3,000 μS/cm) according to EC levels. Among groundwater samples (n = 233), 56, 7, and 37% were classified as the fresh, brackish, and saline, respectively. The major dissolved components of the brackish and saline groundwaters were enriched compared with those of the fresh groundwater. The enrichment of Na+ and Cl was especially noticeable due to seawater intrusion. Thus, the brackish and saline groundwaters were classified as Ca–Cl and Na–Cl types, while the fresh groundwater was classified as Na–HCO3 and Ca–HCO3 types. The groundwater included in the Na–Cl types indicated the effects of seawater mixing. Ca2+, Mg2+, Na+, K+, SO4 2−, and Br showed good correlations with Cl of over r = 0.624. Of these components, the strong correlations of Mg2+, SO4 2−, and Br with Cl (r ≥ 0.823) indicated a distinct mixing between fresh groundwater and seawater. The Ca/Cl and HCO3/Cl ratios of the groundwaters gradually decreased and approached those of seawater. The Mg/Cl, Na/Cl, K/Cl, SO4/Cl, and Br/Cl ratios of the groundwaters gradually decreased, and were similar to or lower than those of seawater, indicating that Mg2+, Na+, K+, SO4 2−, and Br, as well as Cl in the saline groundwater can be enriched by seawater mixing, while Ca2+ and HCO3 are mainly released by weathering processes. The influence of seawater intrusion was evaluated using threshold values of Cl and Br, which were estimated as 80.5 and 0.54 mg/L, respectively. According to these criteria, 41–50% of the groundwaters were affected by seawater mixing.  相似文献   

8.
Sedimentologic and biostratigraphic evidence is used to develop a geochemical model for Great Salt Lake, Utah, extending back some 30,000 yrs. B.P. Hydrologie conditions as defined by the water budget equation are characterized by a lake initially at a low, saline stage, rising by about 17,000 yrs. B.P. to fresh water basin-full conditions (Bonneville level) and then, after about 15,000 yrs. B.P., dropping rapidly to a saline stage again, as exemplified by the present situation.Inflow composition has changed through time in response to the hydrologie history. During fresh-water periods high discharge inflow is dominated by calcium bicarbonate-type river waters; during saline stages, low discharge, NaCl-rich hydrothermal springs are significant solute sources. This evolution in lake composition to NaCl domination is illustrated by the massive mirabilite deposition, free of halite, following the rapid drawdown until about 8,000 years ago, while historic droughts have yielded principally halite.Hydrologic history can be combined with inferred inflow composition to derive concentration curves with time for each major solute in the lake. Calcium concentrations before the drawdown were controlled by calcite solubility, and afterwards by aragonite. Significant amounts of solutes are removed from the lake by diffusion into the sediments. Na+, Cl? and SO42? are also involved in salt precipitation. By including pore fluid data, a surprisingly good fit has been obtained between solute input over the time period considered and the amounts actually found in lake brines, pore fluids, salt beds and sediments. Excess amounts are present for calcium, carbonate and silica, indicating detrital input.  相似文献   

9.
Two boreholes and ten piezometers in the Ganges flood plain were drilled and installed for collecting As-rich sediments and groundwater. Groundwater samples from the Ganges flood plain were collected for the analysis of cations (Ca2+, Mg2+, K+, Na+), anions (Cl, NO3 , SO4 2−), total organic carbon (TOC), and trace elements (As, Mn, Fe, Sr, Se, Ni, Co, Cu, Mo, Sb, Pb). X-ray powder diffraction was performed to characterize the major mineral contents of aquifer sediments and X-ray fluorescence (XRF) to analyze the major chemical composition of alluvial sediments. Results of XRF analysis clearly show that fine-grained sediments contain higher amounts of trace element because of their high surface area for adsorption. Relative fluorescence index (15–38 QSU) of humic substance in groundwater was measured using spectrofluorometer, the results revealed that groundwater in the Ganges flood plain contains less organic matter (OM). Arsenic concentration in water ranges from 2.8 to 170 μg/L (mean 50 μg/L) in the Ganges flood plain. Arsenic content in sediments ranges from 2.1 to 14 mg/kg (mean 4.58 mg/kg) in the flood plains. TOC ranges from 0.49 to 3.53 g/kg (mean 1.64 g/kg) in the Ganges flood plain. Arsenic is positively correlated with TOC (R 2 = 0.55) in sediments of this plain. Humic substances were extracted from the sediments from the Ganges flood plain. Fourier transform infrared analysis of the sediments revealed that the plain contains less humic substances. The source of organic carbon was assigned from δ13C values obtained using elemental analysis-isotope ratio mass spectrometry (EA-IRMS); the values (−10 to −29.44‰) strongly support the hypothesis that the OM of the Ganges flood plain is of terrestrial origin.  相似文献   

10.
Major Ion Geochemistry of Nam Co Lake and its Sources, Tibetan Plateau   总被引:4,自引:0,他引:4  
The major cations and anions from lake water samples and its sources, including glacier snow, precipitation, stream, and swamp water in the Nam Co basin, central Tibetan Plateau, were studied. The concentrations of the major ions varied significantly in the five environmental matrices. Generally, the mean concentrations of most ions are in the order of lake water > swamp water > stream water > precipitation > snow. Rock weathering is the dominant process controlling the chemical compositions of the stream and swamp waters, with carbonate weathering being the primary source of the dissolved ions. The Nam Co lake water is characterized by high Na+ concentration and extremely low Ca2+ concentration relative to other ions, resulting from evapoconcentration and chemical precipitation within the lake. Comparison with the water chemistry of other lakes over the Tibetan Plateau indicated that Nam Co is located in a transition area between non-saline lakes and highly saline lakes. The relatively low concentration of total dissolved solids is possibly due to the abundant inflow of glacial meltwater and relatively high annual precipitation.  相似文献   

11.
在盐湖沉积演化过程中,钾盐矿物在盐类沉积的中晚期阶段才开始析出。因此,研究含盐系盐类的沉积地球化学特征,不仅可以从侧面获取岩盐的沉积物源和成盐古卤水蒸发浓缩程度等地球化学信息,而且更能揭示古盐湖钾盐富集趋势。文章通过对库车盆地钾盐科探1井钻取的岩芯样品进行高精度采样测试,得出岩盐中Mg×103/Cl、K×103/Cl、Li×103/Cl与K+、Mg2+、Li+、Ca2+、Cl-含量的垂向变化规律。并与库车盆地其他钻孔中的岩盐含钾性进行对比,同时,依据钻井剖面岩性特征,与潜江凹陷和大汶口凹陷含盐系剖面进行对比,论述研究区成盐的地球化学特征,对其钾盐成矿前景进行分析和评价。  相似文献   

12.
Heavy grazing is recognized as one of the main causes of vegetation and soil degradation and desertification in the semiarid Horqin sandy grassland of northern China. Soil physical and chemical properties were examined under continuous grazing and exclusion of livestock for 8 years in a representative desertified sandy grassland. Exclosure increased the mean soil organic C, total N, fine sand and silt + clay contents, inorganic C (CaCO3), electrical conductivity, and mineral contents (including Al2O3, K2O, Na2O, Fe2O3, CaO, MgO, TiO2, MnO), microelements (Fe, Mn, Zn, B, Cu, Mo), and heavy metals (Pb, Cr, Ni, As, Hg, Cd, Se), and decreased the coarse sand content, bulk density, and SiO2 in the top 100 cm of the soil. Livestock exclusion also improved available N, P, K, Fe, Mn, and Cu, exchangeable K+, and the cation exchange capacity, but decreased pH, exchangeable Na+, and available S, Zn, and Mo in the top 20 cm of the soil. The greatest change in soil properties was observed in the topsoil. The results confirm that the desertified grassland is recovering after removal of the livestock disturbance, but that recovery is a slow process.  相似文献   

13.
The Heihe River Basin is a typical arid inland river basin for examining stress on groundwater resources in northwest China. The basin is composed of large volumes of unconsolidated Quaternary sediments of widely differing grain size, and during the past half century, rapid socio-economic development has created an increased demand for groundwater resources. Understanding the hydrogeochemical processes of groundwater and water quality is important for sustainable development and effective management of groundwater resources in the Heihe River basin. To this end, a total of 30 representative groundwater samples were collected from different wells to monitor the water chemistry of various ions and its quality for irrigation. Chemical analysis shows that water presents a large spatial variability of chemical facies (SO4 2−–HCO3, SO4 2−–Cl, and Cl–SO4 2−) as groundwater flow from recharge area to discharge area. The ionic ratio indicates positive correlation between the flowing pairs of parameters: Cl and Na+(r = 0.95), SO4 2− and Na+ (r = 0.84), HCO3 and Mg2+(r = 0.86), and SO4 2− and Ca2+ (r = 0.91). Dissolution of minerals, such as halite, gypsum, dolomite, silicate, and Mirabilite (Na2SO4·10H2O) in the sediments results in the Cl, SO4 2−, HCO3 , Na+, Ca2+ and Mg2+ content in the groundwater. Other reactions, such as evaporation, ion exchange, and deposition also influence the water composition. The suitability of the groundwater for irrigation was assessed based on the US Salinity Laboratory salinity classification and the Wilcox diagram. The results show that most of the groundwater samples are suitable for irrigation uses barring a few locations in the dessert region in the northern sub-basin.  相似文献   

14.
A large pool of nitrogen in the sediment pore fluid of a eutrophic lake in Iowa, USA, was mapped in this study. Previously, the lake had supported fishing and boating, but today it no longer supports its designated uses as a recreational water body. In the top 5 cm of the lake bottom, the pore water nitrogen ranges between 3.1 and 1,250 μg/cm3 of sediments, with an average of 160.3 μg/cm3. Vertically, nitrate concentrations were measured as 153 μg/cm3 at 0–10 cm, 162 μg/cm3 at 10–20 cm, and 32 μg/cm3 at 20–30 cm. Nitrate mass distribution was quantified as 3.67 × 103 kg (65%) in the bottom sediments, 172 kg (3%) in suspended particulates, and 1.83 × 103 kg (32%) in the dissolved phase. Soil runoff nutrients arrive at the lake from the heavily fertilized lands in the watershed. Upon sedimentation, a large mass of nitrogen desorbs from mineral particles to the relatively immobile pore fluid. Under favorable conditions, this nitrogen diffuses back into the water column, thereby dramatically limiting the lake’s capability to process incoming nutrients from farmlands. Consequently, a condition of oxygen deficiency disrupts the post-season biological activities in the lake.  相似文献   

15.
Lake Turkana, in northwestern Kenya, is a closed-basin, alkaline (pH = 9.2) lake of moderate salinity (TDS = 2500 ppm). Principal ions are Na+, HCO?3 and CI?. The lake is essentially polymictic in the northern basin and little compositional variation occurs in surface waters. The Omo River is the principal influent, providing some 80–90% of water input to the lake. Chloride has an apparent accumulation time of about 2500 years after accounting for burial of interstitial water.The bottom sediments are predominantly detrital and fine-grained, yet mineral-water reactions are very important for the geochcmical budget. Ca2+ is precipitated as calcite; Na+ is removed as an exchangeable cation on smectite; Mg2+ is probably incorporated into a Mg-silicate phase, most likely poorlycrystalline smectite, as it enters the lake water; K+ may be used in illite regradation. Cation exchange is a very important process in the mass balance of this lake. Over 40% of incoming Na is removed as an exchangeable cation. After cation exchange and interstitial water burial, Na has a response time of 2650 years, which compares favorably with that of chloride. These processes seem to occur rapidly within the water mass of the lake: other reactions may be important in regulating interstitial water compositions.Several changes occur in the upper 3m of sediment: interstitial-water pH drops to 8.3 and alkalinity increases slightly with depth, SO2?4 decreases slightly, and amorphous silica saturation is approached. These changes are a response to organic matter oxidation and the dissolution of unstable silicates rather than a reversal of reactions occurring in the lake water. High rates of sedimentation (up to 1 cm per year) may minimize the effects of diffusion between the interstitial waters and the lake water, although burial of interstitial water assumes considerable importance.  相似文献   

16.
Sorption of Cs to micaceous subsurface sediments from the Hanford site, USA   总被引:1,自引:0,他引:1  
The sorption of Cs+ was investigated over a large concentration range (10−9−10−2 mol/L) on subsurface sediments from a United States nuclear materials site (Hanford) where high-level nuclear wastes (HLW) have been accidentally released to the vadose zone. The sediment sorbs large amounts of radiocesium, but expedited migration has been observed when HLW (a NaNO3 brine) is the carrier. Cs+ sorption was measured on homoionic sediments (Na+, K+, Ca2+) with electrolyte concentrations ranging from 0.01 to 1.0 mol/L. In Na+ electrolyte, concentrations were extended to near saturation with NaNO3(s) (7.0 mol/L). The sediment contained nonexpansible (biotite, muscovite) and expansible (vermiculite, smectite) phyllosilicates. The sorption data were interpreted according to the frayed edge-planar site conceptual model. A four-parameter, two-site (high- and low-affinity) numeric ion exchange model was effective in describing the sorption data. The high-affinity sites were ascribed to wedge zones on the micas where particle edges have partially expanded due to the removal of interlayer cations during weathering, and the low-affinity ones to planar sites on the expansible clays. The electrolyte cations competed with Cs+ for both high- and low-affinity sites according to the trend K+ >> Na+ ≥ Ca2+. At high salt concentration, Cs+ adsorption occurred only on high-affinity sites. Na+ was an effective competitor for the high-affinity sites at high salt concentrations. In select experiments, silver-thiourea (AgTU) was used as a blocking agent to further isolate and characterize the high-affinity sites, but the method was found to be problematic. Mica particles were handpicked from the sediment, contacted with Cs+(aq), and analyzed by electron microprobe to identify phases and features important to Cs+ sorption. The microprobe study implied that biotite was the primary contributor of high-affinity sites because of its weathered periphery. The poly-phase sediment exhibited close similarity in ion selectivity to illite, which has been well studied, although its proportion of high-affinity sites relative to the cation exchange capacity (CEC) was lower than that of illite. Important insights are provided on how Na+ in HLW and indigenous K+ displaced from the sediments may act to expedite the migration of strongly sorbing Cs+ in subsurface environments.  相似文献   

17.
Long-term intake of high-fluoride groundwater causes endemic fluorosis. This study, for the first time, discovered that the salt lake water intrusion into neighboring shallow aquifers might result in elevation of fluoride content of the groundwater. Two cross-sections along the groundwater flow paths were selected to study the geochemical processes controlling fluoride concentration in Yuncheng basin, northern China. There are two major reasons for the observed elevation of fluoride content: one is the direct contribution of the saline water; the other is the undersaturation of the groundwater with respect to fluorite due to salt water intrusion, which appears to be more important reason. The processes of the fluorine activity reduction and the change of Na/Ca ratio in groundwater induced by the intrusion of saline water favor further dissolution of fluorine-bearing mineral, and it was modeled using PHREEQC. With the increase in Na concentration (by adding NaCl or Na2SO4 as Na source, calcium content kept invariable), the increase of NaF concentration was rapid at first and then became slower; and the concentrations of HF, HF2, CaF+, and MgF+ were continuously decreasing. The geochemical conditions in the study area are advantageous to the complexation of F with Na+ and the decline of saturation index of CaF2, regardless of the water type (Cl–Na or SO4–Na type water).  相似文献   

18.
The Didwana playa, the second largest playa in the eastern part of the Thar desert, is 5.6 km long and 2.4 km wide and supports commercial salt production. The thickness of lake sediment package is reported to be 20 m and comprises fine grained clays and silts, with abundant calcite, gypsum, and halite, associated with hypersaline water. Isolated hills of graphitic phyllite and quartzite are seen on the western side of the lake. During the course of investigations for uranium in surficial environment of semi-arid terrain of Rajasthan, ground water sampling defined a NE-SW trending uranium halo encompassing the Didwana playa. Subsequent sampling of unlined dug wells, up to water table in central part of the playa, indicated uranium values up to 190 ppm and 2072 ppb in lake sediments and brine respectively. These values are of the order of 21 ppm and 192 ppb towards the southwestern periphery of the lake. The average uranium content, as inferred from 12 samples in the central part of the lake, is around 60 ppm over a thickness of 5 m. It appears that the uranium is loosely bonded to the sediments in amorphous form and is, hence, easily leachable. Samples of brine (n=10), from both the central and southwestern portions of the lake, analysed high (1,67,500–3,00,000 mg/l) TDS, HCO3 (1128–8395 mg/l), and SO4 (30,536–88,000 mg/l). These are of alkaline (pH: 7.2–9.3) and reducing (Eh: −200 to −340 mV) nature. Under these Eh-pH conditions below the groundwater table, and for such uranium bearing groundwater, precipitation of primary uranium is expected. It is, therefore, modelled that uranium in lake sediment package above water table is concentrated by evaporation process and by chemical reduction below the water table.  相似文献   

19.
The trap efficiency of a catcher in wind erosion measurements plays a significant role, and in many cases suspension trap efficiencies at high wind velocities are still unknown. The sediment trap efficiency generally changes with particles size and with wind speed. In this study, the efficiency of Vaseline Slide (VS) and Modified Wilson and Cooke (MWAC) catchers were determined with different sand particle sizes (<50, <75, 50–75, 200–400, and 400–500 μm) at a fixed wind speed (13.3 ms−1) and with different soil textures at different wind velocities (10.3, 12.3, and 14.3 ms−1) in the wind tunnel of the International Center for Eremology (ICE), Ghent University, Belgium. The traps were placed at different heights (4, 6.5, 13, 20, 120, and 192 cm for VS and 1.5, 3, 5, 8, 11, and 30 cm for MWAC) to catch saltating and suspended sediments in a 12-m long, 1.2-m wide and 3.2-m high working section of the wind tunnel. In the sand particle experiments, the efficiency of the VS catcher was 92% for particles smaller than 50 μm and decreased with increasing particles size, falling to 2.2% for 400–500 μm particle size at 13.4 ms−1. However, the MWAC’s efficiency was 0% for particles smaller than 50 μm and increased with increasing particle size to 69.5% at 400–500 μm. In the experiments with different soil textures, the efficiency of each catcher significantly changed with soil and with wind speed. It also considerably varied with the catchers: for instance, for sand (S), the MWAC efficiency was very high (67.4, 113.4, and 90.5% at 10.3, 12.3, and 14.4 ms−1, respectively) while the efficiency of VS was relatively very low (5.2, 4.4, and 1.9% at 10.3, 12.3, and 14.4 ms−1, respectively). Results indicated that the efficiency depends critically on the particle size, type of catcher, and wind speed, and these could be helpful to increase the robustness of wind erosion measurements.  相似文献   

20.
Groundwaters, river and lake waters have been sampled from the semi-arid Siberian Republic of Khakassia. Despite the relatively sparse data set, from a diversity of hydrological environments, clear salinity-related trends emerge that indicate the main hydrochemical evolutionary processes active in the region. Furthermore, the major ion chemistry of the evolution of groundwater baseflow, via rivers, to terminal saline lake water, can be adequately and simply modelled (using PHREEQCI) by invoking: (i) degassing of CO2 from groundwater as it emerges as baseflow in rivers (rise in pH); (ii) progressive evapoconcentration of waters (parallel accumulation of Cl, Na+, SO42−, and increase in pH due to common ion effect); and (iii) precipitation of calcite (depletion of Ca from waters, reduced rate of accumulation of alkalinity). Dolomite precipitation is ineffective at constraining Mg accumulation, due to kinetic factors. Silica saturation appears to control dissolved Si in low salinity waters and groundwaters, while sepiolite saturation and precipitation depletes Si from the more saline surface waters. Gypsum and sodium sulphate saturation are only approached in the most saline environments. Halite remains unsaturated in all waters. Sulphate reduction processes are important in the lower part of lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号