首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The effect of the 11-year solar cycle on the response of planetary wavenumbers 1 and 2 at 10 and 30 hPa in winter to solar activity oscillations on the time scale of the Sun's rotation (27.2 day) is discussed in terms of statistical spectral analysis. The three oscillations studied are the 27.2 d (period of the Sun's rotation), 25.3 d (periodicity caused by modulation of the 27.2 d stratospheric response by annual atmospheric variation), and 54.4 d (doubled period of the solar rotation). A significant effect of the 11-year solar cycle is found for the 54.4 d periodicity in planetary wavenumber 1, and for the 27.2 and 25.3 d periodicities in planetary wavenumber 2. The effect of the 11-year solar cycle is expressed in the evident differences between the amplitudes of responses of planetary waves at maximum and minimum of the solar cycle: the amplitudes are much larger at high than at low solar activity. The 11-year modulation of planetary wave activity is most pronounced at mid-latitudes, mainly at 40–60°N, where the observed variability of planetary waves is large. The results obtained are in good agreement with results of the recent modeling study by Shindell et al. (Science 284 (1999) 305).  相似文献   

2.
The transport mechanisms responsible for the seasonal behavior of total ozone are deduced from the comparison of model results to stratospheric data. The seasonal transport is dominated by a combination of the diabatic circulation and transient planetary wave activity acting on a diffusively and photochemically determined background state. The seasonal variation is not correctly modeled as a diffusive process. The buildup of total ozone at high latitudes during winter is dependent upon transient planetary wave activity of sufficient strength to cause the breakdown of the polar vortex. While midwinter warmings are responsible for enhanced ozone transport to high latitudes, the final warming marking the transition from zonal mean westerlies to zonal mean easterlies is the most important event leading to the spring maximum. The final warming is not followed by reacceleration of the mean flow; so that the ozone transport associated with this event is more pronounced than that associated with midwinter warmings.  相似文献   

3.
Ozone depression in the polar stratosphere during the energetic solar proton event on 4 August 1972 was observed by the backscattered ultraviolet (BUV) experiment on the Nimbus 4 satellite. Distinct asymmetries in the columnar ozone content, the amount of ozone depressions and their temporal variations above 4 mb level (38 km) were observed between the two hemispheres. The ozone destroying solar particles precipitate rather symmetrically into the two polar atmospheres due to the geomagnetic dipole field These asymmetries can be therefore ascribed to the differences mainly in dynamics and partly in the solar illumination and the vertical temperature structure between the summer and the winter polar atmospheres. The polar stratosphere is less disturbed and warmer in the summer hemisphere than the winter hemisphere since the propagation of planetary wave from the troposphere is inhibited by the wind system in the upper troposphere, and the air is heated by the prolonged solar insolation. Correspondingly, the temporal variations of stratospheric ozone depletion and its recovery appear to be smooth functions of time in the (northern) summer hemisphere and the undisturbed ozone amount is slighily, less than that of its counterpart. On the other hand, the tempotal variation of the upper stratospheric ozone in the winter polar atmosphere (southern hemisphere) indicates large amplitudes and irregularities due to the disturbances produced by upward propagating waves which prevail in the polar winter atmosphere. These characteristic differences between the two polar atmospheres are also evident in the vertical distributions of temperature and wind observed by balloons and rocker soundings.  相似文献   

4.
Coherency spectra derived from time series of stratospheric quantities indicate oscillations in the frequency range below 0.5 d–1 which are correlated on a global scale. Satellite observations of total ozone and stratospheric radiance (BUV and SIRS, Nimbus4, April–November 1970) have been used to derive phase relationships of such oscillations. As an example, an oscillation of total ozone with a period of 7.5 d and zonal wave number zero is analyzed in detail. The basic assumption is made and tested, that the oscillation reflects stratospheric planetary waves as obtained from Laplace's tidal equations. The observed latitudinal phase shifts for the total ozone oscillation are in good agreement with theoretical predictions. It is concluded from the observations of ozone and radiance that mainly divergence effects related to global-scale waves are responsible for the 7.5 d oscillations of total ozone at high and middle latitudes and at the equator whereas in the latitude range 10°S–20°S predominantly temperature effects are important. Meridional wind amplitudes of some 10 cm/s are sufficient to explain the high and mid-latitude ozone oscillations. At low latitudes vertical wind amplitudes of about 0.2 mm/s corresponding to height changes of the ozone layer of roughly ±20 m are obtained.  相似文献   

5.
Ground-based microwave measurements of the diurnal and seasonal variations of ozoneat 42±4.5 and 55±8 km are validated by comparing with results from a zero-dimensional photochemical model and a two-dimensional (2D) chemical/radiative/dynamical model, respectively. O3 diurnal amplitudes measured in Bordeaux are shown to be in agreement with theory to within 5%. For the seasonal analysis of O3 variation, at 42±4.5 km, the 2D model underestimates the yearly averaged ozone concentration compared with the measurements. A double maximum oscillation (\sim3.5%) is measured in Bordeaux with an extended maximum in September and a maximum in February, whilst the 2D model predicts only a single large maximum (17%) in August and a pronounced minimum in January. Evidence suggests that dynamical transport causes the winter O3 maximum by propagation of planetary waves, phenomena which are not explicitly reproduced by the 2D model. At 55±8 km, the modeled yearly averaged O3 concentration is in very good agreement with the measured yearly average. A strong annual oscillation is both measured and modeled with differences in the amplitude shown to be exclusively linked to temperature fields.  相似文献   

6.
The annual cycle of the zonally averaged circulation in the middle atmosphere (16–96 km) is simulated using a numerical model based on the primitive equations in log pressure coordinates. The circulation is driven radiatively by heating due to solar ultraviolet absorption by ozone and infrared cooling due to carbon dioxide and ozone (parameterized as a Newtonian cooling). Since eddy fluxes due to planetary waves are neglected in the model, the computed mean meridional circulation must be interpreted as thediabatic circulation, not as the total eulerian mean. Rayleigh friction with a short (2–4 day) time constant above 70 km is included to simulate the strong mechanical dissipation which is hypothesized to exist in the vicinity of the mesopause due to turbulence associated with gravity waves and tides near the mesopause.Computed mean winds and temperatures are in general agreement with observations for both equinox and solstice conditions. In particular, the strong mechanical damping specified near the mesopause makes it possible to simulate the cold summer and warm winter mesopause temperatures without generating excessive mean zonal winds. In addition, the model exhibits a strong semiannual cycle in the mean zonal wind at the equator, with both amplitude and vertical structure in agreement with the easterly phase of the observed equatorial semiannual oscillation.Contribution No. 497, Department of Atmospheric Sciences, University of Washington, Seattle.  相似文献   

7.
The planetary wave impact on the polar vortex stability, polar stratosphere temperature, and content of ozone and other gases was simulated with the global chemical–climatic model of the lower and middle atmosphere. It was found that the planetary waves propagating from the troposphere into the stratosphere differently affect the gas content of the Arctic and Antarctic stratosphere. In the Arctic region, the degree of wave activity critically affects the polar vortex formation, the appearance of polar stratospheric clouds, the halogen activation on their surface, and ozone anomaly formation. Ozone anomalies in the Arctic region as a rule are not formed at high wave activity and can be registered at low activity. In the Antarctic Regions, wave activity affects the stability of polar vortex and the depth of ozone holes, which are formed at almost any wave activity, and the minimal ozone values depend on the strong or weak wave activity that is registered in specific years.  相似文献   

8.
The spatial and temporal distribution of total ozone over India and its vertical distribution in theatmosphere during 1964–1969 was studied using Dobson spectrophotometer data at a network of six stations in India, Srinagar (34°N), New Delhi (28°N), Varanasi (24°N), Ahmedabad (23°N), Dum Dum (22°N), and Kodaikanal (10°N). The annual and seasonal variations show a clear phase-shift in the occurrence of the ozone maxima and minima as one proceeds from higher to lower latitudes in the tropics. In the northern stations (north of 25°N) the increase in total ozone during the course of the annual variation is caused by the fractional increase in all layers from the ground to 28 km, the main contribution coming from 10–24 km. Above 28 km the concentration changes roughly in accordance with photochemical production.In lower latitudes (south of 25°N) an increase in total ozone amount during the annual cycle is caused by a gradual increase in all the layers from the ground to 36 km above which the variation is negligible.  相似文献   

9.
This paper reports the study data on variations in the ozone content in the middle stratosphere over Moscow based on millimeter wavelength observations during a range of midwinter sudden stratospheric warmings that occurred in the past two decades. The relation of ozone with planetary waves and the intensity of the polar stratospheric vortex has been established. The ozone vertical distribution has been monitored with a highly sensitive spectrometer with a two-millimeter wave band. The discovered phenomena of a relatively long-term lower ozone content in December in the considered cold half-year periods are related to the higher amplitude of the planetary wave with n = 1. Such phenomena preceded the development of strong midwinter stratospheric warmings, which, in turn, were accompanied by a significant increase in the ozone content in January. This ozone enrichment was related to the lower amplitude of the wave with n = 1 and higher amplitude of the wave with n = 2 and was accompanied by geopotential H c.v. growth in the polar vortex center. Specific features of variations in the ozone content under the influence of the major atmospheric processes are observed not only in certain cold half-year periods but are also well seen in the general averaged pattern for winters with strong stratospheric warmings.  相似文献   

10.
Part 2 of the present paper is focused on the planetary wave coupling from the stratosphere to the lower thermosphere (30–120 km) during the Arctic winter of 2003/2004. The planetary waves seen in the TIMED/SABER temperature data in the latitudinal range 50°N–50°S are studied in detail. The altitude and latitude structures of the planetary wave (stationary and travelling) clearly indicate that the stratosphere and mesosphere (30–90 km) are coupled by direct vertical propagation of the planetary waves, while the lower thermosphere (above 90–95 km altitude) is only partly connected with the lower levels probably indirectly through in-situ generation of disturbances by the dissipation and breaking of gravity waves filtered by lower atmospheric planetary waves. A peculiar feature of the thermal regime in the lower thermosphere is that it is dominated by zonally symmetric planetary waves.  相似文献   

11.
Based on total ozone data from the World Ozone Data Center and stratospheric geopotential height data from the Meteorological Institute of Berlin Free University for the months of January through March for the time period of 1958–1996, the influence of the 11-year solar cycle and the equatorial quasi-biennial oscillation (QBO) on total ozone and the stratospheric circulation at 30 hPa over Northern Europe is investigated. The analysis is performed for different levels of solar activity. The relationship of the equatorial QBO with ozone and the stratospheric circulation over the study region exhibits unique features attributed to strong opposite connections between the equatorial zonal wind and ozone/stratospheric dynamics during periods of solar minimum and maximum. Using the Solar/QBO effect, a statistical extraction of the interannual variations of total ozone and stratospheric circulation over Northern Europe has been attempted. The variations extracted and observed for late winter show very good correspondence. The solar/QBO effect in total ozone and stratospheric dynamics over Northern Europe appears to be related to planetary wave activity.  相似文献   

12.
We present time series of January–May mean mesosphere/lower thermosphere (MLT) mean winds and planetary wave (PW) proxies over Europe together with stratospheric stationary planetary waves (SPW) at 50°N and time series of European ozone laminae occurrence. The MLT winds are connected with stratospheric PW and laminae at time scales of several years to decades. There is a tendency for increased wave activity after 1990, together with more ozone laminae and stronger MLT zonal winds. However, possible coupling processes are not straightforward. While mean MLT winds before the 1990s show similar interannual variations than stratospheric PW at 100 hPa, later a tendency towards a connection of the MLT with the middle stratosphere SPW is registered. There is also a tendency for a change in the correlation between lower and middle stratosphere SPW, indicating that coupling processes involving the European middle atmosphere from the lower stratosphere to the mesopause region have changed.  相似文献   

13.
On the basis of calculations using the general circulation model of the middle and upper atmosphere, the relative role of sources of nonmigrating tides distributed in atmosphere has been investigated. It is shown that in winter, when planetary waves in stratosphere are well developed, the main contribution to the generation of nonmigrating tides is caused by nonlinear interaction between migrating tides and a quasi-stationary planetary wave with zonal wave number 1 (SPW1). Taking into account the longitudinal ozone inhomogeneities in the model leads to the occurrence of additional sources of nonmigrating tides caused by longitudinally inhomogeneous heating of the atmosphere, the contribution of which can be comparable to that from nonlinear interaction under an attenuating amplitude of SPW1 in the stratosphere.  相似文献   

14.
临近空间大气扰动变化特性的定量研究   总被引:9,自引:0,他引:9       下载免费PDF全文
本文利用TIMED/SABER 2002年1月至2013年1月共11年的卫星温度探测数据,通过全球网格化及在网格内作数学统计的方法,得到了20~100km高度上全球网格点上温度的平均值和标准差,实现了对临近空间全球大气扰动进行定量刻画的目的.通过定量分析温度标准差的分布特性,文中得到了临近空间大气扰动的全球分布规律,并讨论了与这些分布规律相关的物理过程.结果表明,在20~70km高度上,温度标准差为1~10K,有显著的冬季/夏季的差异,冬季的温度标准差比夏季大;大气重力波扰动是最主要来源,同时大气传播性行星波引起的扰动也是来源之一.在70~100km高度上,温度标准差常年较强,量值为10~30K,冬季/夏季的差异小,低纬地区的温度标准差高于中高纬度地区,呈现许多局地化的小结构.大气重力波是引起该区域大气总扰动量的主要扰动来源,大气潮汐波、传播性行星波(准2天、准6.5天)也有重要贡献.  相似文献   

15.
Regular measurements of the atmospheric ozone in the Brazilian sector were started at Cachoeira Paulista (22.7°S, 45.0°W), and Natal (5.8°S, 35.2°W) in May 1974 and November 1978, respectively. The results of the total ozone measurements carried out at these two stations up to 1981 are presented in this communication and compared with other low-and mid-latitude stations. Although Natal is an equatorial station, it presents a prominent annual variation, and the average total ozone content is high compared to satellite measurements. During 1977–78, abnormally low values of total ozone were observed at Cachoeira Paulista. Some preliminary results about the QBO 9quasi-biennial oscillation) during 1974–81 are also presented.  相似文献   

16.
Planetary wave activity at quasi 16-, 10- and 5-day periods has been compared at various altitudes through the middle and upper atmosphere over Halley (76°S, 27°W), Antarctica, during the austral winters of 1997–1999. Observational data from the mesosphere, E-region ionosphere and F-region ionosphere have been combined with stratospheric data from the ECMWF assimilative operational analysis. Fourier and wavelet techniques have shown that the relationship between planetary wave activity at different altitudes is complex and during the winter eastward wind regime does not conform to a simple combination of vertical planetary wave propagation and critical filtering. Strong planetary wave activity in the stratosphere can coincide with a complete lack of wave activity at higher altitudes; conversely, there are also times when planetary wave activity in the mesosphere, E-region or F-region has no apparent link to activity in the stratosphere. The latitudinal activity pattern of stratospheric data tentatively suggests that when the stratospheric signatures are intense over a wide range of latitudes, propagation of planetary waves into the mesosphere is less likely than when the stratospheric activity is more latitudinally restricted. It is possible that, on at least one occasion, 16-day planetary wave activity in the mesosphere may have been ducted to high latitudes from the lower latitude stratosphere. The most consistent feature is that planetary wave activity in the mesosphere is almost always anti-correlated to planetary wave activity in the E-region even though the two are in close physical proximity. The oscillatory critical filtering of vertical gravity wave propagation by planetary waves and the re-generation of the planetary wave component at higher altitudes through subsequent critical filtering or breaking of the gravity waves may provide an explanation for some of these characteristics. Alternatively the nonlinear interaction between planetary waves and tides, indicated in the E-region data, may play a role.  相似文献   

17.
Summary This paper discusses the need for a global network of meteor wind stations for determining the general circulation of the upper mesosphere and lower thermosphere. Continuous observations of horizontal motions from such a network would permit resolution of planetary scale eddy winds, tides, and gravity waves, and hypotheses that such motions propagate vertically from the lower atmosphere or are generated in situ by solar activity could be examined critically with observational data. The observed mean winds from the lower stratosphere to the meteor wind level are summarized to support the hypothesis that a standing wave pattern in the winds extends into the lower thermosphere. Data on tidal meridional momentum transports from meteor wind stations suggest that tides in the lower thermosphere are important for the maintenance of mean winds. Some of the geomagnetic and photochemical processes in the lower thermosphere that could be investigated with meteor wind data are briefly reviewed.This paper is adapted from our presentation at the 1966 Fall URSI meeting at Palo Alto, California  相似文献   

18.
太阳辐射和地面气象要素的日环食效应   总被引:1,自引:0,他引:1       下载免费PDF全文
本文通过对1987年9月23日日环食期间太阳辐射和地面气象要素等实测资料的分析,指出了在日环食过程中太阳辐射和地面气象要素等的变化,也叙述了日食期间地面臭氧含量的变化;第一次在国内测得了由日食引起的大气重力波,进而讨论了大气重力波的若干特性.  相似文献   

19.
Summary The mean vertical ozone distribution as a function of season is computed from almost 6 years of regular soundings (three times per week) over Switzerland. By comparing the concurrent mean values of the total amount with the 35-year average at Arosa, and by using the correlation between ozone concentration at different levels with the total amount, adjusted values for the seasonal variation of the vertical ozone distribution are obtained which are thought to give a better representation of the long-term climatological mean. The data show a prominent biennial variation of the ozone content around the level of the maximum concentration which does not, however, show up in the total amount because it is missing in the lower stratosphere.  相似文献   

20.
Total ozone anomalies (deviation from the long-term mean) are created by anomalous circulation patterns. The dynamically produced ozone anomalies can be estimated from known circulation parameters in the layer between the tropopause and the middle stratosphere by means of statistics. Satellite observations of ozone anomalies can be compared with those expected from dynamics. Residual negative anomalies may be due to chemical ozone destruction. The statistics are derived from a 14 year data set of TOMS (Total Ozone Mapping Spectrometer January 1979-Dec. 1992) and corresponding 300 hPa geopotential (for the tropopause height) together with 30 hPa temperature (for stratospheric waves) at 60°N. The correlation coefficient for the linear multiple regression between total ozone (dependent variable) and the dynamical parameters (independent variables) is 0.88 for the zonal deviations in the winter of the Northern Hemisphere. Zonal means are also significantly dependent on circulation parameters, besides showing the known negative trend function of total ozone observed by TOMS. The significant linear trend for 60°N is 3 DU/year in the winter months taking into account the dependence on the dynamics between the tropopause region and the mid-stratosphere. The highest correlation coefficient for the monthly mean total ozone anomalies is reached in November with 0.94.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号