首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 52 毫秒
1.
A 26-compartment steady-state trophic model (1997–1999) was constructed using the Ecopath with Ecosim software to study the general status and development trends of the Pearl River Delta coastal ecosystem. The results show that the values of effective trophic level ranged from 1.00 to 4.21. It was found that a high trophic niche overlap existed in the typical estuarine ecosystem. Mixed trophic impacts show that detritus and the groups at the low trophic levels had positive influences on most groups. The ecosystem was found to be in an immature state during 1997–1999 based on the system statistics.  相似文献   

2.
A quantitative model of the trophic network of Northern Adriatic Sea marine ecosystem during the 1990s has been constructed, with the goal of analysing its trophic structure, identifying the key trophic groups and assessing the anthropogenic impacts on the ecosystem using the Ecopath modelling protocol. The Northern Adriatic Sea is an eutrophic, shallow basin, and one of the most heavily fished areas in the Mediterranean Sea. The network aggregation into discrete trophic levels sensu Lindeman shows that low trophic levels dominate biomass and energy flows, with 40% of the total system throughput flowing out from trophic level 2. Instead, upper trophic levels appear bottom-up controlled, highly depleted and not exerting any control on the trophic network, as shown by mixed trophic impact-based analyses. Microbial loop is comparable to grazing with respect to the magnitude of flows involved, as 66% of the trophic network flows originate from detritus, which is mainly consumed by bacteria. Key trophic groups are plankton groups, macro-crustaceans and detritus, and other r-selected organisms like squids and small pelagics, which have a great influence on the ecosystem. In particular, zooplankton acts as a bottleneck for energy flows, limiting the energy from the low trophic levels effectively reaching the upper food web. The high pelagic production caused by eutrophication sustains high fishery landings and impressive discard quantities, as well as the benthic compartment. Overall, the ecosystem appears quite productive and in a stressed and developmental status. Model results and comparisons with few existing historical data suggest that the low maturity and stressed state of the Northern Adriatic Sea are not only due to natural characteristics, but mainly to anthropogenic pressures.  相似文献   

3.
This study attempts to assemble and summarize existing information in order to build a general representation of the trophic interactions within the shallow coastal ecosystem of Sri Lanka. A multispecific ecosystem-based approach on trophic relationships and their possible variations was performed using ECOPATH. Thirty-nine functional groups were considered representing all trophic levels in the food web.  相似文献   

4.
Oceanographic regimes on the continental shelf display a great range in the time scales of physical exchange, biochemical processes and trophic transfers. The close surface-to-seabed physical coupling at intermediate scales of weeks to months means that the open ocean simplification to a purely pelagic food web is inadequate. Top-down trophic depictions, starting from the fish populations, are insufficient to constrain a system involving extensive nutrient recycling at lower trophic levels and subject to physical forcing as well as fishing. These pelagic-benthic interactions are found on all continental shelves but are particularly important on the relatively shallow Georges Bank in the northwest Atlantic. We have generated budgets for the lower food web for three physical regimes (Well-mixed, Transitional and Stratified) and for three seasons (Spring, Summer and Fall/Winter). The calculations show that vertical mixing and lateral exchange between the three regimes are important for zooplankton production as well as for nutrient input. Benthic suspension feeders are an additional critical pathway for transfers to higher trophic levels. Estimates of production by mesozooplankton, benthic suspension feeders and deposit feeders, derived primarily from data collected during the GLOBEC years of 1995-1999, provide input to an upper food web. Diets of commercial fish populations are used to calculate food requirements in three fish categories, planktivores, benthivores and piscivores, for four decades, 1963-2002, between which there were major changes in the fish communities. Comparisons of inputs from the lower web with fish energetic requirements for plankton and benthos indicate that we obtained reasonable agreement for the last three decades, 1973-2002. However, for the first decade, the fish food requirements were significantly less than the inputs. This decade, 1963-1972, corresponds to a period characterized by a strong Labrador Current and lower nitrate levels at the shelf-edge, demonstrating how strong bottom-up physical forcing may determine overall fish yields.  相似文献   

5.
1IntroductionThe Beibu Gulf is a natural semiclosed conti-nental sea of the South China Sea,which is situatedat17°00′~21°45′N,105°40′~110°10′E,and sur-rounded by China and Vietnam(see Fig.1).It hasa subtropic monsoon climate with an average winter  相似文献   

6.
The evolution of the North Pacific Ecosystem Model for Understanding Regional Oceanography (NEMURO) family of models to study marine ecosystems is reviewed. Applications throughout the North Pacific have shown the models to be robust and to be able to reproduce 1D, 2D and 3D components of nutrient, carbon cycle and biogeochemical cycles as well as aspects of the lower trophic levels ecosystem (phyto- and zooplankton). NEMURO For Including Saury and Herring, an extension that includes higher trophic levels, can be run uncoupled or coupled to NEMURO. In the uncoupled mode, the growth and weight of an individual fish is computed using plankton densities simulated by NEMURO but with no feedback between fish consumption and plankton mortality. In the coupled mode, the feeding, growth and weight of a representative fish are computed, and prey removals due to feeding by fish appear as mortality terms on the prey. The NEMURO family of models continues to evolve, including effects of the microbial loop and iron limitation at lower trophic levels, and full life cycle, multi-species and multi-generational simulations at higher trophic levels. We outline perspectives for future end-to-end modeling efforts that can be used to study marine ecosystems in response to global environmental change.  相似文献   

7.
紫外线B对海洋生态系统的影响   总被引:1,自引:0,他引:1  
本文根据国内外的相关研究资料,讨论了紫外线辐射(主要是紫外线B)对海洋生态系统中各个层次的海洋生物(包括浮游植物、细菌、底栖藻类、微型和小型动物以及养殖经济生物等)的影响及其对海洋环境中的污染物的效应,结果表明紫外线辐射不但对各类海洋生物有比较明显的直接作用,并且通过生态关系进一步影响到整个海洋生态系统的结构,对海洋生态系统造成威胁.  相似文献   

8.
The marine ecosystem of the Jiaozhou Bay has degraded significantly in fisheries productivity and its ecological roles as spawning and nursery ground for many species of commercial importance has been declining in recent years. A mass-balanced trophic model was developed using Ecopath with Ecosim to evaluate the trophic structure of the Jiaozhou Bay for improving ecosystem management. The model were parameterized based on the fisheries survey data in the Jiaozhou Bay in 2011, including 23 species groups and one detritus group according to their ecological roles. The trophic levels of these ecological groups ranged from 1(primary producers and detritus) to4.3(large demersal fishes). The estimated total system throughput was 12 917.10 t/(km~2·a), with 74.59% and25.41% contribution of the total energy flows from phytoplankton and detritus, respectively. Network analyses showed that the overall transfer efficiency of the ecosystem was 14.4%, and the mean transfer efficiency was 14.5%for grazing food chain and 13.9% for detritus food chain. The system omnivory index(SOI), Finn's cycled index(FCI) and connectance index(CI) were relatively low in this area while the total primary production/total respiration(TPP/TR) was high, indicating an immature and unstable status of the Jiaozhou Bay ecosystem. Mixed trophic impact analysis revealed that the cultured shellfish had substantial negative impacts on most functional groups. This study contributed to ecosystem-level evaluation and management planning of the Jiaozhou Bay ecosystem.  相似文献   

9.
海洋生态系统净生产力 (net ecosystem production,NEP) 表示总初级生产力 (gross primary production,GPP) 和呼吸作用 (respiration,R) 过程之间的差异,它对碳收支平衡、海洋生态系统营养状态乃至气候变化等研究具有十分重要的指示意义。影响海洋 NEP 的因素有细菌、浮游生物、温度、太阳辐射、海冰融化、水团迁移、富营养有机质排放以及海水酸化等。目前计算 NEP 的方法可分为实验培养测定及数据模型计算两种。溶解氧培养法及同位素标记法等是经典的培养测定方法,但存在误差较大且重现性较差等问题。数据模型计算即借助养分质量平衡、响应面模型、O2/Ar 示踪等方法,通过将现场实测数据和生物地球化学模型结合,进行高时间分辨率的连续性观测,这也是目前测算 NEP 的主流应用手段。然而,相较于发达国家,我国在 NEP 的研究设备、技术、测定方法等方面仍存在一定差距。今后的研究重点将是建立 NEP 指标与表征海洋环境、气候变化之间的耦合关系以及 NEP 测定方法的改进,这将有助于深入理解和探索全球变化背景下海洋生态系统响应机制及变化趋势。  相似文献   

10.
Mass-balance models (Ecopath) of the ecosystem before and after collapse (1959-1961 and 1997-1999) of fish stocks were developed with Ecopath software to compare the differences in ecosystem structure, functioning and ecosystem properties of the Beibu Gulf. The model includes 20 functional groups consisting of commercial important fish groups and other ecologically important groups in the ecosystem such as zooplankton, phytoplankton, and detritus. Results indicated that biomass and catches of the system have changed drastically between the 1960s and 1990s, especially for the high trophic levels (TL). The biomass of level V in the early 1960s was 32 times higher than that of the late 1990s, however, the biomass of level I and II in the 1990s was higher than the 1960s. Despite the higher catches in the 1990s, fishing was ecologically less expensive during the 1990s than 1960s due to small fish catches were large. Mean transfer efficiency decreased from for 10.2% in the 1960s to 9.1% in the 1990s periods. According to the summary statistics, the parameters of net system production (NPS) and total primary production to total respiration ratio were increased from 1.013 in the 1960s to 2.184 in the 1990s, however, the connectance index (CI), system omnivore index, Finn’s cycling index and mean path length decreased from the 1960s to the 1990s. The overhead (O) was higher in the 1990s model while the ascendancy (A) decreased nearly 10% in the 1960s. The ‘Keystoneness’ result indicate that zooplankton was identified as keystone species in 1960s, however, the elasmobranches was keystone species in the late 1990s. The average trophic level of the fishery decreased from 3.32 in the 1960s to 2.98 in the 1990s, and exhibits classic symptoms of “fishing down the food web”. All the indices of the system attributes suggests that the Beibu Gulf ecosystem in 1960s was found to be more mature than in the 1990s due to the collapse of demersal ecosystem, and the ecosystem changed from being dominated by long-lived, high trophic level groundfish dominated system toward a system with small-size and low-value species over fifty years.  相似文献   

11.
海洋生态系统动力学模型作为定量地认识和分析海洋生态系统现象的有力工具,近年来得到了长足发展。本文首先回顾了海洋生态动力学模型的发展历史,着重介绍了21世纪以来生态系统动力学模型的三大发展趋势:一是进一步探索海洋生态系统复杂性,二是全球气候变化与海洋生态系统的相互作用;三是不再局限于理论研究,而进入于灾害预报与评估、公共决策等应用领域。其次介绍了海洋生态动力学模型的分类及典型海洋生态动力学数值模型COHERENS的特点、功能和最新的应用情况。最后总结归纳了目前海洋生态动力学模型研究领域的几大问题与挑战,展望了该研究领域未来的发展趋势和方向。  相似文献   

12.
The water conditions and trophic status in the shelf-slope zone and bays of the northeastern Black Sea were evaluated on the basis of monitoring data from 2007–2014. It has been shown that the concentrations of nutrients and chlorophyll “a” in the studied area are at the level of the pristine period (of the late 1970s). The concentration of mineral nitrogen in the surface water layer varied from 0.19 to 5.64 μM. The concentration of phosphates differed from analytical zero to 0.56 μM. The concentration of chlorophyll “a” in different seasons ranged from 0.24 to 0.89 μg/L. The trophic index characterizes the status of the marine shelf ecosystem near Gelendzhik city as “excellent” even in the bays. Significant year-to-year differences in the index were not detected. The range between the values of the trophic index in the bays and open sea was low (3.7 and 3.2, respectively).  相似文献   

13.
14.
The trophic efficiency of the planktonic food web in the Phaeocystis-dominated ecosystem of the Belgian coastal waters was inferred from the analysis of the carbon flow network of the planktonic system subdivided into its different trophodynamic groups. A carbon budget was constructed on the basis of process-level field experiments conducted during the spring bloom period of 1998. Biomass and major metabolic activities of auto- and heterotrophic planktonic communities (primary production, bacterial production, nanoproto-, micro- and mesozooplankton feeding activities) were determined in nine field assemblages collected during spring at reference station 330. In 1998, the phytoplankton spring flowering was characterised by a moderate diatom bloom followed by a massive Phaeocystis colony bloom. Phaeocystis colonies, contributing 70% to the net primary production, escaped the linear food chain while the early spring diatom production supplied 74% of the mesozooplankton carbon uptake. The rest of mesozooplankton food requirement was, at the time of the Phaeocystis colony bloom, partially fulfilled by microzooplankton. Only one-third of the microzooplankton production, however, was controlled by mesozooplankton grazing pressure. Ungrazed Phaeocystis colonies were stimulating the establishment of a very active microbial network. On the one hand, the release of free-living cells from ungrazed colonies has been shown to stimulate the growth of microzooplankton, which was controlling 97% of the nanophytoplankton production. On the other hand, the disruption of ungrazed Phaeocystis colonies supplied the water column with large amounts of dissolved organic matter available for planktonic bacteria. The budget calculation suggests that ungrazed colonies contributed up to 60% to the bacterial carbon demand, while alternative sources (exudation, zooplankton egestion and lysis of other organisms) provided some 30% of bacterial carbon requirements. This suggests that the spring carbon demand of planktonic bacteria was satisfied largely by autogenic production. The trophic efficiency was defined as the ratio between mesozooplankton grazing on a given source and food production. In spite of its major contribution to mesozooplankton feeding, the trophic efficiency of the linear food chain, restricted to the grazing on diatoms, represented only 5.6% of the available net primary production. The trophic efficiency of the microbial food chain, the ratio between mesozooplankton grazing on microzooplankton and the resource inflow (the bacterial carbon demand plus the nanophytoplankton production) amounted to only 1.6%. These low trophic efficiencies together with the potential contribution of ungrazed Phaeocystis-derived production to the bacterial carbon demand suggest that during spring 1998 most of the Phaeocystis-derived production in the Belgian coastal area was remineralised in the water column.  相似文献   

15.
Carbon and nitrogen stable isotope ratios (13C and 15N) and trophic level (TL) estimates based on stomach content analysis and published data were used to assess the contribution of autotrophic sources to 55 consumers in an intertidal mangrove creek of the Curuçá estuary, northern Brazil. Primary producers showed δ13C signatures ranging between −29.2 and −19.5‰ and δ15N from 3.0 to 6.3‰. The wide range of the isotopic composition of carbon of consumers (−28.6 to −17.1‰) indicated that different autotrophic sources are important in the intertidal mangrove food webs. Food web segregation structures the ecosystem into three relatively distinct food webs: (i) mangrove food web, where vascular plants contribute directly or indirectly via POM to the most 13C-depleted consumers (e.g. Ucides cordatus and zooplanktivorous food chains); (ii) algal food web, where benthic algae are eaten directly by consumers (e.g. Uca maracoani, mullets, polychaetes, several fishes); (iii) mixed food web where the consumers use the carbon from different primary sources (mainly benthivorous fishes). An IsoError mixing model was used to determine the contributions of primary sources to consumers, based on δ13C values. Model outputs were very sensitive to the magnitude of trophic isotope fractionation and to the variability in 13C data. Nevertheless, the simplification of the system by a priori aggregation of primary producers allowed interpretable results for several taxa, revealing the segregation into different food webs.  相似文献   

16.
Biomass distribution and trophodynamics in the oceanic ecosystem in the Oyashio region are presented and analyzed, combining the seasonal data for plankton and micronekton collected at Site H since 1996 with data for nekton and other animals at higher trophic levels from various sources. The total biomass of biological components including bacteria, phytoplankton, microzooplankton, mesozooplankton, micronekton, fishes/squids and marine birds/mammals was 23 g C m−2, among which the most dominant component was mesozooplankton (34% of the total), followed by phytoplankton (28%), bacteria (15%) and microzooplankton (protozoans) (14%). The remainder (9%) was largely composed of micronekton and fish/squid. Marine mammals/birds are only a small fraction (0.14%) of the total biomass. Large/medium grazing copepods (Neocalaus spp., Eucalanus bungii and Metridia spp.) accounted for 77% of the mesozooplankton biomass. Based on information about diet composition, predators were assigned broadly into mean trophic level 3–4, and carbon flow through the grazing food chain was established based on the estimated annual production/food consumption balance of each trophic level. From the food chain scheme, ecological efficiencies as high as 24% were calculated for the primary/secondary production and 21% for the secondary/tertiary production. Biomass and production of bacteria were estimated as 1/10 of the respective values for phytoplankton at Site H, but the role of the microbial food chain remains unresolved in the present analysis. As keystone species in the oceanic Oyashio region, Neocalanus spp. are suggested as a vital link between primary production and production of pelagic fishes, mammals and birds.  相似文献   

17.
The diet of different macrozoobenthic trophic groups was investigated in the Arcachon Bay—a semi-enclosed macrotidal ecosystem that shelters the largest Zostera noltei seagrass meadow in Europe—in early spring and late summer 2009, using stable isotopes and fatty acids. Fatty acid profiles and literature information about the biology and physiology of benthic consumers were combined to identify the main organic matter sources for the benthic primary consumers. An isotope mixing model was then run to evaluate the contribution of each organic matter source to each identified trophic group (suspension feeders, sub-surface deposit feeders, micro-and macrograzers, suspension-oriented interface feeders and deposit-oriented interface feeders). Variations in organism' diets with respect to both habitats (intertidal seagrass meadows, intertidal bare sediments and subtidal bare sediments) and study periods were also investigated. At the scale of this study, it appeared that the diet of macrozoobenthos primary consumers was based exclusively on autochthonous material (no use of terrestrial organic matter): mainly microphytobenthos, seagrasses and their epiphytes, and phytoplankton. In addition, the different trophic groups relied on different organic matter pools: for instance, suspension feeders mainly fed on microphytobenthos and phytoplankton, whereas subsurface deposit feeders fed on microphytobenthos, decayed seagrasses and bacteria, and grazers mainly fed on microphytobenthos, and seagrasses and their epiphytes. The same pattern was observed in both early spring and late summer, indicating a stability of the benthic system at a six-month time scale. Finally our results showed that, in Arcachon Bay, the seagrass meadow directly or indirectly (through detritus) plays a significant role in the diet of most benthic consumers.  相似文献   

18.
A mass-balance trophic model was built to describe the food-web traits of the North Aegean Sea (Strymonikos Gulf and Thracian Sea, Greece, Eastern Mediterranean) during the mid-2000s and to explore the impacts of fishing. This is the first food-web model representing the Aegean Sea, and results were presented and discussed in comparison to other previous ecosystems modelled from the western and the central areas of the basin (South Catalan and North-Central Adriatic Seas).  相似文献   

19.
Mass-balance models have been constructed using inverse methodology for the northern Gulf of St. Lawrence for the mid-1980s, the mid-1990s, and the early 2000s to describe ecosystem structure, trophic group interactions, and the effects of fishing and predation on the ecosystem for each time period. Our analyses indicate that the ecosystem structure shifted dramatically from one previously dominated by demersal (cod, redfish) and small-bodied forage (e.g., capelin, mackerel, herring, shrimp) species to one now dominated by small-bodied forage species. Overfishing removed a functional group in the late 1980s, large piscivorous fish (primarily cod and redfish), which has not recovered 14 years after the cessation of heavy fishing. This has left only marine mammals as top predators during the mid-1990s, and marine mammals and small Greenland halibut during the early 2000s. Predation by marine mammals on fish increased from the mid-1980s to the early 2000s while predation by large fish on fish decreased. Capelin and shrimp, the main prey in each period, showed an increase in biomass over the three periods. A switch in the main predators of capelin from cod to marine mammals occurred, while Greenland halibut progressively replaced cod as shrimp predators. Overfishing influenced community structure directly through preferential removal of larger-bodied fishes and indirectly through predation release because larger-bodied fishes exerted top-down control upon other community species or competed with other species for the same prey. Our modelling estimates showed that a change in predation structure or flows at the top of the trophic system led to changes in predation at all lower trophic levels in the northern Gulf of St. Lawrence. These changes represent a case of fishery-induced regime shift.  相似文献   

20.
Exergy, as the sum of energy and information contained in a given system due to living organisms, can act as a quality indicator of ecosystems. Here, we investigated the exergy of Marsala Lagoon (Mediterranean Sea), along with microbial (prokaryotic and heterotrophic nanobenthos) biomass, prokaryotic heterotrophic production and extracellular enzymatic activities, and the biochemical composition of sediment organic matter. The aim of the study was to assess the role of auxiliary energy (e.g. hydrodynamic stress) in the ecosystem functioning and efficiency of a ‘detritus sink’ lagoon. Samples were collected at sites characterized by contrasting hydrodynamic and trophic conditions. Exergy transfer through the benthic microbial loop was influenced by two main factors: (1) organic matter bioavailability; and (2) hydrodynamic forcing. At both sites, the values of total exergy were higher in summer than in winter, and the specific exergy decreased from winter to autumn, along with increasing auxiliary energy. Our data indicate that in coastal ‘detritus sink’ systems, auxiliary energy sources can have a crucial role in exergy transfer and ecosystem functioning through modifying the efficiency of transfer to higher trophic levels of the refractory organic detritus, which is otherwise lost by burial in the sediment. As coastal lagoons are often intensively modified by human activities, we conclude that maintenance of the natural hydrodynamic regimes is a key factor in the preservation of the functioning of lagoon ecosystems and of their provision of goods and services to humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号