首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Basaltic andesites are the dominant Tongan magma type, and are characterized by phenocrysts of augite, orthopyroxene (or rarely pigeonite), and calcic plagioclase (modally most abundant phase, and interpreted as the liquidus phase). The plagioclase phenocrysts exhibit slight oscillatory reverse zoning except for abrupt and thin more sodic rims, which are interpreted to develop during eruptive quenching. These rim compositions overlap those of the groundmass plagioclase. The pyroxene phenocrysts also exhibit only slight compositional zoning except for the outermost rim zones; the compositions of these rims, together with the groundmass pyroxenes, vary throughout the compositional range of subcalcic augite to ferroaugite through pigeonite to ferropigeonite, and are interpreted in terms of quench-controlled crystallization. This is supported, for example, by the random distribution of Al solid solution in the groundmass pyroxenes, compared to the more regular behaviour of Al in the phenocryst pyroxenes. The analysed Niua Fo'ou olivine tholeiites are aphyric; groundmass phases are plagioclase (An17–88), olivine (Fa18–63), titanomagnetite (usp. 59–73), and augite-ferroaugite which does not extend to subcalcic compositions; this is interpreted to be due to higher quenching temperatures and lower viscosities of these tholeiites compared to the basaltic andesites.Application of various geothermometers to the basaltic andesites suggest initial eruptive quenching temperatures of 1,008–1,124 ° C, plagioclase liquidus temperatures (1 bar) of 1,210–1,277 ° C, and orthopyroxene-clinopyroxene equilibration of 990–1,150 ° C. These calculated temperatures, together with supporting evidence (e.g. absence of olivine and amphibole, liquidus plagioclase, and plagioclase zoning patterns) are interpreted in terms of phenocryst crystallization from magmas that were either strongly water undersaturated, nearly anhydrous, or at best, water saturated at very low pressures (< 0.5 kb). This interpretation implies that these Tongan basaltic andesites did not originate by any of the currently proposed mechanisms involving hydrous melting within or above the Benioff zone.  相似文献   

2.
The electron probe X-ray microanalyzer has been used to determine the compositional variability of the groundmass minerals and glass in 10 specimens from a complete 225-foot section of the prehistoric tholeiitic lava lake of Makaopuhi Crater, Hawaii. The order of beginning of crystallization was: (1) chromite, (2) olivine, (3) augite, (4) plagioclase, (5) pigeonite, (6) iron-titanium oxides and orthopyroxene, (7) alkali feldspar and apatite, and (8) glass.Although the lake is chemically tholeiitic throughout, the occurrence of ferromagnesian minerals is as though there were a gradation from alkali olivine basalt in the upper chill downwards to olivine tholeiite. Groundmass olivine decreases downwards and disappears at about 20 feet. Pigeonite is absent in the uppermost 5±2 feet, then increases in amount down to 20 feet, below which augite and pigeonite coexist in constant 21 proportions. Strong zoning and metastable compositions characterize the pyroxenes of the chilled zones, but these features gradually disappear towards the interior of the lake to give way to equilibrium pyroxenes. Relatively homogeneous poikilitic orthopyroxene ( Ca4Mg70Fe26) occurs in the olivine cumulate zone, having formed partly at the expense of pre-existing olivine, augite, and pigeonite ( Ca8Mg66Fe26). The growth of orthopyroxene is believed to have been facilitated by the slower cooling rate and higher volatile pressure at depth, and by the rise in Mg/Fe ratio of the liquid due to the partial dissolution of settled olivine.Unlike olivine and pyroxene, feldspar is least zoned in the upper and lower chilled regions. The greatest range of compositional zoning in feldspar occurs at 160 to 190 feet, where it extends continuously from Or1.0Ab22An77 to Or64Ab33An3. The feldspar fractionation trend in the An-Ab-Or triangle gradually shifts with depth toward more equilibrium trends, even though the zoning becomes more extreme. The variation with depth in the initial (core) composition of the plagioclase suggests the influence of either slow nucleation and growth (undercooling) or slow diffusion in the liquid, relative to the rate of cooling.Idiomorphic opaque inclusions in olivine phenocrysts are chrome-spinels showing continuous variation from 60 percent chromite to 85 percent ulvospinel and to magnetite-rich spinel. A pre-eruption trend of increasing Al with decreasing Cr can be recognized in chromites from the upper chill. Most of the inclusions show a trend of falling Cr and Al, toward an ulvospinelmagnetite solid solution which is progressively poorer in Usp with depth. This trend was produced by solid state alteration of the chromite inclusions during cooling in the lava lake. Ilmenite (average Ilm91Hm9) coexists with variably oxidized titaniferous magnetite in the basalt groundmass. Estimated oxygen fugacities agree well with other independent determinations in tholeiitic basalt. No sulfide phase has been detected.Fractional crystallization produced a groundmass glass of granitic composition. Average, in percent, is: SiO2, 75.5; Al2O3, 12.5; K2O, 5.7; Na2O, 3.1; CaO, 0.3; MgO, 0.05; total FeO, 1.2; and TiO2, 0.8. Normative Or> Ab. Minor changes in glass composition with depth are consistent with a greater approach towards the granite minimum. Incipient devitrification precluded reliable analysis of glass from the lower half of the section. The SiO2-phase associated with devitrification contains alkalis and Al and is believed to be cristobalite. Needle-like apatite crystals in the groundmass glass are Siand Fe-bearing fluorapatites containing appreciable rare earths (predominantly Ce) and variable Cl.The grain-size and maximum An content of the cores of plagioclase grains were controlled by cooling rate and are at a maximum at the center of the section. The most homogeneous pyroxene (and olivine, Moore and Evans, 1967), most equilibrium pyroxene trends, most abundant alkali feldspar, and most equilibrium feldspar trends are found at 160 to 190 feet, which is appreciably below that part of the lake which was slowest to crystallize. Volatile pressure, increasing with depth, possibly controlled the degree of attainment of equilibrium more than cooling rate.Since they are dependent on cooling history, some of the modal criteria commonly used for recognizing basalt types, such as the absence of Ca-poor pyroxene, presence of groundmass olivine, and the presence of alkali feldspar, should be applied with caution. Petrographic comparison of basalts from one flow, volcano, or province, with another, should recognize the possible variations due to cooling history alone.Publication authorized by the Director, U.S. Geological Survey  相似文献   

3.
Primitive magmas provide critical information on mantle sources, but most Martian meteorites crystallized from fractionated melts. An olivine-phyric shergottite, Yamato 980459 (Y-980459), has been interpreted to represent a primary melt, because its olivine megacrysts have magnesian cores (Fo84-86) that appear to be in equilibrium with the Y-980459 whole-rock composition based on Fe-Mg partitioning. However, crystal size distribution (CSD) plots for Y-980459 olivines show a size gap, suggesting a cumulus origin for some megacrysts. Because melting experiments using the Y-980459 whole-rock composition have been used to infer the thermal structure and volatile contents of the Martian mantle, the interpretation that this rock is primitive should be scrutinized.We report major, minor and trace element compositions of Y-980459 olivines and compare them with results from melting experiments (both hydrous and anhydrous) and thermodynamic calculations. Cores of the olivine megacrysts have major and minor element contents identical to those of the most magnesian olivines from the experiments, but they differ slightly from those of thermodynamic calculations. This is probably because the Y-980459 whole-rock composition lies near the limit of the range of liquids used to calibrate these models. The megacryst cores (Fo80-85) exhibit minor and trace element (Mn-Ni-Co-Cr-V) characteristics distinct from other olivines (megacryst rims and groundmass olivines, Fo < 80), implying that the megacryst cores crystallized under more reduced conditions (∼IW + 1).Y-980459 contains pyroxenes with orthopyroxene cores mantled by pigeonite and augite. We also found some reversely zoned pyroxenes that have augite cores (low-Mg#) mantled by orthopyroxenes (high-Mg#), although they are uncommon. These reversely zoned pyroxenes are interpreted to have grown initially as atoll-like crystals with later crystallization filling in the hollow centers, implying disequilibrium crystallization at a moderate cooling rate (3-7 °C/h). The calculated REE pattern of a melt in equilibrium with normally zoned pyroxene is parallel to those of glass and the Y-980459 whole-rock as well as other depleted olivine-phyric shergottites, suggesting that Y-980459 was derived from a depleted mantle reservoir.Considering the CSD patterns of Y-980459 olivines, we propose that the olivine megacrysts are cumulus crystals which probably formed in a feeder conduit by continuous melt replenishment, and the parent melt composition was indistinguishable from the Y-980459 whole-rock with 0-2 wt% of H2O and 0-5 wt% of CO2. The final magma pulse entrained these cumulus olivines and then crystallized groundmass olivines and pyroxenes. Although Y-980459 contains small amounts of cumulus olivine (<∼6 vol%), we conclude that the Y-980459 whole-rock composition closely approximates a Martian primary melt composition.  相似文献   

4.
A correlation of petrography, mineral chemistry and in situ oxygen isotopic compositions of fine-grained olivine from the matrix and of fine- and coarse-grained olivine from accretionary rims around Ca-Al-rich inclusions (CAIs) and chondrules in CV chondrites is used here to constrain the processes that occurred in the solar nebula and on the CV parent asteroid. The accretionary rims around Leoville, Vigarano, and Allende CAIs exhibit a layered structure: the inner layer consists of coarse-grained, forsteritic and 16O-rich olivine (Fa1-40 and Δ17O = −24‰ to −5‰; the higher values are always found in the outer part of the layer and only in the most porous meteorites), whereas the middle and the outer layers contain finer-grained olivines that are more fayalitic and 16O-depleted (Fa15-50 and Δ17O = −18‰ to +1‰). The CV matrices and accretionary rims around chondrules have olivine grains of textures, chemical and isotopic compositions similar to those in the outer layers of accretionary rims around CAIs. There is a correlation between local sample porosity and olivine chemical and isotopic compositions: the more compact regions (the inner accretionary rim layer) have the most MgO- and 16O-rich compositions, whereas the more porous regions (outer rim layers around CAIs, accretionary rims around chondrules, and matrices) have the most MgO- and 16O-poor compositions. In addition, there is a negative correlation of olivine grain size with fayalite contents and Δ17O values. However, not all fine-grained olivines are FeO-rich and 16O-poor; some small (<1 μm in Leoville and 5-10 μm in Vigarano and Allende) ferrous (Fa>20) olivine grains in the outer layers of the CAI accretionary rims and in the matrix show significant enrichments in 16O (Δ17O = −20‰ to −10‰). We infer that the inner layer of the accretionary rims around CAIs and, at least, some olivine grains in the finer portions of accretionary rims and CV matrices formed in an 16O-rich gaseous reservoir, probably in the CAI-forming region. Grains in the outer layers of the CAI accretionary rims and in the rims around chondrules as well as matrix may have also originated as 16O-rich olivine. However, these olivines must have exchanged O isotopes to variable extents in the presence of an 16O-poor reservoir, possibly the nebular gas in the chondrule-forming region(s) and/or fluids in the parent body. The observed trend in isotopic compositions may arise from mixtures of 16O-rich forsterites with grain overgrowths or newly formed grains of 16O-poor fayalitic olivines formed during parent body metamorphism. However, the observed correlations of chemical and isotopic compositions of olivine with grain size and local porosity of the host meteorite suggest that olivine accreted as a single population of 16O-rich forsterite and subsequently exchanged Fe-Mg and O isotopes in situ in the presence of aqueous solutions (i.e., fluid-assisted thermal metamorphism).  相似文献   

5.
The crustal history of volcanic rocks can be inferred from the mineralogy and compositions of their phenocrysts which record episodes of magma mixing as well as the pressures and temperatures when magmas cooled. Submarine lavas erupted on the Hilo Ridge, a rift zone directly east of Mauna Kea volcano, contain olivine, plagioclase, augite ±orthopyroxene phenocrysts. The compositions of these phenocryst phases provide constraints on the magmatic processes beneath Hawaiian rift zones. In these samples, olivine phenocrysts are normally zoned with homogeneous cores ranging from ∼ Fo81 to Fo91. In contrast, plagioclase, augite and orthopyroxene phenocrysts display more than one episode of reverse zoning. Within each sample, plagioclase, augite and orthopyroxene phenocrysts have similar zoning profiles. However, there are significant differences between samples. In three samples these phases exhibit large compositional contrasts, e.g., Mg# [100 × Mg/(Mg+Fe+2)] of augite varies from 71 in cores to 82 in rims. Some submarine lavas from the Puna Ridge (Kilauea volcano) contain phenocrysts with similar reverse zonation. The compositional variations of these phenocrysts can be explained by mixing of a multiphase (plagioclase, augite and orthopyroxene) saturated, evolved magma with more mafic magma saturated only with olivine. The differences in the compositional ranges of plagioclase, augite and orthopyroxene crystals between samples indicate that these samples were derived from isolated magma chambers which had undergone distinct fractionation and mixing histories. The samples containing plagioclase and pyroxene with small compositional variations reflect magmas that were buffered near the olivine + melt ⇒Low-Ca pyroxene + augite + plagioclase reaction point by frequent intrusions of mafic olivine-bearing magmas. Samples containing plagioclase and pyroxene phenocrysts with large compositional ranges reflect magmas that evolved beyond this reaction point when there was no replenishment with olivine-saturated magma. Two of these samples contain augite cores with Mg# of ∼71, corresponding to Mg# of 36–40 in equilibrium melts, and augite in another sample has Mg# of 63–65 which is in equilibrium with a very evolved melt with a Mg# of ∼30. Such highly evolved magmas also exist beneath the Puna Ridge of Kilauea volcano. They are rarely erupted during the shield building stage, but may commonly form in ephemeral magma pockets in the rift zones. The compositions of clinopyroxene phenocryst rims and associated glass rinds indicate that most of the samples were last equilibrated at 2–3 kbar and 1130–1160 °C. However, in one sample, augite and glass rind compositions reflect crystallization at higher pressures (4–5 kbar). This sample provides evidence for magma mixing at relatively high pressures and perhaps transport of magma from the summit conduits to the rift zone along the oceanic crust-mantle boundary. Received: 8 July 1998 / Accepted: 2 January 1999  相似文献   

6.
Two generations of primary olivine are present in kimberlite, rounded phenocrysts (Fo94Fo91) and euhedral groundmass olivines (Fo91Fo88-5). Rounded phenocrysts less magnesian than Fo88 are considered to be mantle derived xenocrysts; such crystals comprise up to 40% of the phenocrysts material in kimberlite. Calculated silica activity ranges from 10?1,5 at 1200 °C, 50 kbs, to between 10?1,6 and 10?2.4 at 600 °C, 0.5–1.0 kb. Silica buffers involving olivines, pyroxenes and garnet are considered. Oxygen fugacities on the order of 10?20 bars indicate that kimberlite magmas are highly reduced at the time of groundmass formation.  相似文献   

7.
D. Stephenson 《Lithos》1974,7(1):35-41
Electron microprobe analyses of olivines from augite syenites and foyaites of the South Qôroq Centre, Igaliko Complex, show a range from hortonolite (Fo36Fa62Te2) to manganiferous fayalite (Fo2Fa82Te16). The trend is continuous except for a gap between compositions from augite syenite mafic bands and normal augite syenite. Mn increases with Fe3+ and in the more fractionated compositions becomes the principal fractionating element. High Ca contents may be a result of a high level of emplacement. Fayalite instability appears to be related to oxygen fugacity during late stages of crystallization or recrystallization.  相似文献   

8.
In this paper we describe the mineralogy and geochemistry of basanites and melt inclusions in minerals from the Tergesh pipe, northern Minusinsk Depression. The rocks are composed of olivine and clinopyroxene phenocrysts and a groundmass of olivine, clinopyroxene, titanomagnetite, plagioclase, apatite, ilmenite, and glass. Melt inclusions were found only in the olivine and clinopyroxene phenocrysts. Primary melt inclusions in olivine contain glass, rh?nite, clinopyroxene, a sulfide globule, and low-density fluid. The phase composition of melt inclusions in clinopyroxene is glass + low-density fluid ± xenogenous magnetite. According to thermometric investigations, the olivine phenocrysts began crystallizing at T = 1280–1320°C and P > 3.5 kbar, whereas groundmass minerals were formed under near-surface conditions at T ≤ 1200°C. The oxygen fugacity gradually changed during basanite crystallization from oxidizing (NNO) to more reducing conditions (QFM). The investigation of glass compositions (heated and unheated inclusions in phenocrysts and groundmass) showed that the evolution of a basanite melt during its crystallization included mainly an increase in SiO2, Al2O3, and alkalis, while a decrease in femic components, and the melt composition moved gradually toward tephriphonolite and trachyandesite. Geochemical evidence suggests that the primary basanite melt was derived from a mantle source affected by differentiation. Original Russian Text ? T.Yu. Timina, V.V. Sharygin, A.V. Golovin, 2006, published in Geokhimiya, 2006, No. 8, pp. 814–833.  相似文献   

9.
<正>GRV 020175 is an Antarctic mesosiderite,containing about 43 vol%silicates and 57 vol% metal.Metal occurs in a variety of textures from irregular large masses,to veins penetrating silicates, and to matrix fine grains.The metallic portion contains kamacite,troilite and minor taenite.Terrestrial weathering is evident as partial replacement of the metal and troilite veins by Fe oxides.Silicate phases exhibit a porphyritic texture with pyroxene,plagioclase,minor silica and rare olivine phenocrysts embedded in a fine-grained groundmass.The matrix is ophitic and consists mainly of pyroxene and plagioclase grains.Some orthopyroxene phenocrysts occur as euhedral crystals with chemical zoning from a magnesian core to a ferroan overgrowth;others are characterized by many fine inclusions of plagioclase composition.Pigeonite has almost inverted to its orthopyroxene host with augite lamellae, enclosed by more magnesian rims.Olivine occurs as subhedral crystals,surrounded by a necklace of tiny chromite grains(about 2-3μm).Plagioclase has a heterogeneous composition without zoning. Pyroxene geothermometry of GRV 020175 gives a peak metamorphic temperature(~1000℃) and a closure temperature(~875℃).Molar Fe/Mn ratios(19-32) of pyroxenes are consistent with mesosiderite pyroxenes(16-35) and most plagioclase compositions(An_(87.5_96.6)) are within the range of mesosiderite plagioclase grains(An_(88-95)).Olivine composition(Fo_(53.8)) is only slightly lower than the range of olivine compositions in mesosiderites(Fo_(55-90)).All petrographic characteristics and chemical compositions of GRV 020175 are consistent with those of mesosiderite and based on its matrix texture and relatively abundant plagioclase,it can be further classified as a type 3A mesosiderite.Mineralogical, penological,and geochemical studies of GRV 020175 imply a complex formation history starting as rapid crystallization from a magma in a lava flow on the surface or as a shallow intrusion.Following primary igneous crystallization,the silicate underwent varying degrees of reheating.It was reheated to 1000℃,followed by rapid cooling to 875℃.Subsequently,metal mixed with silicate,during or after which,reduction of silicates occurred;the reducing agent is likely to have been sulfur.After redox reaction,the sample underwent thermal metamorphism,which produced the corona on the olivine, rims on the inverted pigeonite phenocrysts and overgrowths on the orthopyroxene phenocrysts,and homogenized matrix pyroxenes.Nevertheless,metamorphism was not extensive enough to completely reequilibrate the GRV 020175 materials.  相似文献   

10.
Petrogenesis of Franciscan pillow basalts from the Franciscan Complex of western Marin County California entails both dynamic crystallization of tholeiitic magma and subsequent low-temperature metamorphism. Brittle deformation during tectonic emplacement of pillow basalts into a chert greywacke terrain is manifested by the shearing of interpillow matrix and polishing of pillow rims, but the igneous textures within pillows are well preserved.The cooling history of pillow basalts can be understood through analysis of morphologic variations of primary olivine and plagioclase from rim to core of the pillow. Crystal sizes and plagioclase dendrite spacings are consisted with a cooling rate which generally decreases inward. Some pillows show a marked asymmetry in plagioclase and olivine morphology suggesting lower cooling rates caused by asymmetric cooling of the pillows. Olivine morphologies, primarily hopper and chain forms, are consistent with cooling rates of 2–10 °C/h for pillow cores and 50–75 °C/h for pillow rims.Low temperature hydrothermal alteration has produced secondary minerals indicative of zeolite facies conditions. Pillow matrix is either chloritic or zeolitic (in part laumontized). Pillow rims display incomplete replacement of calcic palagonite by pumpellyite (Fe2O3=9–21 wt%), prehnite (Fe2O3=5–7 wt%), sphene and quartz. Metamorphism of pillow interiors, manifested by: (1) veins of quartz, pumpellyite, calcite, or harmotome (BaO=15 wt%); (2) amygdules containing analcime, chlorite or quartz; and (3) replacement of olivine by pumpellyite or smectite/illite, of plagioclase by albite (An3)+sericite, and of glassy groundmass by fine-grained chlorite. Primary augite (Wo339En13Fs48) was not altered. The described paragenesis may be attributed to oceanfloor and/or Franciscan-type metamorphism.  相似文献   

11.
Several basaltic lava flows have been identified in the study area in and around Linga, in the Eastern Deccan Volcanic Province (EDVP) on the basis of distinctly developed structural zones defined by primary volcanic structures such as columnar joints and vesicles. These basaltic lava flows are spatially distributed in four different sectors, viz., (i) Bargona–Gadarwara (BG) sector (ii) Shikarpur–Linga (SL) sector (iii) Arjunvari–Survir Hill (AS) sector and (iv) Kukrachiman–Morand Hill (KM) sector. A three-tier classification scheme has been adopted for the characterization and classification of individual lava flows. Each lava flow consists of a Lower Colonnade Zone (LCZ) overlain by the Entablature Zone (EZ) and Upper Colonnade Zone (UCZ). The LCZ and UCZ grade into a distinct/indistinct Lower Vesicular Zone (LVZ) and Upper Vesicular Zone (UVZ), respectively. The LCZ and UCZ of the flows are characterized by columnar joints while the EZ is marked by multi-directional hackly jointing. The geometry of different joint patterns corresponds to different styles of cooling during solidification of lava flows. Detailed petrographic studies of the investigated lava flows reveal inequigranular phenocrystal basalts characterized by development of phenocrystal phases including plagioclase, clinopyroxene and olivine, whereas groundmass composition is marked by tiny plagioclase, clinopyroxene, opaque mineral and glass. Electron microprobe analyses indicate that the olivine has a wide range ∼Fo22 to Fo66 revealing a wide spectrum of compositional variation. Pyroxene compositions are distinctly designated as Quad pyroxenes. Phenocrystal pyroxenes are mostly diopsidic, while the groundmass pyroxenes mainly correspond to augite with a minor pigeonite component. Pyroxene phenocrysts are characterized by a prominent Ti-enrichment. Phenocrystal plagioclase grains are calcic (An52.7–An72.9), whereas groundmass plagioclase are relatively sodic (An39.2–An61.6). Groundmass opaque minerals are characteristically found to be Ti–magnetite/ilmenite/pyrophanite. Pyroxene thermometry reveals a temperature span of 850°C to 1280°C for the studied lavas while olivine–clinopyroxene thermometry yields a temperature range from 1040°–1160°C. The variation of temperature for the lava flows is ascribed to their normal cooling history after eruption.  相似文献   

12.
The compositions of five different coexisting pyroxenes hypersthene, pigeonite and augite in groundmass and bronzite and augite of phenocryst in a tholeiitic andesite from Hakone Volcano, Japan have been determined by the electron probe microanalyser. It is shown that there is a compositional gap of about 25 mole per cent CaSiO3 between groundmass pigeonite and augite, compared with 35 per cent CaSiO3 between phenocrystic augite and bronzite. Subcalcic augite or pigeonitic augite was not found. The groundmass augite, which occurs only as thin rims of pigeonite and hypersthene, is less calcic and more iron-rich than the phenocryst augite. It is also shown that the groundmass pigeonite is 3–4 mole per cent more CaSiO3-rich than the coexisting groundmass hypersthene. The Fe/(Mg + Fe) ratios of these coexisting hypersthene and pigeonite are about 0.31 and 0.33, respectively. It is suggested from these results that a continuous solid solution does not exist between augite and pigeonite of the Fe/(Mg + Fe) ratio at least near 0.3 under the conditions of crystallization of groundmass of the tholeiitic andesite. It is suggested from the Mg-Fe partition and the textural relation that the groundmass augite crystallized from a liquid more iron-rich than that from which groundmass hypersthene and pigeonite crystallized.  相似文献   

13.
The basaltic Martian meteorite Yamato 980459 consists of large olivine phenocrysts and often prismatic pyroxenes set into a fine-grained groundmass of smaller more Fe-rich olivine, chromite, and an interstitial residual material displaying quenching textures of dendritic olivine, chain-like augite and sulfide droplets in a glassy matrix. Yamato 980459 is, thus, the only Martian meteorite without plagioclase/maskelynite. Olivine is compositionally zoned from a Mg-rich core to a Fe-rich rim with the outer few micrometers being especially rich in iron. With Fo84 the cores are the most magnesian olivines found in Martian meteorites so far. Pyroxenes are also mostly composite crystals of large orthopyroxene cores and thin Ca-rich overgrowths. Separate pigeonite and augites are rare. On basis of the mineral compositions, the cooling rates determined from crystal morphologies, and crystal grain size distributions it is deduced that the parent magma of Yamato 980459 initially cooled under near equilibrium conditions e.g., in a magma chamber allowing chromite and the Mg-rich silicates to form as cumulus phases. Fractional crystallization at higher cooling rates and a low degree of undercooling let to the formation of the Ca-, Al-, and Fe-rich overgrowths on olivine and orthopyroxene while the magma was ascending towards the Martian surface. Finally and before plagioclase and also phosphates could precipitate, the magma was very quickly erupted quenching the remaining melt to glass, dendritic silicates and sulfide droplets. The shape preferred orientation of olivine and pyroxene suggests a quick, thin outflow of lava. According to the shock effects found in the minerals of Yamato 980459, the meteorite experienced an equilibration shock pressure of about 20-25 GPa. Its near surface position allowed the ejection from the planet’s surface already by a single impact event and at relatively low shock pressures.  相似文献   

14.
A technique is described for determining the cooling historyof olivine phenocrysts. The technique is based on the analysisof the diffusive re-equilibration of melt inclusions trappedby olivine phenocrysts during crystallization. The mechanismof re-equilibration involves diffusion of Fe from and Mg intothe initial volume of the inclusion. The technique applies toa single crystal, and thus the cooling history of differentphenocrysts in a single erupted magma can be established. Weshow that melt inclusions in high-Fo olivine phenocrysts frommantle-derived magmas are typically partially re-equilibratedwith their hosts at temperatures below trapping. Our analysisdemonstrates that at a reasonable combination of factors suchas (1) cooling interval before eruption (<350°C), (2)eruption temperatures (>1000°C), and (3) inclusion size(<70 µm in radius), partial re-equilibration of upto 85% occurs within 3–5 months, corresponding to coolingrates faster than 1–2°/day. Short residence timesof high-Fo phenocrysts suggest that if eruption does not happenwithin a few months after a primitive magma begins cooling andcrystallization, olivines that crystallize from it are unlikelyto be erupted as phenocrysts. This can be explained by efficientseparation of olivine crystals from the melt, and their rapidincorporation into the cumulate layer of the chamber. Theseresults also suggest that in most cases erupted high-Fo olivinephenocrysts retain their original composition, and thus compositionsof melt inclusions in erupted high-Fo olivine phenocrysts donot suffer changes that cannot be reversed. Short residencetimes also imply that large unzoned cores of high-Fo phenocrystscannot reflect diffusive re-equilibration of originally zonedphenocrysts. The unzoned cores are a result of fast efficientaccumulation of olivines from the crystallizing magma, i.e.olivines are separated from the magma faster than melt changesits composition. Thus, the main source of high-Fo crystals inthe erupted magmas is the cumulate layers of the magmatic system.In other words, olivine-phyric rocks represent mixtures of anevolved transporting magma (which forms the groundmass of therock) with crystals that were formed during crystallizationof more primitive melt(s). Unlike high-Fo olivine phenocrysts,the evolved magma may reside in the magmatic system for a longtime. This reconciles long magma residence times estimated fromthe compositions of rocks with short residence times of high-Foolivine phenocrysts. KEY WORDS: melt inclusions; olivine; picrites; residence time; diffusion  相似文献   

15.
Synthetic olivines, with composition Fa50, Fa75 and Fa100, have been transformed into spinel in a laser-heated diamond-cell at pressures from 70 to 200 kbar and at a luminance temperature of about 1,200° C. The electrical conductivity σ was measured, at room temperature and up to 200 kbar, on olivine (Lacam 1982; 1983) and spinel (present study). The data obtained permit the following conclusions:
  1. Sample nature effect: under the same conditions (composition, pressure), the σ of spinel is more than three orders of magnitude of the σ of olivine.
  2. Composition effect: there are more than three orders of magnitude between the values of σ for spinels derived from initial compositions of Fa50 and Fa100, respectively.
  3. Pressure effect: The P-effect on σ is greater for olivines than for spinels.
Besides, as in the case of olivine, in spinel the σ obeys an empirical Boltzmann relation: $$\log {\text{ }}\sigma = n \times x + S \times P + const$$ where the first and second term are the composition and pressure contributions, respectively; x the ratio Fa/Fo in mole percent. In spinel, the activation volume, in direct connection with S, was found to be in the order of 0.3 cm3/mol, about one half of that for olivine.  相似文献   

16.
Approximately 150 km west of Mexico City in the central part of the Mexican Volcanic Belt (MVB) near Zitácuaro, Mexico, young volcanism has produced shield volcanoes, large volume silicic deposits, and fault-related basalt and andesite lava flows and cinder cones. This paper concerns a small cluster of Pleistocene andesite cones and flows which can be separated into two distinct groups: high-magnesium andesites (>6% MgO, 57–59% SiO2), conveniently called basaltic andesites, with phenocrysts of orthopyroxene and augite, or augite and olivine; and andesites (60–62% SiO2, <4.6% MgO), which have phenocrysts of orthopyroxene and augite, and ghosts of relict hornblende. Remarkably, plagioclase phenocrysts are absent, and evenly distributed but sparse (0.5–3.5%) quartz xenocrysts are present in all the lavas. In order to establish the conditions under which early crystallizing plagioclase is suppressed in these lavas, water saturated experiments up to 3 kbars were performed on one of the basaltic andesites. The conditions required to reproduce the phenocryst assemblages (either olivine + augite or opx + augite) are temperatures in excess of 1000 °C, with water saturated liquids (>3 wt%) at pressures of about 1 kbar. Compared to basaltic andesites of western Mexico, the Zitácuaro basaltic andesites have ∼2 wt% lower Al2O3 concentrations, which causes plagioclase to precipitate at significantly lower temperatures, and it therefore follows the crystallization sequence: olivine, augite, and orthopyroxene. Based on ubiquitous quartz xenocrysts, with glassy rhyolitic inclusions, a reasonable conclusion is that substantial mixing of a quartz-bearing rhyolitic magma with a parental basaltic andesite has occurred at low pressure (shallow depth), and this would account for the low Al2O3 concentrations in the Zitácuaro basaltic andesites. Whatever the mechanism of incorporation, the quartz xenocrysts are evidence of contamination of basaltic magma with more siliceous material, thus making it difficult to use these magmas as indicators of mantle melting processes. Received: 29 July 1997 / Accepted: 29 January 1998  相似文献   

17.
Basaltic andesite flows erupted between 1973 and 1980 from Arenal Volcano contain abundant inclusions of anorthosite, olivine gabbro, and pyroxenites, and megacrysts of olivine and anorthite. The anorthosites with large (20 mm) anorthite grains (An96-92) exhibit deformation twinning and granulation between grain boundaries. Some olivine gabbros have angular clasts of anorthite with bent twins, pyroxene, and olivine in a finer-grained matrix which is distinctly foliated. These textural features suggest that these inclusions were deformed. An exotic (xenolithic) origin is supported in part by the mineral compositions and the estimated temperatures of equilibration: a temperature of about 975° C is obtained by two-pyroxene and Fe-Ti oxide geothermometers for the gabbros, but two-pyroxene temperatures are higher (1064 to 1120° C) for the basaltic andesite host. The olivine gabbro is thought to have crystallized at a pressure between 8.5 and 9.5 kb; whereas the lava phenocrysts crystallized at a much lower pressure of less than 5 kb. These xenoliths probably represent fragments of the lower crust below Arenal volcano. The lava flows show evidence for some contamination especially from fragments of anorthite broken apart from the larger megacrysts and xenoliths. A few phenocrysts of plagioclase in the lava samples have deformation twins. The unusually high Al2O3 content (19.4 to 23.2 wt%) of the lava samples can be attributed directly to the addition of anorthite; in fact the observed chemical variation in the lava flows (the increasing alumina and lime contents with decreasing silica) can be explained by this contamination.  相似文献   

18.
 In the central Vetreny Belt, southeastern Baltic Shield, an areally extensive 110 m deep lava lake is exposed consisting of remarkably fresh differentiated komatiitic basalt. During eruption, the liquid had a temperature of 1380–1400 °C and contained ∼15% MgO. The lava ponded in a large topographic depression soon after eruption. The differentiation of the lava lake was controlled by settling of transported olivine and chromite phenocrysts and caused the origin of prominent internal layering. The last portions of the trapped liquid crystallized at temperatures of 1250– 1070 °C. A Sm-Nd isochron of 2410±34 Ma for whole rock samples, olivine, augite and pigeonite separates from the lava lake provides a reliable estimate for the time of formation of the uppermost sequences in the Vetreny Belt. This age is in good agreement with the Sm-Nd and Pb-Pb isochron ages of 2449±35 and 2424±178 Ma for the volcanic rocks from the same stratigraphic level in the northwestern Vetreny Belt. Modeling of Nd-isotopes and major and trace elements shows that the komatiitic basalts at Lion Hills may have had a komatiite parent depleted in highly incompatible elements. It can be shown that this initial liquid was contaminated by 7–9% of Archaean upper crustal material from the adjacent Vodla and Belomorian Blocks en route to the surface thus acquiring the observed geochemical and isotope signatures including relative enrichment in Zr, Ba, and LREE, negative Nb- and Ti-anomalies and ɛNd(T) of −1. Received: 8 December 1995/Accepted: 26 March 1996  相似文献   

19.
Zoning of phosphorus in igneous olivine   总被引:2,自引:2,他引:0  
We describe P zoning in olivines from terrestrial basalts, andesites, dacites, and komatiites and from a martian meteorite. P2O5 contents of olivines vary from below the detection limit (≤0.01 wt%) to 0.2–0.4 wt% over a few microns, with no correlated variations in Fo content. Zoning patterns include P-rich crystal cores with skeletal, hopper, or euhedral shapes; oscillatory zoning; structures suggesting replacement of P-rich zones by P-poor olivine; and sector zoning. Melt inclusions in olivines are usually located near P-rich regions but in direct contact with low-P olivine. Crystallization experiments on basaltic compositions at constant cooling rates (15–30°C/h) reproduce many of these features. We infer that P-rich zones in experimental and natural olivines reflect incorporation of P in excess of equilibrium partitioning during rapid growth, and zoning patterns primarily record crystal-growth-rate variations. Occurrences of high-P phenocryst cores may reflect pulses of rapid crystal growth following delayed nucleation due to undercooling. Most cases of oscillatory zoning in P likely reflect internal factors whereby oscillating growth rates occur without external forcings, but some P zoning in natural olivines may reflect external forcings (e.g., magma mixing events, eruption) that result in variable crystal growth rates and/or P contents in the magma. In experimental and some natural olivines, Al, Cr, and P concentrations are roughly linearly and positively correlated, suggesting coupled substitutions, but in natural phenocrysts, Cr zoning is usually less intense than P zoning, and Al zoning weak to absent. We propose that olivines grow from basic and ultrabasic magmas with correlated zoning in P, Cr, and Al superimposed on normal zoning in Fe/Mg; rapidly diffusing divalent cations homogenize during residence in hot magma; Al and Cr only partially homogenize; and delicate P zoning is preserved because P diffuses very slowly. This interpretation is consistent with the fact that zoning is largely preserved not only in P but also in Al, Cr, and divalent cations in olivines with short residence times at high temperature (e.g., experimentally grown olivines, komatiitic olivines, groundmass olivines, and the rims of olivine phenocrysts grown during eruption). P zoning is widespread in magmatic olivine, revealing details of crystal growth and intra-crystal stratigraphy in what otherwise appear to be relatively featureless crystals. Since it is preserved in early-formed olivines with prolonged residence times in magmas at high temperatures, P zoning has promise as an archive of information about an otherwise largely inaccessible stage of a magma’s history. Study of such features should be a valuable supplement to routine petrographic investigations of basic and ultrabasic rocks, especially because these features can be observed with standard electron microprobe techniques.  相似文献   

20.
One-atmosphere, anhydrous phase equilibria determined for alkali basalt/high-silica rhyolite mixtures provide a model for crystallization of natural calc-alkaline mixed magmas. The compositional trend defined by these mixtures mimics the trends of many continental calc-alkaline volcanic suites. As with many naturally occurring suites, the mixtures studied straddle the low-pressure olivine-plagioclase-augite thermal divide. Magma mixing provides a convenient method for magmas to cross this thermal divide in the absence of magnetite crystallization. For the mixtures, Mg-rich olivine (Fo82–87) coexists alone with liquid over an exceptionally large range of temperature and silica content (up to 63 wt% SiO2). This indicates that the Mg-rich olivines found in many andesites and dacites are not necessarily out of equilibrium with the host magma, as is commonly assumed. Such crystals may be either primary phenocrysts, or inherited phenocrysts derived from a mafic magma that mixed with a silicic magma. For the bulk compositions studied, the distribution of Fe and Mg between olivine and liquid (K D ) is equal to 0.3 and is independent of temperature and composition. This result extends to silicic andesites the applicability of K D arguments for tests of equilibrium between olivine and groundmass and for modeling of fractional crystallization. In contrast, the distribution of calcium and sodium between plagioclase and liquid varies significantly with temperature and composition. Therefore, plagioclase-liquid K D s cannot be used for fractional crystallization modeling or as a test of equilibrium. Calcic plagioclase from a basalt will be close to equilibrium with andesitic mixtures, but sodic plagioclase from a rhyolite will be greatly out of equilibrium. This explains the common observation that calcic plagioclase crystals in hybrid andesites are generally close to textural equilibrium with the surrounding groundmass, but sodic plagioclase crystals generally show remelting and armoring with calcic plagioclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号