首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
本文以内蒙古西部英巴地区一个典型剖面为例,开展了详细的构造解析和年代学研究,初步构建这一地区晚古生代-中生代的构造岩浆事件框架。这一地区至少发育三期岩浆活动和三期构造变形事件。锆石U-Pb定年结果和前人的资料显示,三期岩浆活动分别为石炭纪(325~313 Ma)的花岗闪长岩和花岗岩、早二叠世(291~277 Ma)的钾长花岗岩和中细粒花岗岩及早白垩世(~134~130 Ma)的伟晶岩和石英二长岩。第一期构造变形事件为NW-SE向挤压,发生在早二叠世之后,使花岗闪长岩和钾长花岗岩发生挤压变形,形成主体低角度北西倾的片麻理,局部发育同期褶皱,变形温度为450~600℃;第二期为NW-SE向伸展,大致发生在早白垩世,使片麻状花岗闪长岩和片麻状钾长花岗岩发生中高温(450~650℃)的糜棱岩化作用,形成南东倾的低角度韧性剪切带,具有正断性质,后被伟晶岩脉切穿。第三期为NW-SE向伸展,发生在早白垩世之后,形成北西倾的中角度脆性正断层,断距2~10米,并使伟晶岩变形为碎裂岩。  相似文献   

2.
We use 369 individual U–Pb zircon ages from 14 granitoid samples collected on five islands in the Cyclades in the Aegean Sea, Greece, for constraining the crystallisation history of I- and S-type plutons above the retreating Hellenic subduction zone. Miocene magmatism in the Cyclades extended over a time span from 17 to 11 Ma. The ages for S-type granites are systematically ~2 million years older than those for I-type granites. Considering plutons individually, the zircon data define age spectra ranging from simple and unimodal to complex and multimodal. Seven of the 14 investigated samples yield more than one distinct zircon crystallisation age, with one I-type granodiorite sample from Mykonos Island representing the most complex case with three resolvable age peaks. Two samples from S-type granites on Ikaria appear to have crystallised zircon over 2–3 million years, whereas for the majority of individual samples with multiple zircon age populations the calculated ages deviate by 1–1.5 million years. We interpret our age data to reflect a protracted history involving initial partial melting at deeper lithospheric levels, followed by crystallisation and cooling at shallower crustal levels. Our study corroborates published research arguing that pluton construction is due to incremental emplacement of multiple magma pulses over a few million years. Assuming that multiple age peaks of our 14 samples can indeed serve to quantify time spans for magmatic emplacement, our data suggest that Aegean plutons were constructed over a few million years. Our tectonic interpretation of the U–Pb ages is that the S-type granites resulted from partial melting and migmatisation of the lower crust, possibly starting at ~23 Ma. The I-type granites and associated mafic melts are interpreted to reflect the magmatic arc stage in the Cyclades starting at ~15 Ma.  相似文献   

3.
Orogenic compression-related fabrics (~340–335 Ma) were reworked during regional extensional deformation (~328–325 Ma) in a large anatectic crustal domain of the Central Vosges (NE France). The extension was first accommodated by brittle dilation affecting vertically anisotropic high-grade rocks associated with emplacement of subvertical granitic sheets. The AMS fabric of granitoids is consistent with highly partitioned transtensional deformation marked by alternations of flat and steep foliations and development of orthogonal lineations. This deformation passes to top-to-the-southwest ductile shearing expressed in southerly migmatitic middle crust. The AMS fabric revealed moderately west-dipping foliations bearing subhorizontal NNW–SSE-trending lineations and predominantly plane strain to prolate shapes. This fabric pattern is interpreted as a viscous response of stretched partially molten crust during continuous ductile extension. Vertical ascent of voluminous granites and stoping of the upper crust occurs further south. This gravity ascent triggered by extension leads to development of south-dipping AMS foliations, south-plunging lineations and oblate fabrics in various crustal granites. Vertical shortening related to ascent of these (~325 Ma) granitoids and persistent N–S stretching is responsible for reworking and remelting of originally vertical compression-related fabric in roof supracrustal granites (~340 Ma) and development of highly prolate fabrics in these rocks. This work shows that the finite shape of AMS fabric ellipsoid is highly sensitive to both strain regime and superpositions of orthogonal deformation events.  相似文献   

4.
刘江  张进江  郭磊  戚国伟 《岩石学报》2014,30(7):1899-1908
晚中生代,内蒙古大青山依次经历晚侏罗世盘羊山逆冲推覆、早白垩世呼和浩特变质核杂岩伸展、早白垩世大青山逆冲推覆断层及早白垩世以来高角度正断层复杂构造演化。其中,呼和浩特变质核杂岩韧性剪切带的冷却时间和抬升机制的制约尚不明确。本文在野外考察和显微构造分析基础上,采用逐步加热40Ar-39Ar定年法对韧性剪切带内不同单矿物的冷却年龄进行了测定。角闪石、白云母、黑云母和钾长石单矿物40Ar-39Ar冷却年龄处于120~116Ma之间。结合已有年龄数据及单矿物封闭温度,构建了韧性剪切带的冷却曲线。结果表明,韧性剪切带在122~115Ma期间存在一个明显的快速冷却过程。这一阶段快速冷却是与变质核杂岩拆离断层相关核部杂岩拆离折返作为大青山逆冲推覆断层上盘抬升的结果。  相似文献   

5.
In the eastern part of the Strandja Massif constituting the east end of the Rhodope Massif, the amphibolite facies basement rocks intruded by Permian metagranites are juxtaposed against the greenschist facies cover metasediments of Triassic-Middle Jurassic protolith age. The distinct metamorphic break between the basement and cover rocks requires a missing metamorphic section. The boundary between the two groups of rocks is a ductile to brittle extensional shear zone with kinematic indicators exhibiting a top to the E/NE shear sense. Footwall rocks are cut by weakly metamorphosed and foliated granite bodies which are clearly distinguished from the Permian metagranites by their degree of deformation, cross-cutting relations and syn-tectonic/kinematic character. Also, hangingwall rocks were intruded by unmetamorphosed and weakly foliated leucogranites. 40Ar/39Ar data indicate that the ductile deformation from 156.5 to 143.2 Ma (Middle Oxfordian-Earliest Berriasian) developed during the syn-tectonic plutonism in the footwall. Deformation, and gradual/slower cooling-exhumation survived until to 123 Ma (Barremian). The mylonitic and brittle deformation in the detachment zone developed during Oxfordian-Earliest Berriasian time (155.7–142.6 Ma) and Early Valanginian-Aptian time (136–118.7 Ma), respectively. Our new field mapping and first 40Ar/39Ar ages demonstrate the existence of an extensional core complex of Late Jurassic-Early Cretaceous age not previously described in the Rhodope/Strandja massifs.  相似文献   

6.
Variscan collision of peri-Gondwanan terranes led to a doubly vergent crustal wedge that was thicker than 55 km in the area of the Bohemian Massif. This crustal thickness resulted in a highly elevated Bohemian plateau with a topographic height >3–4 km. The Bohemian plateau was covered with unmetamorphic Paleozoic strata, all of which are today well preserved in the Tepla–Barrandian unit because of crustal-scale vertical slip along the Bohemian shear zone (BSZ). The BSZ forms a subvertical, ca. 500-km long and up to 2-km wide belt of dip–slip mylonites which show several 90° deflections in map view. Tepla-Barrandian-down movements were active under retrograde metamorphic conditions, starting with granulite and ceasing with greenschist facies conditions. As slip along the BSZ was largely vertical and led to a minimum throw of 10 km, this type of crustal-scale deformation is referred to as elevator tectonics. The elevator-style movements caused the juxtaposition of the supracrustal Tepla–Barrandian lid (the “elevator”) against high-grade rocks of the extruding orogenic root. The BSZ has further governed the foci of mantle-derived plutonism. New U–Pb zircon and monazite TIMS dating of six plutons suggest that emplacement of mantle-derived melts along the BSZ lasted for at least 20 m.y., starting with the emplacement of the Klatovy granodiorite at 347 +4/−3 Ma and ceasing with the emplacement of the Drahotin pluton at 328 ± 1 Ma. When taking into account the new ages of synkinematic plutons, the simultaneous vertical slip along the individual segments of the BSZ (North, West, and Central Bohemian shear zone) is bracketed to the period 343–337 Ma. Elevator tectonics was probably controlled by delamination of thickened mantle lithosphere that caused a dramatic thermal turnover and heating-up of the orogenic root. The overheated lower crust was thermally softened by anatexis and diffusion creep resulting in channel flow, vertical extrusion, fast uplift, and exhumation of the orogenic root.  相似文献   

7.
The West Cycladic Detachment System (WCDS) has been mapped from the western Cycladic islands to Lavrion (mainland Greece), where several top‐to‐SSW low‐angle normal faults at different structural levels are observed. Near the detachment horizon, hydrothermal fluid flow originating from Miocene intrusions lead to high‐temperature carbonate strata‐bound Pb–Ag–Zn ore deposits. Zircon (U–Th)/He cooling ages from the mineralized footwall are 7.1 ± 0.6 to 7.9 ± 0.6 Ma. Carbon‐ and O‐isotope analyses of the carbonate host indicate high water‐to‐rock ratios during brittle deformation‐induced metasomatism, and that this interaction, unrelated to proximity of the intrusions, plays the dominant role in the mineralization. The Late Miocene geology of Lavrion is strikingly similar to Serifos island on the SE termination of the WCDS, both characterized by strong localization of detachment faulting and the interaction of brittle deformation with the injection of fluids related to granitoid intrusions.  相似文献   

8.
The ENE–WSW Autun Shear Zone in the northeastern part of the French Massif Central has been interpreted previously as a dextral wrench fault. New field observations and microstructural analyses document a NE–SW stretching lineation that indicates normal dextral motions along this shear zone. Further east, similar structures are observed along the La Serre Shear Zone. In both areas, a strain gradient from leucogranites with a weak preferred orientation to highly sheared mylonites supports a continuous Autun–La Serre fault system. Microstructural observations, and shape and lattice-preferred orientation document high-temperature deformation and magmatic fabrics in the Autun and La Serre granites, whereas low- to intermediate-temperature fabrics characterize the mylonitic granite. Electron microprobe monazite geochronology of the Autun and La Serre granites yields a ca. 320 Ma age for pluton emplacement, while mica 40Ar-39Ar datings of the Autun granite yield plateau ages from 305 to 300 Ma. The ca. 300 Ma 40Ar-39Ar ages, obtained on micas from Autun and La Serre mylonites, indicate the time of the mylonitization. The ca. 15-Ma time gap between pluton emplacement and deformation along the Autun–La Serre fault system argue against a synkinematic pluton emplacement during late orogenic to postorogenic extension of the Variscan Belt. A ductile to brittle continuum of deformation is observed along the shear zone, with Lower Permian brittle faults controlling the development of sedimentary basins. These results suggest a two-stage Late Carboniferous extension in the northeastern French Massif Central, with regional crustal melting and emplacement of the Autun and La Serre leucogranites around 320 Ma, followed, at 305–295 Ma, by ductile shearing, normal brittle faulting, and subsequent exhumation along the Autun–La Serre transtensional fault system.  相似文献   

9.
Thin-section studies of the Zanskar Shear Zone (ZSZ) rocks reveal a top-to-SW and subsequent primary and secondary top-to-NE ductile shearing; brittle–ductile and brittle extensions; top-to-SW brittle shear, steep normal faulting and fracturing. In the proposed two-phase model of ductile extrusion of the Higher Himalayan Shear Zone (HHSZ), a top-to-SW simple shearing during 22–18 Ma was followed by a combination of top-to-SW simple shear and channel flow at 18–16 Ma. The second phase simulates a thin ZSZ characterized by a top-to-NE shearing. The channel flow component ceased around 16 Ma, the extruding HHSZ entered the brittle regime but the top-to-SW shearing continued until perturbed by faults and fractures. Variation in the extrusion parameters led to variable thickness of the ZSZ. Shear strain after the extrusion is presumably maximum at the boundaries of the HHSZ and falls towards the base of the ZSZ, which crudely matches with the existing data. The other predictions: (1) spatially uniform shear strain after the first stage, (2) fastest extrusion rate at the base of the ZSZ, and (3) a lack of continuation of the ZSZ along the Himalayan trend are not possible to validate due to paucity of suitable data. Non-parabolic shear fabrics of the ZSZ indicate their heterogeneous deformation.  相似文献   

10.
The Ranotsara shear zone in Madagascar has been considered in previous studies to be a >350-km-long, intracrustal strike-slip shear zone of Precambrian/Cambrian age. Because of its oblique strike to the east and west coast of Madagascar, the Ranotsara shear zone has been correlated with shear zones in southern India and eastern Africa in Gondwana reconstructions. Our assessment using remote sensing data and field-based investigations, however, reveals that what previously has been interpreted as the Ranotsara shear zone is in fact a composite structure with a ductile deflection zone confined to its central segment and prominent NW–SE trending brittle faulting along most of its length. We therefore prefer the more neutral term “Ranotsara Zone”. Lithologies, tectonic foliations, and axial trace trajectories of major folds can be followed from south to north across most of the Ranotsara Zone and show only a marked deflection along its central segment. The ductile deflection zone is interpreted as a result of E–W indentation of the Antananarivo Block into the less rigid, predominantly metasedimentary rocks of the Southwestern Madagascar Block during a late phase of the Neoproterozoic/Cambrian East African Orogeny (c. 550–520 Ma). The Ranotsara Zone shows significant NW–SE striking brittle faulting that reactivates part of the NW–SE striking ductile structures in the flexure zone, but also extends along strike toward the NW and toward the SE. Brittle reactivation of ductile structures along the central segment of the Ranotsara Zone, confirmed by apatite-fission track results, may have led to the formation of a shallow Neogene basin underlying the Ranotsara plain. The present-day drainage pattern suggests on-going normal fault activity along the central segment. The Ranotsara Zone is not a megascale intracrustal strike-slip shear zone that crosscuts the entire basement of southern Madagascar. It can therefore not be used as a piercing point in Gondwana reconstructions.  相似文献   

11.
Detailed 40Ar/39Ar geochronology on single grains of muscovite was performed in the Variscan Tanneron Massif (SE France) to determine the precise timing of the post-collisional exhumation processes. Thirty-two plateau ages, obtained on metamorphic and magmatic rocks sampled along an east–west transect through the massif, vary from 302 ± 2 to 321 ± 2 Ma, and reveal a heterogeneous exhumation of the lower crust that lasted about 20 Ma during late Carboniferous. In the eastern part of the massif, the closure of the K–Ar isotopic system is at 311–315 Ma, whereas in the middle part of the massif it closes earlier at 317–321 Ma. These cooling paths are likely to be the result of differential exhumation processes of distinct crustal blocks controlled by a major ductile fault, the La Moure fault that separates both domains. In the western part of the massif, the ages decrease from 318 to 303 Ma approaching the Rouet granite, which provides the youngest age at 303.6 ± 1.2 Ma. This age distribution can be explained by the occurrence of a thermal structure spatially associated to the magmatic complex. These ages argue in favour of a cooling of the magmatic body at around 15 Ma after the country rocks in the western Tanneron. The emplacement of the Rouet granite in the core of an antiform is responsible for recrystallization and post-isotopic closure disturbances of the K–Ar chronometer in the muscovite from the host rocks. These new 40Ar/39Ar ages clearly outline that at least two different processes may contribute to the exhumation of the lower crust in the later stage of collision. During the first stage between 320 and 310 Ma, the differential motion of tectonic blocks limited by ductile shear zones controls the post-collisional exhumation. This event could be related to orogen parallel shearing associated with crustal-scale strike-slip faults and regional folding. The final exhumation stages at around 300 Ma take place within the tectonic doming associated to magmatic intrusions in the core of antiformal structures. Local ductile to brittle normal faulting is coeval to Upper Carboniferous intracontinental basins opening.  相似文献   

12.
The Santa Rosa mylonite zone developed predominantly from a granodiorite protolith in the eastern margin of the Peninsular Ranges batholith. A wide variation in K−Ar biotite dates within the zone is shown to reflect the times of cooling through closure temperatures whose variability is chiefly a result of deformation-induced reduction in grain size. We suggest that such variation generally may be exploited to place constraints on the timing of deformation episodes. Previous workers have shown that deformation in the Santa Rosa mylonite zone involved the formation of mylonites and an imbricate series of low-angle faults which divide the area into structural units. Field work, petrographic studies, and TEM analysis of deformation mechanisms in biotite show that the granodiorite mylonite, the lowermost structural unit, formed below the granodiorite solidus. The granodiorite mylonite varies from protomylonite to ultramylonite, with regions of high strain distributed heterogeneously within the zone. Previously reported biotite and hornblende K−Ar dates from the granodiorite protolith below (82–89 Ma) and the Asbestos Mountain granodiorite above (61–68 Ma) the mylonite zone indicate dramatically dissimilar thermal histories for the lowermost and uppermost structural units. Other workers' fission track dates on sphene, zircon, and apatite from the granodiorite mylonite and the Asbestos Mountain granodiorite suggest thermal homogenization and rapid cooling to ∼100° C by ca 60 Ma. Within and adjacent to the mylonite zone, K−Ar dates on 5 samples of biotite from variably deformed granodiorite range from 62–76 Ma; dates are not correlated with structural depth but clearly decrease with degree of deformation and concomitant grain size reduction. 40Ar/39Ar incremental heating analyses of biotite from the granodiorite protolith reveals no evidence of excess argon and produces a relatively flat age spectrum. 40Ar/39Ar incremental heating analysis of biotite from the granodiorite mylonite discloses discordance consistent with 39Ar recoil loss. K analysis of samples, allowing K−Ar dates to be calculated, is therefore recommended as an adjunct to 40Ar/39Ar step heating analysis in rocks that have experienced similar deformation. During mylonitization, biotite grain size reduction through intracrystalline cataclasis results in estimated grain dimensions as small as 0.05 μm locally within porphyroclasts as large as 1 mm. Because biotite compositions are relatively Uniform (Fe/[Fe+Mg+Mn+Ti+AlVI]=0.47–0.52) and show no systematic variation with grain size, compositional dependence of activation energy and diffusivity can be eliminated as sources of variation in Ar retention. Ar closure temperatures, calculated with appropriate diffusion parameters for the observed grain sizes, are in the range ∼220–280° C and define a cooling curve consistent with a thermal history intermediate between those of the granodiorite protolith below and the Asbestos Mountain granodiorite above the mylonite zone. Changes in the slope of the cooling curve indicate that the main deformation episode initiated at or above ca 330° C (∼80 Ma), above the closure temperature for thermally activated diffusion of argon in biotite, and continued to a minimum of ca 220–260° C (∼62 Ma).  相似文献   

13.
By a detailed investigation of geometry and kinematics of the Shangma (商麻) fault in Dabieshan (大别山),three different crust levels of extension movement have been recognized in sequence from the deep to the shallow:① low-angle ductile detachment shearing with top to the NW; ② low-angle normal fault with top to the NW or NWW in brittle or brittle-ductile transition domain; ③high-angle brittle normal fault with top to the W or NWW. Two samples were chosen for zircon U-Pb age dating to constrain the activity age of the Shangma fault. A bedding intrusive granitoid pegmatite vein that is parallel to the foliation of the low-angle ductile detachment shear zone of the country rock exhibits a lotus-joint type of boudinage deformation,showing syn-tectonic emplacing at the end of the ductile deformation period and deformation in the brittle-ductile transition domain. The zircon U-Pb dating of this granitoid pegmatite vein gives an age of (125.9±4.2) Ma,which expresses the extension in the brittle-ductile transition domain of the Shangma fault. The other sample,which is collected from a granite pluton cutting the foliation of the low-angle ductile detachment shear zone, gives a zircon U-Pb age of (118.8±4.1) Ma,constraining the end of the ductile detachment shearing. Then the transformation age from ductile to brittle deformation can be constrained between 126-119 Ma.Combined with the previous researches,the formation of the Luotian (罗田) dome,which is located to the east of the Shangma fault,can beconstrained during 150-126 Ma. This study gives a new time constraint to the evolution of the Dabie orogenic belt.  相似文献   

14.
15.
The major and trace-element geochemistry, Sr–Nd bulk-rock isotopes, U–Pb zircon chronology and Lu–Hf isotopic compositions are described for three granitic bodies which intrude the Nyingchi gneisses (Lhasa terrane) along the western margin of the eastern Himalayan syntaxis. The Bayi two-mica granite and Lunan granite–granodiorite were intruded at 22 ± 1 and 25.4 ± 0.3 Ma, respectively, whereas the Confluence biotite granite was emplaced at 49.1 ± 0.4 Ma. All share strong depletions in Y and HREE requiring a garnet-bearing source both during and following the Eocene collision of the Indian plate with the Lhasa terrane. The isotope geochemistry of these intrusives (ε Nd(t) = −3 to −5, 87Sr/86Sr(t) = 0.706–0.707) indicates a crustal source within the Lhasa terrane. Sr–Nd systematics of the garnet-bearing Nyingchi gneisses together with the U–Pb and Lu–Hf isotopic ratios of detrital zircons recovered from this unit identifies it as a potential melt source. The combined element and isotope geochemistry of the plutons indicate a mixed source; the gneisses provide the older component whereas the Gangdese batholith provides a younger, siliceous component. The involvement of garnet-bearing crustal material in melt sources from the Cretaceous (80 Ma) to the Miocene (20 Ma) is consistent with the presence of a thicker continental crust in the eastern Lhasa terrane, as is the presence of magmatic epidote in several plutons which indicates a regional deepening level of exposure eastwards. Post-collision crustal melting is synchronous with proposed slab break-off during the early Miocene, suggesting advective heating by rising asthenospheric melts.  相似文献   

16.
The Qinling–Dabie–Sulu orogenic belt is the junction between the North and South China blocks, which resulted from the final amalgamation of China continents during the Indosinian. Indosinian granitoids are widespread in the Qinling orogen, and their geneses can thus constrain the evolution of China continent. We carried out a combined U–Pb zircon dating and geochemical study for the Shuangpengxi granodiorite pluton and the Xiekeng diorite–granodiorite pluton in the middle part of the West Qinling orogen. U–Pb zircon dating shows that the magma crystallization ages of 242 ± 3 Ma for the Shuangpengxi pluton and ~244–242 Ma for the Xiekeng pluton. Geochemical and Sr–Nd–Hf isotopic compositions reveal that the magma of the Shuangpengxi granodiorite was derived from partial melting of crustal materials. The Xiekeng diorites can be divided into high-Al diorite and high-Mg diorite. Both of them resulted from partial melting of enriched lithospheric mantle, but their mantle source had been modified by previous slab-derived melt. The high-Al diorite was formed by fractional crystallization of olivine, pyroxene and/or preferential accumulation of plagioclase, and the high-Mg diorite was formed by fractional crystallization of olivine and/or preferential accumulation of pyroxene. The Xiekeng granodioritic porphyry was formed by mixing of crust-derived and mantle-derived melts. We propose that the Early Indosinian magmatism resulted from break-off of subducted oceanic slab after collision. The slab break-off model can well explain the linear distribution of the Early Indosinian plutons and rapid crustal uplift during the Middle Triassic in the West Qinling.  相似文献   

17.
西秦岭北缘花岗质岩浆作用及构造演化   总被引:13,自引:9,他引:4  
徐学义  陈隽璐  高婷  李平  李婷 《岩石学报》2014,30(2):371-389
西秦岭北部江里沟、阿夷山、德乌鲁、温泉和中川5个花岗质岩体岩石学、地球化学和LA-ICP-MS锆石U-Pb年代学研究结果表明,花岗岩体的岩性主体为花岗闪长岩-二长花岗岩,属高钾钙碱系列,少数为钙碱系列;形成时代为264~216Ma。江里沟、阿夷山和中川岩体属弱过铝质花岗岩(ACNK1.05),温泉岩体和德乌鲁岩体属准铝和弱过铝质花岗岩(ACNK=0.95~1.05);花岗岩具有埃达克岩(Sr400×10-6,Yb2×10-6)或喜马拉雅型花岗岩(Sr400×10-6,Yb2×10-6)的地球化学特征,或两者兼而有之。花岗岩浆起源于下地壳的部分熔融,源岩最有可能是古老的玄武质岩石。西秦岭北部存在埃达克岩和喜马拉雅型花岗岩,说明三叠纪时期存在陆陆碰撞或陆陆俯冲导致的地壳加厚,加厚的下地壳的部分熔融以及部分熔融发生深度的不同,形成本区具有埃达克或喜马拉雅型地球化学特点的花岗岩侵入体。埃达克岩和喜马拉雅型花岗岩对寻找金铜矿产具有一定的指导意义。  相似文献   

18.
258高地金矿床地处黑龙江省完达山成矿带东部,矿化与岩浆侵入活动密切相关。文章利用锆石LA-ICP-MS U-Pb定年方法,对258高地金矿区的二长花岗岩、花岗闪长岩及闪长玢岩进行了年代学研究,获得258金矿区花岗闪长岩的成岩年龄为(118.3±1.1)Ma;3件二长花岗岩样品的成岩年龄分别为(130.5±0.8)Ma、(122.1±0.7)Ma、(118.0±0.9)Ma;2件闪长玢岩的成岩年龄分别为(119.5±1.3)Ma、(107.4±2.2)Ma,表明本区中酸性岩体侵位时代介于131~107 Ma,与西太平洋构造域的早白垩世演化有关。定年结果同时表明矿区存在3期岩浆活动,其中122~118 Ma的二长花岗岩与花岗闪长岩、闪长玢岩的年龄在误差范围内一致,且与金矿成矿关系密切。岩石地球化学显示区内的中酸性侵入岩均为高钾钙碱性过铝质岩石,花岗闪长岩和二长花岗岩具有重熔型岩浆岩的特征,可能是加厚地壳物质部分熔融的产物;闪长玢岩脉具有典型壳幔源岛弧岩浆岩的特点。综合研究认为258高地金矿床形成于与板块俯冲有关的活动大陆边缘环境。  相似文献   

19.
Laser-probe dating of mylonite whole-rock samples from the North Tianshan—Main Tianshan fault zone that cross-cuts the North Tianshan domain’s southern margin yielded 40Ar/39Ar spectra with 255–285 Ma ages. Biotite from an undeformed, Early Carboniferous granite, which cuts the steep mylonitic foliation in the Proterozoic basement of the Yili arcs’s southern margin, gave a 263.4 ± 0.6 Ma plateau age (1σ). Pre-Carboniferous metasediments overlying this basement yielded plateau ages (1σ) of 253.3 ± 0.3 (muscovite) and 252.3 ± 0.3 (biotite) Ma. The Permian ages of mylonites date movement on these ductile, dextral strike-slip shear zones, whereas the mica ages are interpreted by recrystallisation as a result of fluid flow around such transcurrent faults. We propose that the Tianshan’s Permian syn-tectonic bimodal magmatism was created in a non-plume-related Yellowstone-like extensional–transtensional tectonic regime. Gold mineralisation, tracing aqueous flow in the crust, peaked in Permian time and continued locally into the Triassic. The picture is emerging that a convective fluid system partly driven by magmatic heat, existed in a strongly fractured and weakened crust with an elevated heat flow, leading to regional-scale isotope resetting. We suggest that surprisingly young isotopic ages in the literature for early orogenic (ultra)high-pressure metamorphism are similarly due to fluid-mediated recrystallisation.  相似文献   

20.
The unlined Bedretto tunnel in the Central Swiss Alps has been used to investigate in detail the fault architecture and late Alpine brittle faulting processes in the Rotondo granite on macroscopic and microscopic scales. Brittle faults in the late Variscan Rotondo granite preferentially are situated within the extent of preexisting ductile shear zones. Only in relatively few cases the damage zone extends into or develops in the previously undeformed granite. Slickensides suggest a predominant (dextral) strike-slip movement along these steeply dipping and NE–SW-striking faults. Microstructures of these fault rocks illustrate a multi-stage retrograde deformation history from ductile to brittle conditions up to the cessation of fault activity. In addition these fabrics allow identifying cataclastic flow, fluid-assisted brecciation and chemical corrosive wear as important deformation mechanisms during this retrogressive deformation path. Based on the analysis of zeolite microfabrics (laumontite and stilbite; hydrated Ca–Al- and Na–Ca–Al–silicate, respectively) in fault breccias, cataclasites and open fractures we conclude, that the main phase of active brittle faulting started below 280°C and ceased ca. 14 Ma ago at temperatures slightly above 200°C. This corresponds to a depth of approx. 7 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号