首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We model the magnetic fields of four magnetic stars using published longitudinal (Be) field measurements. The structure of the magnetic field of each of the four stars is close to that of the central dipole. Unfortunately, the number of measurements for each star is insufficient for accurate finding of the field parameters, and therefore we find no dipole shift exceeding its error Δa ≈ 0.1, expressed as a fraction of the stellar radius. Our data support the opinion that the results of modeling depend most strongly on the adopted inclination of the star’s rotation axis i.  相似文献   

2.
A model is constructed for the magnetic field of the star HD 187474, which has a very long axial rotation period P = 2345d. It turns out that the structure of the magnetic field is best described by a model of a displaced (Δα = 0.1) dipole inclined to the axis of rotation by an angle β = 24°. The star is inclined to the line of sight by an angle i = 86°. Because of the displaced dipole the magnitude of the magnetic field differs at the poles: Bp = +6300 and 11600 G. A Mercator map of the distribution of the magnetic field over the surface is obtained. The 7 slowly rotating CP stars studied thus far have an average angle β = 62°, which equals the average value for a random orientation of dipoles. __________ Translated from Astrofizika, Vol. 48, No. 4, pp. 575–583 (November 2005).  相似文献   

3.
The method of “magnetic charges” is used to model magnetic fields of five rapidly rotating stars (P < 25d) and to find the basic parameters of their magnetic fields. A table containing all the modeling results obtained using the adopted method as well as the parameters obtained for the same stars by other authors is presented. Significant discrepances are found in a number of cases, which can apparently be explained by insufficient accuracy of the estimated inclinations of the stars to the line of sight.  相似文献   

4.
The magnetic fields of the chemically peculiar stars HD 115708 and HD 119419 were modeled using observed curves of variation of the magnetic field with the phase of the rotational period. It turned out that the field of HD 115708 is described, in a first approximation, by a central dipole, while the field of HD 119419 is described by an off-center dipole. The main parameters of the magnetic fields of both stars and maps of the surface field-strength distribution were obtained. The dipole axis of the first star lies in the equatorial plane while that of the second is almost parallel to the axis of rotation.  相似文献   

5.
This is the final paper on a study of the magnetic field structure of CP stars with long rotation periods. It is first demonstrated that the orientation and strength of the magnetic field have no effect on their rotation velocity. The orientation of the dipole structures in slow magnetic rotators is shown to be random, as it is in fast rotators. The hypothesis that magnetic stars are slowed down under the influence of the magnetic field is called into question. The origin of CP stars is probably related to their initial slow rotation. __________ Translated from Astrofizika, Vol. 51, No. 2, pp. 295–303 (May 2008).  相似文献   

6.
A magnetic field model is constructed for the extremely slow rotator γEqu based on measurements of its magnetic field over many years and using the “magnetic charge” method. An analysis of γEqu and of all the data accumulated up to the present on the magnetic field parameters of chemically peculiar stars leads to some interesting conclusions, of which the main ones are: the fact that the axis of rotation and the dipole axis are not parallel in γEqu and the other slowly rotating magnetic stars which we have studied previously is one of the signs that the braking of CP stars does not involve the participation of the magnetic field as they evolve “to the main sequence.” The axes of the magnetic field dipole in slow rotators are oriented arbitrarily with respect to their axes of rotation. The substantial photometric activity of these CP stars also argues against these axes being close. The well-known absence of sufficiently strong magnetic fields in the Ae/Be Herbig stars also presents difficulties for the hypothesis of “magnetic braking” in the “pre-main sequence” stages of evolution. The inverse relation between the average surface magnetic field Bs and the rotation period P is yet another fact in conflict with the idea that the magnetic field is involved in the braking of CP stars. We believe that angular momentum loss involving the magnetic field can hardly have taken place during evolution immediately prior “to the main sequence,” rather the slow rotation of CP stars most likely originates from protostellar clouds with low angular momentum. Some of the slowly rotating stars have a central dipole magnetic field configuration, while others have a displaced dipole configuration, where the displacement can be toward the positive or the negative magnetic pole. __________ Translated from Astrofizika, Vol. 49, No. 2, pp. 251–262 (May 2006).  相似文献   

7.
Our spectrophotometric analysis of the atmospheres of HD 37058, HD 212454, and HD 224926 shows these objects to be typical He-w stars with close-to-zero microturbulence velocities, very different magnetic fields, and wide scatter of chemical anomalies. However, one of the main manifestations of separation is that helium moves from the outer layers of the atmosphere into the star’s interior.Our analysis of the stars HD 212454 and 224926 with Be<100 G shows that despite their weak magnetic fields they have the same degree of chemical anomaly as highly magnetized stars. Chemical composition varies over a wide range for stars with the same magnitude of magnetic field. We find the conditions in the temperature interval 13000–16000 K to be the most favorable for the formation of He-w type stars. Helium underabundance is the strongest near the maximum of the distribution and it is observed in stars with weak as well as strong fields. Because of the scatter mentioned above the degree of chemical anomalies is not strictly related to the magnitude of the magnetic field, although the field has an appreciable effect on the formation of chemical inhomogeneities at the star’s surface. Its influence is minimal in stars with very weak magnetic fields and the presence of strong chemical anomalies indicates that microturbulence in these stars is sufficiently weak even without the effect of the magnetic field. It is plausible to assume that the anomalies arise due to slow rotation.The temperature dependences of rotation velocity vsini for stars with weak magnetic fields show no apparent trends associated with the magnitude of magnetic field. The rotation velocities vsini of almost all stars are lower than those of normal stars, except for HD 131120, 142096, 142990, and 143669, which rotate with the same velocity or even faster than normal stars. These objects do not obey the general rule and their example shows that stable atmospheres can also be found among fast rotators and that magnetic field takes no part in the spin-down of CP stars. We believe that CP stars inherited their slow rotation from protostellar clouds.  相似文献   

8.
We continue our program of the study of large-scale structures of magnetic fields in chemically peculiar stars. In this paper we analyze eight stars, out of which three stars have the structure of a central dipole, three—the structure of a dipole shifted along the axis, and two—of a dipole shifted across the axis. High-precision measurements (with σ = 50 and 80 G) are available for two stars (HD62140 and HD71866, respectively). The model phase dependences agree with the measurements within the errors. This result shows that the hypothesis about the dipole structure of the magnetic fields of CP stars is well founded.  相似文献   

9.
Recent measurements of the surface magnetic fields of classical T Tauri stars (CTTSs) and magnetic cataclysmic variables show that their magnetic fields have a complex structure. Investigation of accretion onto such stars requires global three-dimensional (3D) magnetohydrodynamic (MHD) simulations, where the complexity of simulations strongly increases with each higher-order multipole. Previously, we were able to model disc accretion onto stars with magnetic fields described by a superposition of dipole and quadrupole moments. However, in some stars, like CTTS V2129 Oph and BP Tau, the octupolar component is significant and it was necessary to include the next octupolar component. Here, we show results of global 3D MHD simulations of accretion onto stars with superposition of the dipole and octupole fields, where we vary the ratio between components. Simulations show that if octupolar field strongly dominates at the disc-magnetosphere boundary, then matter flows into the ring-like octupolar poles, forming ring-shape spots at the surface of the star above and below equator. The light-curves are complex and may have two peaks per period. In case where the dipole field dominates, matter accretes in two ordered funnel streams towards poles, however the polar spots are meridionally-elongated due to the action of the octupolar component. In the case when the fields are of similar strengths, both, polar and belt-like spots are present. In many cases the light-curves show the evidence of complex fields, excluding the cases of small inclinations angles, where sinusoidal light-curve is observed and ‘hides’ the information about the field complexity.We also propose new mechanisms of phase shift in stars with complex magnetic fields. We suggest that the phase shifts can be connected with: (1) temporal variation of the star’s intrinsic magnetic field and subsequent redistribution of main magnetic poles; (2) variation of the accretion rate, which causes the disc to interact with the magnetic fields associated with different magnetic moments. We use our model to demonstrate these phase shift mechanisms, and we discuss possible applications of these mechanisms to accreting millisecond pulsars and young stars.  相似文献   

10.
We investigate the HD 182255, a star earlier suspected to be helium-weak. We show it to be a SiHe-w-type CP object. Our study revealed four regions with anomalous elemental abundances on the stellar surface near the equator of rotation. Its magnetic field could not be measured, apparently due to the unfavorable orientation of the star. The star is seen almost (rotation) pole on, the inclination of its rotation axis is i = 12°. The magnitude of HD 182255 varies as a result of its rotation owing to the nonuniform distribution of chemical elements on its surface, which leads to the variable blanketing effect. The helium and silicon abundances increase with depth, i.e., the stratification typical of CP stars is observed. The star undergoes nonradial pulsations and nonstationary variations of the structure of its upper atmosphere.  相似文献   

11.
We present the results of measurements of magnetic fields of chemically peculiar (CP) stars, performed from the shifts between the circularly polarized components of metal and hydrogen lines (the Babcock method). The observations are carried out with an analyzer of circular polarization at the 6‐m telescope of the SAO RAS. We found that for the absolute majority of the objects studied (in 22 CP stars out of 23), the magnetic fields, determined from the Zeeman shifts in the hydrogen line cores, are significantly lower than those obtained from metal lines in the same spectra. This disparity varies between the stars. We show that instrumental effects can not produce the above features, and discuss the possible causes of the observed effect. The discovered condition reveals a more complicated structure of magnetic fields of CP stars than a simple dipole, in particular, a reduction of the field strength in the upper atmosphere with the vertical gradient, significantly higher than the dipole (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Pulsars are presently believed to be rotating neutron stars with large frozen-in magnetic fields normally assumed to be dipole fields. It has been shown that such a star must possess a magnetosphere if it rotates sufficiently rapidly. By assuming that the magnetic field is dipolar, and unaffected by the trapped particles in the magnetosphere, and that the field dipole axis is parallel to the rotation axis, Goldreich and Julian determined many of the properties of the magnetosphere. In this paper is given a self-consistent model of the closed field lines of a pulsar magnetosphere. Using this model, it is shown that, close to the star, the above assumptions of Goldreich and Julian are justified. Their results are extended to the oblique rotator as well as to stars with magnetic multipoles of arbitrary order and arbitrary orientation.Supported in part by the U.S. Atomic Energy Commission under Grant 2171T.  相似文献   

13.
We report the results of magnetic field modelling of around 50 CP stars, performed using the “magnetic charges” technique. The modelling shows that the sample reveals four main types of magnetic configurations: 1) a central dipole, 2) a dipole, shifted along the axis, 3) a dipole, shifted across the axis, and 4) complex structures. The vast majority of stars has the field structure of a dipole, shifted from the center of the star. This shift can have any direction, both along and across the axis. A small percentage of stars possess field structures, formed by two or more dipoles.  相似文献   

14.
We present the results of modeling for about a hundred magnetic stars. It is shown that the dipole representation of magnetic field structures describes the distribution of the magnetic field over stellar surfaces fairly well. We analyze some patterns which support the relic hypothesis of magnetic field formation.Arguments are given in favor of the assumption that themain properties ofmagnetic stars—slow rotation, predominant orientation of magnetic field lines along the plane of the rotation equator, complex internal structures of magnetic fields—are acquired in the process of gravitational collapse. There are no conditions for that in the non-stationary Hayashi phase and in the stage of a radiative young star.  相似文献   

15.
We present the results of magnetic field measurements of four chemically peculiar (CP) stars, the members of the Orion stellar association OB1. Observations were carried out with the circular polarization analyzer at the Main Stellar Spectrograph of the 6-m telescope. All the studied stars refer to the subtype of Bp stars with weak helium lines. Canadian astronomer E. F. Borra detected a magnetic field in three of them (HD35456, HD36313, and HD36526) from the Balmer line magnetometer observations. HD35881 was observed for the first time for the purpose to search for a magnetic field. We obtained the following results: HD35456 is a magnetic star with longitudinal field variation range from +300 to +650 G and a period of 4.9506 days; HD35881 is possible a new magnetic star, the longitudinal component of which varies from?1 to +1 kGwith a period of 0.6998 days, however, a small number of lines broadened by rotation does not allow us to conduct measurements more accurately; HD36313 is a binary star with the components similar in brightness, the primary component is a magnetic star with broad lines, the magnetic field of the secondary component (the star with narrow lines) was not detected. Measurements in the Hβ hydrogen line showed the variations of the longitudinal component from ?1.5 to +2 kG with a period of 1.17862 days; a strong longitudinal field was detected in HD36526 (from 0 to +3000 G) varying with a rotation period of the star of 3.081 days. In all the cases, we observe considerable discrepancies with the data on magnetic fields of these objects obtained earlier.  相似文献   

16.
Based on the spectropolarimetric data obtained at the 6-m telescope, a study of the magnetic field and physical parameters of the magnetic He-weak star HD 35298 was performed. A comparison of the results of magnetic field measurements by various methods has been carried out. The star’s magnetic field varies in the range from ?3 to +3 kG. The field geometry is explained in terms of the oblique rotator model. The obtained magnetic field variation curve can be described by a central dipole with the dipole axis inclined to the axis of rotation by β = 60°, and the magnetic field strength at the pole of B p = 11.5 kG. The data on the variability of spectral lines of some metals are presented, allowing to make an assumption that the stellar surface is heavily spotted.  相似文献   

17.
We present first results of our simulations of magnetic fields in the formation of single and binary stars using a recently developed method for incorporating Magnetohydrodynamics (MHD) into the Smoothed Particle Hydrodynamics (SPH) method. An overview of the method is presented before discussing the effect of magnetic fields on the formation of circumstellar discs around young stars. We find that the presence of magnetic fields during the disc formation process can lead to significantly smaller and less massive discs which are much less prone to gravitational instability. Similarly in the case of binary star formation we find that magnetic fields, overall, suppress fragmentation. However these effects are found to be largely driven by magnetic pressure. The relative importance of magnetic tension is dependent on the orientation of the field with respect to the rotation axis, but can, with the right orientation, lead to a dilution of the magnetic pressure-driven suppression of fragmentation.  相似文献   

18.
The paper is the first in a series dealing with the structure of magnetic and rotating neutron stars including general relativistic effects. The geometry of fossile magnetic fields frozen in the highly conductive neutron star matter in a non-rotating (or weakly rotating) star is studied. § 2 treats the general poloidal field in a vacuum outside the star. The geometry of magnetic fields within the star — whose matter is governed by a barytropic equation of state — is restricted by the condition that the magnetic force density should be curl-free to maintain equilibrium (§ 3). Numerical results are obtained for a poloidal and a toroidal dipole field (§ 4).  相似文献   

19.
A model is constructed for the magnetic field of the He-weak CP star HD 21699. This star has the field structure of a dipole displaced by 0.4 radii from the center perpendicular to its axis. The magnetic poles appear to be close to one another on the surface; they are separated by 55°, not by 180° as in the case of a central dipole. The phase dependences of the equivalent widths of He and Si lines have extrema at the phases corresponding to passage through the visible meridian of zero magnetic field between the magnetic poles. At the magnetic poles, the intensity of the helium lines is maximal and of the silicon lines, minimal. The silicon abundance is maximal in the regions where the magnetic field is predominantly tangential to the star’s surface. Because of averaging over the visible hemisphere and owing to the closeness of the magnetic poles, only one wave of variation in the intensity of the spectral lines of these chemical elements, one wave of photometric variability, and an average surface magnetic field Bs are observed. __________ Translated from Astrofizika, Vol. 50, No. 3, pp. 441–451 (August 2007).  相似文献   

20.
In our previous search for magnetic fields in Herbig Ae stars, we pointed out that HD 101412 possesses the strongest magnetic field among the Herbig Ae stars and hence is of special interest for follow‐up studies of magnetism among young pre‐main‐sequence stars. We obtained high‐resolution, high signal‐to‐noise UVES and a few lower quality HARPS spectra revealing the presence of resolved magnetically split lines. HD 101412 is the first Herbig Ae star for which the rotational Doppler effect was found to be small in comparison to the magnetic splitting and several spectral lines observed in unpolarized light at high dispersion are resolved into magnetically split components. The measured mean magnetic field modulus varies from 2.5 to 3.5kG, while the mean quadratic field was found to vary in the range of 3.5 to 4.8 kG. To determine the period of variations, we used radial velocity, equivalent width, line width, and line asymmetry measurements of variable spectral lines of several elements, as well as magnetic field measurements. The period determination was done using the Lomb‐Scargle method. The most pronounced variability was detected for spectral lines of He I and the iron peak elements, whereas the spectral lines of CNO elements are only slightly variable. From spectral variations and magnetic field measurements we derived a potential rotation period Prot = 13.86 d, which has to be proven in future studies with a larger number of observations. It is the first time that the presence of element spots is detected on the surface of a Herbig Ae/Be star. Our previous study of Herbig Ae stars revealed a trend towards stronger magnetic fields for younger Herbig Ae stars, confirmed by statistical tests. This is in contrast to a few other (non‐statistical) studies claiming that magnetic Herbig Ae stars are progenitors of the magnetic Ap stars. New developments in MHD theory show that the measured magnetic field strengths are compatible with a current‐driven instability of toroidal fields generated by differential rotation in the stellar interior. This explanation for magnetic intermediate‐mass stars could be an alternative to a frozen‐in fossil field (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号