首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The veneer cladding of the Oeconomicum (OEC, Göttingen), the State Theatre of Darmstadt (STD, Darmstadt) and of the State and University Library (SUB, Göttingen) is characterised by pronounced bowing after a short time of exposure. Direct comparison of bowing data related to measurements from 2000 to 2003 at the SUB clearly show that the amplitude in bowing had significantly increased. The bowing is different in intensity and orientation (concave, convex). The cladding material (Peccia marble, Rosa Estremoz marble and Carrara marble) are different in lattice preferred orientation, grain size distribution and grain interlocking. Depending on the bowing, panels may show cracks mostly initiated at the dowels. The percentage of visible cracks and breakouts increases with the amplitude of bowing except for the STD. Repetitive heating–cooling under dry conditions leads to considerable inelastic residual strain only after the first or second thermal cycle. The residual strain continuously increases again if water is present, whereby the moisture content after a thermal cycle has a certain impact on the decay rate. The water-enhanced thermal dilatation strongly correlates with the deterioration rate obtained from the laboratory bow test. Detailed petrophysical investigations provide evidence that with increasing bowing a decrease of mechanical properties (flexural strength or breaking load at dowel hole) occur. Marble degradation is also connected with the increase in porosity and a general shift of the maximum pore radii to larger pore sizes. On-site damage analyses were combined with laboratory tests of the bowing potential to constrain factors that may influence the risk failure. The experimental bowing data clearly demonstrate that after 40 heating cycles combined with the effect of moisture a certain impact on the decay rate is observed. In the case of demounted panels the bowing tests show that already strongly deformed panels from the building exhibit a lower bowing potential than those with lower amplitudes of bowing. This is not the general case for all marble types. Finally, the artificial bowing causes a significant reduction of the flexural strength and the breaking load at the dowel hole. The strength loss of the experimentally aged claddings combined with on-site damage analyses led to conclusions concerning risk assessment and the predicted lifetime of the investigated marble claddings.  相似文献   

2.
Three calcitic marble types often used as cladding material and different in lattice preferred orientation (texture), grain shape preferred orientation, grain size distribution and grain interlocking are investigated to study the combined effect of thermal cycles (day-night) and moisture on the decay of marble, particularly on the bowing phenomenon. Repetitive heating-cooling under dry conditions leads to considerable inelastic residual strain only in the first thermal cycle. The residual strain continuously increases again if water is present, whereby the moisture content after a thermal cycle has a certain impact on the decay rate. The water-enhanced thermal dilatation strongly correlates with the deterioration rate obtained from the laboratory bow test. All applied approaches reveal that the texture in combination with the grain shape preferred orientation control the intensity and anisotropy of marble deterioration, thus, the cutting direction of facade panels has to be considered in terms of durability. On-site analysis from building facades confirm the laboratory results such as the bowing tendency of different marbles, directional dependence, relevance of moisture content during cyclical heating and the loss of strength due to environmental impact.Special Issue: Stone decay hazards  相似文献   

3.
Marble decay induced by thermal strains: simulations and experiments   总被引:1,自引:1,他引:0  
Thermoelastic behavior of different marble types was analyzed using computational modeling and experimental measurements. Eight marble samples with different composition, grain size, grain boundary geometry, and texture were investigated. Calcitic and dolomitic marbles were considered. The average grain size varies from 75 μm to 1.75 mm; grain boundary geometry differs from nearly equigranular straight grain boundaries to inequigranular-interlobate grain boundaries. Four typical marble texture types were observed by EBSD measurements: weak texture; strong texture; girdle texture and high-temperature texture. These crystallographic orientations were used in conjunction with microstructure-based finite element analysis to compute the thermoelastic responses of marble upon heating. Microstructural response maps highlight regions and conditions in the marble fabric that are susceptible to degradation phenomena. This behavior was compared to the measured thermal expansion behavior, which shows increasing residual strains upon repetitive heating–cooling cycles. The thermal expansion behavior as a function of temperature changes can be classified into four categories: (a) isotropic thermal expansion with small or no residual strain; (b) anisotropic thermal expansion with small or no residual strain; (c) isotropic thermal expansion with a residual strain; and (d) anisotropic thermal expansion with residual strain. Thermal expansion coefficients were calculated for both simulated and experimental data and also modeled from the texture using the MTEX software. Fabric parameters control the amount and directional dependence of the thermal expansion. Marbles with strong texture show higher directional dependence of the thermal expansion coefficients and have smaller microstructural values of the maximum principal stress and strain energy density, the main precursors of microcracking throughout the marble fabric. In contrast, marbles with weak texture show isotropic thermal expansion behavior, have a higher propensity to microcracking, and exhibit higher values of maximum principal stress and strain energy density. Good agreement between the experimental and computational results is observed, demonstrating that microstructure-based finite-element simulations are an excellent tool for elucidating influences of rock fabric on thermoelastic behavior.  相似文献   

4.
Engineering properties of building stones can vary because of degradation by weathering agents. Thermal fluctuation is one of the most important agents on deteriorations such as sugaring, bowing, cracking and spalling of marble. As a result, physical and mechanical properties of marble used in the construction of old and/or modern structures are adversely affected by time. On the other hand, some properties of building stones are always required for decision of rehabilitation works. Several kinds of conventional tests have been suggested for characterization of stones, to measure their properties or to evaluate conservation or repair works. However, in most cases, sampling from historical buildings is not possible. Therefore, nondestructive testing methods are often suggested for the prediction of weathering grade of building stones. One of the most practical methods for similar purposes is ultrasonic pulse velocity measurement, which can be performed easily. The main goal of this study is attainment of sound empirical correlations between the ultrasonic pulse velocity and engineering properties of previously deteriorated marble. Experimental works were conducted on seven different specimen categories of a coarse-grained marble having different micro-crack frequencies induced by both cyclical heating–cooling and freeze–thaw actions. The experimental results indicated that physical and mechanical properties of Mu?la marble can be reliably estimated for different environmental cases by ultrasonic pulse velocities. P-wave velocities in dry and saturated cases are two sound indicators of both the apparent porosity and the coefficient of capillary absorption, and whereby the sugaring type of deterioration for coarse-grained marbles.  相似文献   

5.
采用有限元方法数值,模拟了岩土材料的导热系数与孔隙率之间的非线性关系。有限元模型中的固体骨架和孔隙根据孔隙率的大小随机生成,模型中的材料参数和单元属性用ANSYS中的APDL参数化语言赋值。根据有限元随机模拟断面的热流密度分布和稳态热传导傅立叶定律,计算在不同孔隙率条件下的等效导热系数。研究表明,岩土材料模型等效导热系数随着孔隙的增加而减小;并且当孔隙率大于逾渗值后,等效导热系数的减小梯度明显降低;含孔隙岩土材料的热传导特性与渗流一样具有逾渗特性。  相似文献   

6.
周科平  胡振襄  高峰  王明球  杨泽 《岩土力学》2014,35(11):3117-3122
岩样为大理岩,进行了围压20 MPa、不同轴压的常规三轴压缩试验和核磁共振测试试验,测得大理岩在三轴压缩后的应力-应变曲线、弛豫时间T2谱分布和孔隙度,建立了孔隙度与损伤度之间的函数关系。结果表明,(1)孔隙度和轴压比的拟合函数显示,随着轴压的增加,大理岩孔隙度呈指数增长;轴压比小于70%时,大理岩产生弹性变形,孔隙度增长较小,轴压比处于70%~90%阶段时,大理岩以塑性变形为主,孔隙度明显增大,轴压比大于90%时,大理岩产生强烈扩容,孔隙度成倍增长;(2)大理岩内部裂隙数量和裂纹开度均随着轴压的增大而不断增大;(3)损伤度与孔隙度或轴压比的函数关系表明,随着轴压比的增大,大理岩的损伤度不断增大,相同外荷载产生的有效应力也不断增大。  相似文献   

7.
范运辉  朱其志  倪涛  张坤  张振南 《岩土力学》2019,40(Z1):181-188
外部荷载作用下的裂隙扩展在空间上一般是非均匀的,引起岩石材料的衍生各向异性。将材料离散成大量随机分布的由力键连结的物质点,基于力键的方向性,且将局部弹性张量离散成一定数量的方向张量,理论推导出力键模量与宏观弹性参数之间的关系。通过考虑力键断裂效应,建立了各向异性弹性损伤本构模型。为了模拟中等孔隙率岩石在常规三轴压缩试验中脆性向延性转变的力学行为,在力键断裂效应中引入损伤抑制函数。通过模拟Tennessee大理岩和Indiana石灰岩的常规三轴实验,并与试验数据对比,验证了模型的合理性和有效性。  相似文献   

8.
林旭  李长安 《地球科学》2022,47(10):3633-3647
在中国西北内陆分布着面积广大的沙漠/沙地,确定其物质来源对理解这些沙漠的形成和发育至关重要.尤其对腾格里沙漠、河东沙地、毛乌素沙漠、乌兰布和沙漠和库布齐沙漠的碎屑物质是来自远源的黄河还是近源源区的争议较大.鉴于此,对沙漠中广泛存在的碎屑钾长石进行了554颗原位Pb同位素分析,结合黄河上游已经发表的钾长石Pb同位素数据,判定二者之间是否存在物源联系.综合区域内已发表的物源示踪结果,表明黄河上游的碎屑物质对腾格里沙漠的影响主要集中在有限的局部区域,未深入到沙漠腹地;黄河上游物质和河东沙地、毛乌素沙漠、乌兰布和沙漠和库布齐沙漠不存在物源联系.中国西北内陆这些沙漠/沙地的物质主要以近源物质为主,是对早更新世以来青藏高原隆升和气候干旱的沉积响应.  相似文献   

9.
Studies of marble panels from the exterior of two buildings document the processes leading to bowing of the material. Bowing of panels is most extensive in those areas that are exposed to direct or reflected thermal energy. The thermal anisotropic behavior of calcite results in grain-boundary separation, grain sliding and microfracturing. The resulting loss of strength is one factor leading to bowing. The development of bows further reduces the panel strength as the outer portions elongate by inelastic deformation mechanisms. Laboratory experiments cycling marble samples for over 200 cycles at three temperatures up to 107°C above room conditions show similar strength losses as the natural situation. The second factor contributing to the bowing process is the release of residual elastic strain. The strain is in part stored in the marble from its geologic history, but may also be accumulated during thermal cycling due to the properties of calcite. Marble panels have been found to bow when stored outside, but not attached to any framework, indicating that the release of residual strain is a critical factor in producing the bows.  相似文献   

10.
The effects of strain rate and saturation on a micro-cracked marble   总被引:1,自引:0,他引:1  
It is well known rock masses contain several types of weakness planes varying from micro-fissure to fault in size. The fracture frequency, degree of saturation and time are the basic rock parameters affecting its behaviour. However, in most cases, it is practically difficult to test heavily fractured rock in laboratory environment. In this study, the effects of micro cracks, strain rate and water saturation on strength are discussed using a small-scale physical experiments. It is attempted to detach the grain boundaries of coarse-grained rock specimens of the Mu?la marble by thermal treatment that would serve as a small-scale physical simulation of fractures in rock masses and enable a discussion of the variations in time dependent mechanical behaviour. An experimental study was conducted on marble specimens induced thermally by micro-cracks in different frequencies. The thermal treatment periods being 24 h in inert atmospheric condition were varied for each test specimen except categories A and G. Effective porosity increased up to 2.4% after the last thermal cycle of category F. Then conventional compression tests with different strain rates were carried out using a servo-controlled testing machine on both dry and saturated specimens. It is concluded that both lowering strain rates and increasing porosity related with thermally induced micro cracks have important effects on strength and failure path. The progressive failure entirely occurs along the grain boundaries fissured by cyclical treatment and inter-granular deformation depends upon degree of thermal influence. The small-scaled laboratory model enabled to demonstrate that parameters such as joint frequency, time and saturation have a significant effect on mechanical behaviour of rock masses.  相似文献   

11.
Atmospheric pollution is one of the main agents of decay in monuments and other works of art located in industrialised urban centres. SO2 is a permanent and abundant component of air pollution and, although it does not have an immediate visual effect, after continuous exposure, it can cause irreversible damage to building materials. Marble is one of the most commonly used ornamental stones in historical monuments and its mineralogical composition makes it very susceptible to damage caused by exposure to SO2. To measure the chemical reactions caused on marble by the action of atmosphere rich in SO2, selected calcitic and dolomitic samples were altered by weathering accelerated test. For this, seven marble types (four calcitic and three dolomitic) were exposed to high concentration of sulphur dioxide for 24 h in a climate chamber under controlled temperature and humidity conditions (20 °C and > 90 % HR). Changes on marble surfaces caused by reactions of SO2 with calcite and dolomite were studied using two non-destructive techniques: chromatic change by means of colorimetry and chemical analysis using X-ray photoelectron spectroscopy (XPS). The development of new mineral phases was also observed by scanning electron microscopy. Colorimetric analysis revealed a decrease in lightness and chromatic parameters suggesting that these changes were due to the development of new mineral phases in all marbles. The XPS technique, which is generally used in the analysis of metals, is relatively new in the field of stone deterioration. It enabled us to recognise the development of sulphites and sulphates on marble surfaces with high precision, after just 24 h of exposure to high SO2 concentrations and to distinguish different decay paths for calcitic and dolomitic marbles.  相似文献   

12.
The indoor exhibit of the Market Gate of Miletus is unique for an archaeological monument. The reconstruction of the gate was done in such a way that most marble fragments were removed leaving cored marble columns 3–4 cm in thickness. These cored columns were mounted on a steel construction and filled with different mortars or filled with specially shaped blocks of brick combined with mortar. All the missing marble elements were replaced by copies made of a Portland cement based concrete, which is compositionally similar to the original building materials. During the Second World War the monument was heavily damaged by aerial bombardment. For 2 years the Market Gate of Miletus was exposed to weathering, because a brick wall protecting the gate was also destroyed. The deterioration phenomena observed are microcracks, macroscopic fractures, flaking, sugaring, greying, salt efflorescence, calcitic-sinter layers and iron oxide formation etc. The rapid deterioration seems to be due to indoor atmospheric effects, and also by a combination of incompatible materials (e.g. marble, steel, mortar, concrete, bricks etc.). Compatible building materials like mortars or stone replacing materials have to be developed for the planned restoration. The requirements for restoration mortars are chemical-mineralogical and physical-mechanical compatibilities with the existing building materials. In detail this means that the mortar should ensure good bonding properties, adapted strength development and not stain the marble when in direct contact. The favoured mortar was developed with a hydraulic binder based on iron-free white cement and pozzolana based on activated clay. A special limestone and quartz sand mixture was used as an aggregate. The cement was adjusted using chemical additives. Specially designed tests were applied extensively to prove whether the developed mortar is suitable for the restoration of this precious monument.  相似文献   

13.
Bowing of dimensional granitic stones   总被引:1,自引:1,他引:0  
Bowing is a well-known phenomenon seen in marbles used as building veneers. This form of rock weathering occurs as a result of external factors such as temperature, humidity, the system for anchoring the marble slabs or the panel dimensions. Under the same external conditions, many factors will determine the degree of deformation including petrography, thermal properties and residual locked stresses. The usual way to solve the problem of bowed marble slabs is to replace them with other materials, such as granites, in which the deformation still exists but is less common. In this study, eight ornamental granites with different mineralogy, grain size, grain shape, porosity and fabric were tested in a laboratory to assess their susceptibility to bowing. Three slabs of granite, each cut with a different orientation, were studied under different conditions of temperature (90 and 120°C) and water saturation (dry and wet) to investigate the influence of these factors together with that of anisotropy. At 90°C, only the granite with the coarsest grain size and low porosity exhibited deformation under wet conditions. At 120°C and wet conditions, three of the granites showed evident signs of bowing. Again, the granite with the coarsest grain size was the most deformed. It was concluded that the wide grain size distribution influences microcracking more than other expected factors, such as the quartz content of the rock. Also, mineral shape-preferred orientation and porosity play an important role in the bowing of the studied granites.  相似文献   

14.
The results of the geological characterization of an old stone building in southern Italy, are presented here. The Mondragone marble is a slightly metamorphosed carbonate rock, which was widely employed as monumental stone in the 18th century Royal Palaces of Naples and Caserta. In this paper, for the first time, this rock has been investigated with a thorough laboratory testing program, aimed at defining its mineralogical, physical and mechanical parameters. The two most important varieties of Mondragone marble were separately tested: the yellow and grey marbles (hereafter, YM and GM, respectively). The results obtained from physical tests (open porosity, dry density, specific gravity, water absorption coefficients, ultrasonic velocity) did not show marked differences between the two materials; in contrast, the mechanical strength tests (uniaxial compressive strength, point load strength, flexural strength) showed better behaviour of YM than for GM. After a tentative comparison with other well known carbonate rocks from Italy, some considerations on the response of Mondragone marble to local weathering were conducted. In particular, the weathering typologies were related to the particular texture of the brecciated marble and the different strength resistances displayed by the various constituents of the rock.  相似文献   

15.
I Van der Molen   《Tectonophysics》1981,73(4):323-342
Measurements are presented of volume changes in granite during room-temperature compression to 100, 200 and 300 MPa confining pressure followed by temperature increase to 900°C. Comparison with thermal expansion and compressibility data for the constituent minerals allows changes in porosity to be estimated. Under confining pressure, porosity is found to decrease with heating to 200°C through expansion of the minerals into cracks which are thought to be related to the geological cooling history of the rock. Between 200°C and 840°C porosity increases as a result of differential thermal expansion of the constituent minerals, but crack opening is increasingly suppressed at higher confining pressures. Extrapolation of the results indicates that differential thermal expansion can no longer cause crack opening in dry granite at confining pressures in excess of 450 MPa. The quartz α-β transition temperature in granite is marked by a kink in the thermal expansion curve of the rock, and it is found to increase by 60°C–70°C per 100 MPa confining pressure, as opposed to the published value of 26°C per 100 MPa for single crystals of quartz. Equations are presented which allow calculation of the effects of confining pressure and temperature on the stresses and displacements in and around a spherical inclusion embedded in a matrix of different elasticity and thermal expansion. The theory, together with a simple self-consistent model for granite, accounts semiquantitatively for the observations of thermal expansion and the effect of confining pressure thereon, and for the observed α-β transition temperatures for quartz in granite.  相似文献   

16.
The extant remains of the Roman monuments of Tarragona, Spain are made of different types of Miocenic rocks from the quarries surrounding the city, which vary from calcarenite to bioclastic limestones, showing different degrees of dolomitization, depending on their diagenetic evolution. The decay of these monuments is highly dependent on the mineralogy and the fabric of the stone as well as on the environmental conditions to which the monument subjected. As a consequence, different forms of decay are observed on these monuments, namely, granular disintegration, differential erosion between sparitic and micritic areas of the rock, and development of black crust and orange patinas, some of them attributed to a sulfation process. A number of processes have been established as being responsible for the decay forms observed: sulfation on sheltered areas of the building in the urban environment; differential dilatation because of the NaCl of the marine spray that crystallizes inside the porosity; hydric and thermal expansion of the stone, both related to the amount and crystallinity of the clay minerals forming the rock matrix; and biocolonization on the stone surface. An empirical model is proposed to explain the decay forms studied in relation to these factors (rock and environment).  相似文献   

17.
In the present work the most characteristic mechanical and physical properties of ten Hellenic marbles were investigated. The marbles, five of which were white and the other five coloured, are the most representative ones found in Greece. Among those studied are the famous marbles of Paros and Penteli, the latter being the basic material of the Parthenon. After a rough classification and the determination of their composition, the following properties of each marble were determined: specific gravity; apparent density; behaviour in water; coefficient of thermal conductivity; coefficient of linear thermal expansion and its variation with temperature; strength in various loading forms; and dynamic modulus of elasticity as well as the resistance to frost and corrosion. All the results obtained are given in diagrammatic and tabular forms. On the basis of these results, useful conclusions regarding the utility of each marble for various applications are derived.  相似文献   

18.
石灰岩热膨胀特性试验研究   总被引:1,自引:0,他引:1  
赵洪宝  谌伦建 《岩土力学》2011,32(6):1725-1730
以石灰岩为研究对象,对其在高温作用下的热膨胀特性进行了试验研究。为弄清产生热膨胀的原因,对高温后石灰岩试件的孔隙率、超声波速和元素组成进行了试验研究。试验结果表明,高温作用下石灰岩将发生热膨胀,热膨胀量与试验时间的关系曲线可分为4个阶段,热膨胀量的大小与试验温度有关且为非线性关联;高温后石灰岩的孔隙率变化总体呈随温度升高而增加趋势,且以500℃为分界温度,分为缓慢增加和急剧增加2个阶段。而超声波速检测表明,高温后试件内超声波传播速度变化规律复杂,呈波浪形;高温后试件组成元素检测表明,试件内主要元素含量发生了较大变化;试件内孔隙、裂隙变化和组成、矿物成分分解是导致试件发生热膨胀的主要原因。  相似文献   

19.
Effect of Natural Zeolite and Cement Additive on the Strength of Sand   总被引:1,自引:1,他引:0  
It is widely known and well emphasized that the cemented sand is one of economic and environmental topics in soil stabilization. In some instances, a blend of sand, cement and other materials such as fiber, glass, nano particle and zeolite can commercially be available and effectively used in soil stabilization especially in road construction. In regard to zeolite, its influence and effectiveness on the properties of cemented sands systems has not been completely explored. Hence, in this study, based on an experimental program, it has been tried to investigate the potential of a zeolite stabilizer known as additive material to improve the properties of cemented sands. A total number of 216 unconfined compression tests were carried out on cured samples in 7, 28 and 90 days. Results show unconfined compression strength and failure properties improvements of cement sand specimens when cement replaced by zeolite at optimum proportions of 30 % after 28 days due to pozzolanic reaction. The rate of strength improvement is approximately 20–78 and 20–60 % for 28 and 90 days curing times respectively. The efficiency of using zeolite has been enhanced by increasing the cement content and porosity of the compacted mixture. The replacement of cement by natural zeolite led to an increase of the pH after 14 days. Chemical oxygen demand (COD) tests demonstrate that the materials with the zeolite mixture reveal stronger adsorptive capacity of COD in compare to cemented mixture. Scanning electron microscope images show that adding zeolite in cemented sand changes the microstructure (filling large porosity and pozzolanic reaction) that results in increasing strength.  相似文献   

20.
 The aim of this paper was to study the weathering mechanism of marbles and granites exposed to the marine environment at the Delos archaeological site. Alterations, as granular disintegration, contour scaling and alveolus formations, can be observed either at the base of blocks and columns, or at the median-high zones of monuments. A white marble, which originated from Naxos Island, had a weak porosity (0.2%). Its porous network was organized into two subnetworks of rectilinear and sinuous cracks, which limited capillary transfer to ∼10 cm. The granite, which originated from Delos Island, had a relatively high porosity (2.15%), and had a well-connected system of cracks and microporous zones of weathered minerals. This homogeneous network allowed good capillary transfer for long distances (1–2 m). For the marble, as for the granite, evaporation occurred mainly at depth in the stone, and encouraged its deterioration. This damage depends on the dissolution and crystallization of salts, which occur in cycles. First, by the capillary transfer of water and salt from the ground, when the stones are located near the sea. This processes can explain the deterioration of the marble and the granite bases, and the decay of granite on all its surfaces. Second, by fixation of water vapor by sea salt deposited on the stone by wind. This phenomenon can explain the degradations observed on the median-high parts of monuments in marble and granite, even though, for the granite, the first mechanism was more active.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号