首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Several boreholes drilled by the Commissariat à l'Energie Atomique have reached and passed through the volcanic bedrock of Fangataufa atoll. The sampled volcanic rocks under the coral ring were produced during both aerial and submarine activity, whereas rocks drilled under the lagoon were erupted during submarine volcanism only. The bathymetric data show that the atoll has a “starfish” shape. The rift zones are elongated in N-S, N70–80 and N120 directions; these three main directions are also the directions of structural discontinuities in the lithosphere. Reconstruction of the atoll's topography before erosion using a slope angle of about 16° shows that the maximum height reached by the volcano was about 1300 m above sea level. For comparison, the maximum height of Méhetia island (southeast of Tahiti) is approximately 435 m. The successive construction stages are: (1) initiation of volcanism along the rift zones and construction of a central volcano; (2) production of brecciated lavas; (3) emergent volcanism; and (4) central and aerial activity. The present day position of the aerial volcanic rocks under the coral reef and the submarine products under the lagoon is discussed with reference to two hypotheses. The first is based on sea level changes and the second on a tectonic origin (collapse of the atoll's flanks). Using recent geochronological data, the submarine construction of the atoll related to the hot-spot activity lasted about 1.1 Ma. The accumulation rate was approximately 0.7 cm/yr (1.5 × 10−3 km3/yr) and the aerial volcanic activity lasted about 2 Ma (1.5 × 10−5 km3/yr).  相似文献   

2.
Organic carbon (OC) and nitrogen (N) contents and δ13C and δ15N values in total organic matter (OM) were measured in sub-surface sediments (0–30 cm sub-bottom) from 21 cores raised from the Laurentian Channel of the Gulf of St. Lawrence and the Labrador Sea, to document OM fluxes and storage along the eastern Canadian margin. Storage rates as high as 2.5 g m−2 yr−1 for OC and 0.2 g m−2 yr−1 for N are observed in the Laurentian Channel, suggesting that the shelf plays a significant role in terms of OM storage (from 1 to 2% of the primary production). Based on the isotopic composition of the essentially marine OM of the Labrador Sea (δ13C/V-PDB=−21.9±0.4‰; δ15N/AIR=7.6±0.6‰; n=12), there is no isotopic evidence for a significant relative input of terrestrial OM along the Laurentian Channel (δ13C/V-PDB=−21.9±0.4‰; δ15N/AIR=8.0±0.9‰; n=10), either due to high relative fluxes of marine OM and/or to the trapping of continental OM in the estuary and upstream. High storage rates of OM are also observed on the continental rise of the Labrador Sea (as high as 1.1 g C m−2 yr−1 and 0.09 g N m−2 yr−1). They contrast with one order of magnitude lower rates on the slope, due to low sedimentation rates (SR) and sediment winnowing by the Western Boundary Undercurrent (WBUC). Reduced early diagenetic alteration of OM is observed, particularly in the Laurentian Channel. It results in discrete (i) losses of OC and N, (ii) shifts in C/N ratios, suggesting preferential removal of N-bearing OM also highlighted by losses in total hydrolysable amino acids (HAA). In the Labrador Sea slope records, due to low SR, OM concentration changes linked to long term temporal variations may superimpose on these diagenetic trends, and some influence of the WBUC is noticeable.  相似文献   

3.
Rates of sediment accumulation and biological particle mixing in eight cores from the Peru shelf have been estimated by application of uranium-series disequilibrium techniques and radiocarbon dating. Activities of 210Pb, 226Ra, 234Th and 238U have been determined in closely spaced intervals in each sediment core. Biological particle mixing coefficients were determined via a two-box advection-diffusion steady-state mixing model based on the distribution profiles of excess 210Pb and, in some cases, excess 234Th activities.

The sedimentation rates estimated were in the order of a few millimeters/yr except for cores enriched in phosphatic components which displayed rates a few orders of magnitude slower. Bioturbation was significant in most cores studied with the exception of one core collected from within the middle of the oxygen-minimum zone. Estimated biological mixing coefficients were in the order of 100–101 cm2 yr−1 for the surface mixed layer and 10−1–100 cm2 yr−1 for the layer below. Sediment slumping appears to have affected the 210Pb distribution of two or three of our cores.  相似文献   


4.
The drag and lift force are measured on circular cylinders fitted with end plates in a wind tunnel. The gap between the cylinder and the wall, G, the thickness of the turbulent boundary layer along the wall, δ, and the Reynolds number, Re, are varied in the following ranges: 0 < G/D < 2, 0.12 < δ/D < 0.97 and 4.8 × 104 Re 3 × 105. The lift and drag coefficients are presented in terms of a new variable G/δ.

It is found that the lift coefficient is governed by the gap to diameter ratio G/D while the drag coefficient is dominated by the ratio of gap to thickness of the boundary layer, G/δ.  相似文献   


5.
Sediment depositional patterns were observed on acoustic-reflection profiles at 36 and 42°S across the East Pacific Rise, near 100°W longitude. The sediment thickness as a function of distance from the crest shows a remarkable linearity on the east side of the rise, where the bottom topography is unusually subdued. The rate of sedimentation is 3.8 m/m.y at 42°S and 7.2 m/m.y. at 36°S. Disturbance to the even sedimentation appears to be correlated with topographic features more than 300 m high, and may therefore be associated with the interference between the barotropic tides and the topography. The group velocity of internal waves of semi-daily period is 15 cm sec−1 in this area for a vertical wave number of 300 m−1, and the characteristic slopes at 9° to the horizontal. The waves travel faster than the flow velocity of the tides and at an angle less than the slopes associated with the larger topographic features. Therefore a typical tidal velocity of 3 cm sec−1 can be magnified substantially before the particle velocity approaches the group velocity and breaking occurs. Less magnification is possible near smaller topography because the group velocity is proportional to wavelength for internal waves of constant period. The tidal flow is magnified most near the boundary where the internal waves are reflected, and the higher velocities should cause settling sediment particles to remain in suspension locally. Thick boundary layers caused by breaking and mixing can shield the smaller-scale topography from the tidal motion.  相似文献   

6.
During the late summer monsoon living planktonic foraminifera were collected in the southeastern Arabian Sea between 3°N and 15°N by using six vertical plankton tows. Sixteen species of planktonic foraminifera were identified. Among them, Globigerinoides ruber and Globigerinoides sacculifer are the most abundant species, while the ecologically most important species Globigerina bulloides is very rare. The low abundance of G. bulloides can be explained by the warming of the surface water in combination with deepening of the mixed layer, since this species preferentially dwells in nutrient-rich upwelling waters. The population density of planktonic foraminifera ranges between 31 and 185 specimens per 10−3 m3. The low absolute numbers of planktonic foraminifera are similar to the numbers which were reported before from the non-upwelling areas in the Arabian Sea. The low absolute numbers and the collected foraminiferal assemblages are therefore highly indicative of the Arabian Sea non-upwelling areas. Particularly significant are the low absolute and relative numbers of the non-spinose species Globorotalia menardii and Neogloboquadrina dutertrei. The absence of these species indicate the relatively low nutrient levels in this area at the tail end of the summer monsoon period.  相似文献   

7.
A shore-normal array of seven, bi-directional electromagnetic flowmeters and nine surface piercing, continuous resistance wave staffs were deployed across a multiple barred nearshore at Wendake Beach, Georgian Bay, Canada, and monitored for a complete storm cycle. Time-integrated estimates of total (ITVF) and net (INVF) sediment volume flux together with bed elevation changes were determined using depth-of-activity rods.

The three bars, ranging in height from 0.10 to 0.40 m accreted during the storm (0.03 m), and the troughs were scoured (0.05 m). Sediment reactivation depths reached 0.14 m and 12% of the nearshore control volume was mobilized. However, the INVF value for the storm was less than 1% of the control volume revealing a near balance in sediment volume in the bar system. Landward migration of the inner, crescentic and second, sinuous bars occurred in association with an alongshore migration of the bar form itself; the outermost, straight, shore-parallel bar remained fixed in location.

The surf zone was highly dissipative throughout the storm (ε = 3.8 × 102–192 × 102) and the wave spectrum was dominated by energy at the incident frequency. Spectral peaks at frequencies of the first harmonic and at one quarter that of the incident wave were associated with secondary wave generation just prior to breaking and a standing edge wave, respectively. The former spectral peak was within the 95% confidence band for the spectrum while the latter contributed not more than 10% to the total energy in the surface elevation spectrum even near the shoreline.

During the storm wave height exceeded 2 m (Hs) and periods reached 5 s (Tp k): orbital velocities exceeded 0.5 m s−1 (urm s) and were above the threshold of motion for the medium-to-fine sands throughout the storm. Shore-parallel flows in excess of 0.4 m s−1 were recorded with maxima in the troughs and minima just landward of the bar crest.

The rate and direction of sediment flux is best explained by the interaction of antecedent bed slopes with spatial gradients in the mean and asymmetry of the shore-normal velocity field. These hydrodynamic parameters represent “steady” flows superimposed on the dominantly oscillatory motion and assumed a characteristic spatial pattern from the storm peak through the decay period. Increases spatially in the magnitudes of both the mean flows and flow asymmetries cause an increasing net transport potential (erosion); decreases in these values spatially cause a decreasing net transport potential and thus deposition. These transport potentials are increased or decreased through the gravity potential induced by the local bed slope. Shore-parallel flow was important in explaining sediment flux and morphological change where orbital velocities, mean flows and flow asymmetries were at a minimum.  相似文献   


8.
海面的曳力系数和空气动力学粗糙度长度是计算海气动量、感热和水汽通量交换必需的参数。基于在“黑格比”和“灿都”台风期间收集的涡动相关系统观测数据, 文章研究了10m风速和摩擦速度之间、10m风速和曳力系数之间、以及10m风速和动力粗糙度长度之间的参数化关系。结果表明: 曳力系数和摩擦速度及10m风速之间存在抛物线关系, 动力粗糙度长度与摩擦速度及10m风速之间存在自然指数关系; 临界摩擦速度为0.83m·s-1, 临界10m级风速为23.69m·s-1。  相似文献   

9.
Echograms (3.5 kHz) and bottom photographs reveal that the northward flowing Antarctic Bottom Water (AABW) has strongly influenced the modern depositional regime on the southwest Bermuda Rise. The spatial distribution of echo character types, the orientation and nature of current-controlled structures, and limited current meter data show that AABW flows with varying intensities along three primary pathways around and over the southwest Bermuda Rise. The main core of AABW flows clockwise around the eastern and western flanks of the southern Bermuda Rise, roughly parallel to the 5400 m isobath. This current bifurcates at 28°30′N, 69°W where a portion flows northeast over the southwest Bermuda Rise and the remainder continues north along the physiographic boundary between the southwest Bermuda Rise and the Hatteras Abyssal Plain. Secondary ribbons of AABW branch off the main core of AABW during its southerly journey along the southeastern Bermuda Rise, and flow west through fracture zones. Finally, a diffuse, northward flowing AABW sweeps the entire southwest Bermuda Rise.

A progression of current-controlled bedforms occurs beneath the main path of the AABW reflecting the spatially varying current velocities and sediment supply. The main core of AABW flows west through the narrow Vema Gap creating erosional furrows along the border between the southwest Bermuda Rise and the Vema Gap. Current velocities greater than 20 cm s−1 are inferred from the bedforms in this region. Farther north along the southwestern edge of the Bermuda Rise, sediment waves become more prevalent. This transition from erosional to more depositional bedforms results from diminished current velocities (5–15 cm s−1) and increased sediment supply. Although some of these bedforms on the southwest Bermuda Rise appear to be relict, their orientation is consistent with current meter data and abyssal current direction inferred from bottom photographs.  相似文献   


10.
通过改进海床阻力系数和设置合适的垂向紊动背景系数,应用FVCOM模型成功再现了钱塘江河口强涌潮的演进过程。海床阻力系数采用Manning公式形式,取值随水深、地形在0.000 2~0.002 9之间变化;垂向紊动背景系数取1×10-4 m2/s。模拟结果较好地复演了涌潮到达时刻、涌潮高度及涌潮抬升过程、涌潮水平流速以及其沿垂向分布规律,表明阻力系数及垂向紊动背景系数等关键参数的改进和处理是合理的,可应用于涌潮三维潮流运动特征模拟。  相似文献   

11.
It has recently been realized that the Arctic undergoes drastic changes, probably resulting from global change induced processes. This acts on the cycling of matter and on biogenic elements in the Arctic Ocean having feedback mechanisms with the global climate, for example by interacting with atmospheric trace gas concentration. A contemporary budget for biogenic elements as well as suspended matter for the Arctic Ocean as a baseline for comparison with effects of further global change is, thus, needed. Available budgets are based on the late Holocene sedimentary record and are therefore quiet different from the present which has already been affected by the intense anthropogenic activity of the last centuries.

We calculated a contemporary suspended matter and organic carbon budget for the Kara Sea utilizing the numerous available data from the recent literature as well as our own data from Russian-German SIRRO (Siberian River Run-off) expeditions. For calculation of the budgets we used a multi-box model to simplify the Kara Sea shelf and estuary system: input was assumed to comprise riverine and eolian input as well as coastal erosion, output was assumed to consist of sedimentation and export to the Arctic Ocean. Exchange with the adjacent seas was considered in our budget, and primary production as well as recycling of organic material was taken into account. According to our calculations, about 18.5 × 106 t yr− 1 of sediments and 0.37 × 106 t yr− 1 of organic carbon are buried in the estuaries, whereas 20.9 × 106 t yr− 1 sediment and 0.31 × 106 t yr− 1 organic carbon are buried on the shelf. Most sources and sinks of our organic carbon budget of the Kara Sea are in the same order of magnitude, making it a region very sensitive to further changes.  相似文献   


12.
Results from 1110 paired CaCO3 and bulk density measurements from cores raised from the eastern equatorial Pacific permit formulation of well constrained CaCO3-DBD relationships for that region. The cores lie along a N-S transect at 110°W from 10°N to 3°S underneath the different currents of the equatorial current system and along an E-W transect from 110° to 90°W, at approximately 3°S. Two distinct, crescent-shaped dry bulk density-CaCO3 relationships are observed. For equal CaCO3 percentages, sediments from those sites at 110°W, which are situated in the high productivity zone, have lower dry bulk density. Cores raised from closer to shore have relatively greater DBD.  相似文献   

13.
Estimates have been made of the suspended sand transport at two sites on the Middelkerke Bank, in the southern North Sea, from suspended sand profiles and current meter measurements over a period of approximately 40 days. Sand resuspension was mainly due to waves while transport was dominated by a few hours when large waves coincided with peak flood currents. Soulsby's relationships for the stress under combined currents and waves were found to be poor predictors for the observed near-bed concentrations; the mean stress, , predicting 45% of the variance while the maximum stress, , predicted just 15%, and overestimate the effects of the waves. When the influence of the stress due to the waves is reduced, the variance explained increases to 67%. The sand transport rate on the steep slope of the bank was 10 times that of the southern end, and was up-slope at 25° to the bank axis, in the direction of the major axis of the tidal ellipse. The transport on the steep slope was mainly in the size range 100–140 μm which did not occur in any significant proportion in samples of the sea bed at that site but was advected from deeper water to the southeast. Excluding this finer component the transport rates of coarser sand (>200 μm) at the two sites were similar over the 40-day period. The up-slope transport during storms suggests that waves play an important part in the bank maintenance and are not simply the mechanism which prevents the continual growth of the sand bank due to asymmetrical transport by the tidal currents alone. The transport rates are consistent with a time-scale of 102–103 years for the formation of the Middelkerke Bank.  相似文献   

14.
Since 1985, a number of measurements have been made in deep water to determine the water-following characteristics of mixed layer drifters with both holey-sock and TRISTAR drogues at 15 m depth. The measurements were done by attaching two neutrally buoyant vector measuring current meters (VMCMs) to the top and the bottom of the drogues and deploying the drifters in different wind and upper ocean shear conditions for periods of 2–4 h. The average velocity of the VMCM records was taken to be a quantitative measure of the slip of the drogue through the water, observed to be 0.5-3.5 cm s−1. The most important hydrodynamic design parameter which influenced the slip of the drogue was the ratio of the drag area of the drogue to the sum of the drag areas of the tether and surface floats: the drag area ratio R. The most important environmental parameters which affected the slip were the wind and the measured velocity difference across the vertical extent of the drogue. A model of the vector slip as a function of R, vector wind and velocity difference across the drogue was developed and a least squares fit accounts for 85% of the variance of the slip measurements. These measurements indicated that to reduce the wind produced slip below 1 cm s−1 in 10 m s−1 wind speed, R > 40. Conversely, if the daily average wind is known to 5 m s−1 accuracy, the displacement of the R = 40 drifter can be corrected to an accuracy of 0.5 km day−1.  相似文献   

15.
Roughness lengths were determined from average current profiles in the logarithmic boundary layer at a site in the southern North Sea. Grab samples indicated that the bed configuration controlling the bed roughness was unlikely to change even at maximum spring tides, but the measured roughness lengths were found to decrease as the speed of the flow 10 m above the bed increased. This has been qualitatively interpreted in terms of the size of the turbulent eddies within the flow and their effectiveness at “feeling” the size of the elements forming the bed roughness. It is also shown that the dependence of the observed drag coefficient on the Rossby number follows closely the theoretical form when the roughness length decreases with increasing flow speed.  相似文献   

16.
Estimates of time-integrated values of total (ITVF) and net (INVF) sediment volume flux and the associated changes in bed elevation and local slope were determined for a crescentic outer nearshore bar in Kouchibouguac Bay, New Brunswick, Canada, for eight discrete storm events. A 100 × 150 m grid of depth-of-activity rods spaced at 10 m intervals was used to monitor sediment behaviour on the seaward slope, bar crest and landward slope during the storms, at which time winds, incident waves and near-bed oscillatory currents were measured. Comparisons between storm events and between these events and a longer-term synthetic wave climatology were facilitated using hindcast wave parameters. Strong positive correlations between storm-wave conditions (significant height and total cumulative energy) and total volume flux contrasted strongly with the zero correlation between storm-wave conditions and net volume flux. ITVF values ranged up to 1646 m3 for the experimental grid and were found to have power function relations with significant wave height (exponent 2) and cumulative wave wave energy (exponent 0.4); values of INVF ranged from 0 up to 100 m3 for the same grid indicating a balance of sediment volume in the bar form through time. Sediment reactivation increased linearly with decreasing depth across the seaward slope and bar crest reaching maxima of 20 cm for the two largest storms; bed elevation, and thus slope, changes were restricted to the bar crest and upper landward slope with near zero morphological change on the seaward slope. The latter represents a steady-state equilibrium with null net transport of sediment under shoaling waves. Measurements of the asymmetry of orbital velocities close to the bed show that the energetics approach to predicting beach slope of Inman and Bagnold (1963) is sound. Gradients predicted vary from 0.01 to 0.03 for a range of angles of internal friction appropriate to the local sediment (tan ø = 0.3–0.6). These compare favorably with the measured seaward slope of 0.015 formed under average maximum orbital velocities of 1.12 m s−1 (landward) and 1.09 m s−1 (seaward) recorded during the period of the largest storm waves.  相似文献   

17.
Use of the quadratic shear-stress law for estimating boundary drag requires specific knowledge of the magnitude of a drag coefficient, CD, and sectional mean velocity, u?. In previous attempts to adapt the relationship for use in studies of marine-sediment transport, the flow measurement has been standardized at a level 100 cm above the bed. The particularized value of the drag coefficient has been designated as C100.In the entrance area to Chesapeake Bay, Virginia, C100 has been found to range through unacceptably wide limits. Two-thirds of the values obtained are between 3.5 · 10?3 and 5.4 · 10?2. Mean C100 for the area is 1.3 · 10?2 as compared to 3 · 10?3 for tidal channels within Puget Sound, Washington.Present data suggest that, given a moveable bed, a size hierarchy of mobile bed forms, time-varying flow, and a lack of equilibrium between flow and bed, C100 changes continuously with boundary shear stress.Accurate evaluation of boundary shear stress in tidal entrances with high flow rates and mobile beds presently requires measurement of velocity profiles.  相似文献   

18.
Estimates of the drag coefficient over sand waves during calm weather in the southern North Sea have been obtained from measurements of the water slope and currents at different heights (z) above the sea-bed using the log profile and momentum balance methods. An observed phase difference between principal terms in the momentum balance equation is examined theoretically. Drag coefficient estimates are found to agree broadly with previous studies. Owing to bedform asymmetry, average drag coefficient values obtained atz=1 m (C100) are found to be 0·0021 and 0·0029 for flood and ebb tides, respectively. Systematic changes in bed roughness are not detected. Using a momentum balance approach, the average drag coefficient value (Cd) atz=10 m is found to be 0·0056. Changes in 10-min averageCdvalues over sand waves during the tidal cycle are found to be small with bedform asymmetry having no detectable effect. Correlation betweenCdandC100is found to be poor and separation of skin friction and form drag terms is not possible with existing measurements. The inclusion of form drag inC100values at the present site leads to over-estimation of the bed shear stress ({q) available to mobilize and transport sediment. Mobile sediment, detected through the use of tracers and a transmissometer, was not found to have any measurable effect on eitherCdorC100in calm weather conditions.  相似文献   

19.
Morphological and chronological studies have been carried out on coralline algal buildups (“coralligène”) situated between 10 and 60 m depth near Marseilles, and in Corsica (France). Despite the presence of occasionally sizeable quantities of iron hydroxide, these constructions prove to be a reliable material for radiocarbon dating. Ages obtained using this method range from 640±120 yrs B.P. (Corsica, Scandola Natural Reserve, −15 m) to 7760±80 yrs B.P. (Marseilles, Grand Congloue, −52 m). Internal erosion surfaces within the buildups give evidence of discontinuous development. The accumulation rate of the coralligène constructions is very low (0.006–0.83 mm yr−1 according to the depth and time period). The higher values (0.53–0.83 mm yr−1) were recorded for the deeper constructions. They correspond to a period between 8000 and 6000 yrs B.P. After 6000 yrs B.P., the only appreciable accumulation rates (0.11–0.42 mm yr−1) were recorded for constructions situated between 10 and 35 m depth, whereas the accumulation rates of deep coralligène (> 50 m) appear to be low or zero. The age of the large constructions (overhang: 80 cm in width) is positively correlated with depth (r = 0.95; p < 0.005). Their development occurred during the Flandrian transgression. The oldest structures, today situated at 50 to 60 m depth, started to develop when water depth was probably no greater than 10 to 15 m. Apart from in strongly shaded fissures on rocky coasts and areas subjected to heavy sedimentation, the main framework building algal species was initially Mesophyllum lichenoides (Ellis) Lemoine, a high tolerant species to light, hydrodynamic energy and temperature. With the rise in sea level, the coralligène structure gradually became available to other less tolerant algal species (Lithophyllum, Lithothamnion), and the crustforming population diversified. Because of the good preservation of coralligène structures, the reliability of radiocarbon dating and the correlation between the age and bathymetric position of the large coralligène structures (except in areas of heavy sedimentation and fissures in shallow rocky coasts), these buildups are considered to be of use as biological indicators of variations in sea level.  相似文献   

20.
The contribution of bathymetry to the estimation of gravity field related quantities is investigated in an extended test area in the Mediterranean Sea. The region is located southwest of the island of Crete, Greece, bounded between 33ˆ ≤ ϕ ≤ 35ˆ and 15ˆ ≤ λ ≤ 25ˆ. Gravity anomalies from the KMS99 gravity field and shipborne depth soundings are used with a priori statistical characteristics of depths in a least-squares collocation procedure to estimate a new bathymetry model. Two different global bathymetry models, namely JGP95E and Sandwell and Smith V8, are used to derive the depth a priori statistical information, while the estimated model is compared against both the global ones and the shipborne depth soundings to assess whether there is an improvement. Various marine geoid models are estimated using ERS1 and GEOSAT Geodetic Mission altimetry and shipborne gravity data. In that process, the effect of the bathymetry is computed using both the estimated and the original depths through a residual terrain modeling reduction. The TOPEX/Poseidon Sea Surface Heights, known for their high accuracy and precision, and the GEOMED solution for the geoid in the Mediterranean are used as control for the validation of the new geoid models and to assess the improvement that the estimated depths offer to geoid modeling. The results show that the newly estimated bathymetry agrees better (by about 30 to 300 m) with the shipborne depth soundings and provides smoother residual geoid heights and gravity anomalies (by about 8-20%) than those from global models. Finally, the achieved accuracy in geoid modeling ranges between 6 and 10 cm (1σ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号