共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of Volcanology and Geothermal Research》1988,35(3):195-204
Optimization and location capability methods have been applied to the design of a seismic monitoring network composed of five stations to be installed around Teide-Pico Viejo stratovolcano in Tenerife, Canary Islands.In terms of location errors coming from the relative spatial distribution of seismic stations and hypocenters, the optimum network provides an improvement in epicentral location capability of 60% compared with a preliminary choice of five stations, while its improvement in focal depth determination is between 30% and 60%, depending on the average focal depth of seismic activity. Network enlargement to six stations, adding station CTFE from the Spanish National Geographic Institute (IGN), gives an improvement of 20% with respect to the optimum configuration.The interest and importance of previous planning on optimum distribution of seismic stations have become evident, as well as the need to enlarge the network in the near future, to attain more accurate focal depths. 相似文献
2.
Arantza Ugalde 《Journal of Seismology》2013,17(2):771-782
This study analyzes the S-wave envelope broadening characteristics of 290 earthquakes recorded by 14 stations of the Spanish National Seismograph Network in the Canary Islands region. The S-wave peak delay time (t p ) and envelope duration (t q ) parameters are evaluated phenomenologically to infer the strength of velocity inhomogeneities of the medium along each seismic ray path. Crustal (0?≤?h?≤?18 km) and upper mantle (18?<?h?≤?80 km) events are analyzed separately. Results in the frequency range 1 to 12 Hz for hypocentral distances from 30 to 600 km show that both t p and t q increase according to a power of hypocentral distance and they are independent of frequency. The spatial distribution of the peak delay time reveals weak strength of heterogeneity in most of the region at shallow depths. Relatively strong inhomogeneous zones are generated under the island of Tenerife and Gran Canaria at depths of 11–22 km. 相似文献
3.
《Journal of Volcanology and Geothermal Research》2006,149(3-4):213-239
New geochemical and isotopic data are presented from the oldest part of the Cumbre Vieja volcano, La Palma (Canary Islands), located near the assumed emergence of the Canary mantle plume. The volcanics comprise a suite dominated by basanite flows with subordinate amounts of phono-tephrite, tephri-phonolite and phonolite flows and intrusives. Two compositionally different basanite groups have been identified, both with HIMU (high-μ)-type incompatible trace element characteristics: Primitive high-MgO basanites (10.7–12.1% MgO), found only at the base of a stratigraphic profile near Fuencaliente on the south coast, and intermediate-MgO basanites (6.0–7.3% MgO), exposed in the upper part of the profile and widespread on the east coast of La Palma. The high-MgO basanites are interpreted as near-primary mantle melts (primary composition 14–15% MgO) derived by progressive melting (2.9% to 4.5%) of a common lithospheric mantle source. Model calculations indicate that it is not possible to generate the intermediate-MgO basanites from the high-MgO group by crystal fractionation of observed phenocrysts. Relative to intermediate-MgO basanites, the high-MgO flows have lower concentrations of LIL and HFS elements, except for Ti, which is markedly enriched in the primitive rocks (3.7–4.7% TiO2 vs 3.4–3.9% TiO2). Fuencaliente volcanics display limited temporal isotopic variations suggested to be a result of mixing of melts originating from the rising plume and the metazomatized lithospheric mantle. 87Sr / 86Sr and 143Nd / 144Nd ratios range 0.70305–0.70311 and 0.51285–0.51291, respectively, while the corresponding ranges in Pb-isotope ratios are 206Pb / 204Pb = 19.46–19.64, 207Pb / 204Pb = 15.55–15.61, and 208Pb / 204Pb = 39.16–39.53. The overall variation of the Cumbre Vieja isotopic data can be accounted for by mixtures of three mantle components in the proportions 72–79% plume source (LVC = low velocity component), 9–16% depleted mantle (DM) and up to 12% enriched mantle (EMI). Negative Δ7 / 4 Pb (− 0.6 to − 5.4) in the Cumbre Vieja volcanics suggest derivation from a young HIMU mantle source. The relative abundance of plume source material increase in younger rocks in the Fuencaliente section, suggesting waning plume–lithosphere interaction during the emplacement of this part of the Cumbre Vieja volcano. The high-MgO volcanics define regular and systematic geochemical trends, interpreted as partial melting trends, when plotted against abundances of highly incompatible elements (P, Ce). Evaluation of minor and trace element variation in consecutive melts suggests control by residual amphibole, phlogopite, garnet and a Ti-bearing phase, possibly ilmenite. The melting mode changed gradually, allowing increasing input from residual phlogopite during partial melting. The residual mineralogy constrains the source region of the high-MgO basanites to the lowermost oceanic lithospheric mantle, presumably around 100 km depths. 相似文献
4.
V. Soler J. A. Castro-Almazán R. T. Viñas A. Eff-Darwich S. Sánchez-Moral C. Hillaire-Marcel I. Farrujia J. Coello J. de la Nuez M. C. Martín M. L. Quesada E. Santana 《Pure and Applied Geophysics》2004,161(7):1519-1532
Emissions of CO2 have been known for more than a hundred years as fumarolic activity at the terminal crater of El Teide volcano and as diffuse emissions at numerous water prospection drillings in the volcanic island of Tenerife. Large concentrations of CO2 (>10% in volume) have been found inside galleries, long horizontal tunnels excavated for water mining. However, CO2 concentrations of only 2900 ppm have been observed at the surface of the central region of the island (Las Cañadas del Teide caldera). In this work we analysed CO2 concentrations in the subsurface of Las Cañadas caldera, in an attempt to study the vertical distribution of carbon dioxide and, in particular, the low emissions at the surface. This has been done through a series of 17 vertical profiles in two deep boreholes excavated in the Caldera. We found high levels of CO2, varying in time from 13 vol% up to 40 vol% in different profiles directly above the water table, while no significant concentrations were detected above the thermal inversion that takes places in both boreholes at approximately 100 m from the water table. Water analyses also showed high dissolved CO2 levels in equilibrium with the air, and an average 13C value in DIC of +4.7 (PDB), apparently induced by fast CO2 degassing in the bicarbonated water. 相似文献
5.
《Earth and Planetary Science Letters》1966,1(4):225-231
A palaemagnetic survey, comprising collections mostly from the oldest outcrops on five of The Canary Islands, has revealed stratigraphically valuable normal and reversed polarity lavas except on the westernmost island of Hierro, where only normal polarities were encountered. The palaeomagnetic data suggest that the Hierro samples are younger than those collected from the islands, and that the Lanzarote outcrops are the oldest sampled. 相似文献
6.
We use time-dependent horizontal-to-vertical spectral ratios (HVSR) of microtremors to determine the dominant frequencies of vibration of the geological structures beneath several recording sites in the vicinity of Teide volcano (Canary Islands, Spain). In the microtremors, the time-dependent HVSRs (ratiograms) are a useful tool to discriminate between the presence of real dominant frequencies linked to resonances of the subsurface structure and the spurious appearance of peaks due to local transients. We verified that the results are repeatable, in the sense that microtremors recorded at the same site but at different times yield a very similar HVSR function. Two types of results are found: (1) sites where there is no resonance of the propagating microtremors, and therefore no value of a dominant frequency can be assessed; and (2) sites where a stationary peak in the HVSR is found and a dominant frequency related to resonance of the shallow structure can be estimated. These resonant frequencies show substantial spatial variations even for nearby sites, which reflects the complexity of the shallow velocity structure in the Las Cañadas area. Large dominant frequencies occur near the caldera walls and also at a few locations that coincide with the intersections of the inferred rims of the three calderas forming Las Cañadas. Small dominant frequencies also occur near the caldera rim, and may be due to discontinuities in the caldera wall and/or to local velocity anomalies. Intermediate frequencies are mostly found in the eastern part of the caldera, where a tentative profile of the basement depth has been obtained. Intermediate frequencies have also been measured south of Ucanca and south of Montaña Blanca. In view of the present results, we conclude that the use of ratiograms constitutes an improvement of the HVSR method and provides an appropriate tool to investigate the shallow velocity structure of a volcanic region. 相似文献
7.
This paper deals with the mineralogical, textural and chemical features of the dunite, peridotite, pyroxenite and gabbroic inclusions present in the Quaternary basalts of the Canary Islands. The mineralogical composition, structure and texture of the inclusions show that most of them have been formed as crystal cumulates from a nonalkaline basaltic magma in the earlier stages of its fractional crystallization. There are no co-genetic relationships between the inclusions and the host basalts, since the latter have a very strong alkaline-olivine character, although there are also some types with tholciitic aflinities. The study of the data leads to the conclusion that these inclusions can be considered as xenoliths from the basic and ultrabasic complexes that form the substratum and which outcrop in some of the Canary Islands. Attention is called to the fact that in many other volcanic zones of the world there has been a previous emplacement of basic and ultramafic layered complexes and is the question opened whether the association between stratiform-complexes and active basaltic volcanism is more frequent than has been assumed up to now. 相似文献
8.
Gravity tide records from El Hierro, Tenerife and Lanzarote Islands (Canarian Archipelago) have been analyzed and compared to the theoretical body tide model (DDW) of Dehant el al. (1999). The use of more stringent criterion of tidal analysis using VAV program allowed us to reduce the error bars by a factor of two of the gravimetric factors at Tenerife and Lanzarote compared with previous published values. Also, the calibration values have been revisited at those sites. Precise ocean tide loading (OTL) corrections based on up-to-date global ocean models and improved regional ocean model have been obtained for the main tidal harmonics O1, K1, M2, S2. We also point out the importance of using the most accurate coastline definition for OTL calculations in the Canaries. The remaining observational errors depend on the accuracy of the calibration of the gravimeters and/or on the length of the observed data series. Finally, the comparison of the tidal observations with the theoretical body tide models has been done with an accuracy level of 0.1% at El Hierro, 0.4% at Tenerife and 0.5% at Lanzarote. 相似文献
9.
A. Cendrero 《Bulletin of Volcanology》1970,34(2):537-561
Two distinct major units are present in La Gomera island: the basal complex and the later volcanic formations. The basal complex is formed by basic and ultramafic layered plutonic rocks that show a zonal arrangement, and submarine sedimentary and volcanic rocks overlying them. The ensemble is cut by an extremely dense dyke swarm, amounting to 80% of the rock in volume. There is an important « stratigraphic » hiatus between the basal complex and the later volcanic formations. These are constituted of trachyticphonolitic and basaltic series separated by unconformities. A process of alkalinization of the host rocks produced by the intrusion of syenitic rocks is described. The consolidation of the plutonic rocks could have happened in a reservoir beneath a volcano or else at deep levels of the crust or in the upper mantle. In either case, after consolidation, they were uplifted and croded and then submarine materials covered them. New uplift accompanied by the intrusion of the dyke swarm took place later. This dyke swarm is thought to represent the roots of an important and now destroyed volcanic field. It is postulated that the repeated intrusion of magmas in the area was possible due to the development of a zone of weakness within a field of tensional stresses that could be related to the formation of the atlantic rift. The trachytic-phonolitic formation situated imediately over the main unconformity represents the roots of an croded volcanic field formed by the accumulation of cumulo domes and related materials. 相似文献
10.
Non-welded, lithic-rich ignimbrites, hereintermed the Roque Nublo ignimbrites, are the most distinctive deposits of the Pliocene
Roque Nublo group, which forms the products of second magmatic cycle on Gran Canaria. They are very heterogeneous, with 35–55%
volume lithic fragments, 15-30% mildly vesiculated pumice, 5–7% crystals and 20–30% ash matrix. The vitric components (pumice
fragments and ash matrix) are largely altered and transformed into zeolites and subordinate smectites. The Roque Nublo ignimbrites
originated from hydrovolcanic eruptions that caused rapid and significant erosion of vents thus incorporating a high proportion
of lithic clasts into the eruption columns. These columns rapidly became too dense to be sustained as vertical eruption columns
and were transformed into tephra fountains which fed high-density pyroclastic flows. The deposits from these flows were mainly
confined to palaeovalleys and topographic depressions. In distal areas close to the coast line, where these palaeovalleys
widened, most of the pyroclastic flows expanded laterally and formed numerous thin flow units. The combined effect of the
magma–water interaction and the high content of lithic fragments is sufficient to explain the characteristic low emplacement
temperature of the Roque Nublo ignimbrites. This fact also explains the transition from pyroclastic flows into lahar deposits
observed in distal facies of the Roque Nublo ignimbrites. The existence of hydrovolcanic eruptions generating high-density
pyroclastic flows, unable to efficiently separate the water vapour from the vitric components during transport, also accounts
for the intense zeolitic alteration in these deposits.
Received: 5 November 1996 / Accepted: 3 March 1997 相似文献
11.
O. Sigmarsson M. Condomines E. Ibarrola 《Journal of Volcanology and Geothermal Research》1992,54(1-2)
Lava samples from 10 historic or recent eruptions on La Palma, Tenerife and Lanzarote (Canary Islands) have been analyzed for U and Th contents, and Th, Sr and O isotopes. The sample suite ranges from mantle-derived tholeiites and basanites to evolved phonolites. A phonolite from La Palma has identical Th isotope ratio as basanite from the same 1949 eruption, and was most probably formed by crystal fractionation of a basanitic magma. In contrast, the Th isotope ratios in the Teide phonolites (Tenerife) slightly decrease with differentiation. These latter were produced either by crystal fractionation in magma pockets isolated for about 35,000 y, or by an assimilation-fractional crystallization (AFC) process involving old syenites as contaminants.The Sr and O isotope ratios show very small variations from 0.7030 to 0.7032 and 5.2 to 5.9‰, respectively, in the analyzed samples (except in the most evolved phonolite from Tenerife), but Th isotope ratios are significantly different between the three islands. The
ratios vary from 1.1 in La Palma, to 0.94-1.01 in Lanzarote and to 0.9 or lower in Tenerife. A possible interpretation of this variation is mixing of melts derived from an undepleted mantle source, similar in composition to the Tristan da Cunha mantle plume, with melts of the suboceanic lithosphere. The proportion of the plume-derived magmas would be higher below the center of the archipelago. A variably metasomatized mantle source beneath each island is an alternative explanation. The few available
ratios are correlated with
ratios and are compatible with both these models. They indicate the existence of a mantle source (or a metasomatic component) with a high Th/U and
ratios below the Canary Islands. 相似文献
12.
J.F. Albert-Beltrn V. Araa J.L. Diez A. Valentin 《Journal of Volcanology and Geothermal Research》1990,43(1-4)
The Teide volcano (3717 m) is the central structure of the island of Tenerife and at present its morphology is that of a stratovolcano which has grown on a large caldera with a collapse 17 km in diameter, which was generated some 0.6 million years ago.The different studies that have been carried out seem to indicate that, in a oversimplified model, there is an intermediate magma chamber with an approximate volume of 30 km3 and located 2–3 km below the actual base of the caldera, i.e., almost at sea level, with a temperature of 430 ± 50°C, and a pressure of 400 ± 100 bar.The summit fumarole emissions are 85°C and are formed mainly of CO2 with small amounts of sulphur species, H2, CH4 and He. The water vapor (68–82%) emitted with the gases comes from the vaporization of a perched aquifer in the upper cone, as shown by the isotopic analyses. 相似文献
13.
Summary A mathematical model has been derived to study the superficial thermal anomalies to be found in Lanzarote (605°C at 13 m depth) in association with the convection of geothermal fluids. The model is valid for a wide range of conditions, in particular for those found beneath the Timanfaya volcano (active between 1730 and 1736). Geological and geophysical data suggest that the heat source is related to a cylindrical magma body with a radius of 200±100 m and a top temperature of 850±100°C at a depth of 4±1 km.Energy is transported through fractures by magmatic volatiles and/or by water vapour coming from a deeply located water table: in such a convection system, a fluid flow of 10 l/m2 day, which corresponds to a thermal flux of 130 W/m2, is sufficient to explain the temperature anomalies observed at the surface. The relationships between gas flow and the surface temperatures, as well as the thermal gradients in the conducting fracture are also discussed. 相似文献
14.
Setsuya Nakada Hiroshi Shimizu Kazuya Ohta 《Journal of Volcanology and Geothermal Research》1999,89(1-4)
Following 198 years of dormancy, a small phreatic eruption started at the summit of Unzen Volcano (Mt. Fugen) in November 1990. A swarm of volcano-tectonic (VT) earthquakes had begun below the western flank of the volcano a year before this eruption, and isolated tremor occurred below the summit shortly before it. The focus of VT events had migrated eastward to the summit and became shallower. Following a period of phreatic activity, phreatomagmatic eruptions began in February 1991, became larger with time, and developed into a dacite dome eruption in May 1991 that lasted approximately 4 years. The emergence of the dome followed inflation, demagnetization and a swarm of high-frequency (HF) earthquakes in the crater area. After the dome appeared, activity of the VT earthquakes and the summit HF events was replaced largely by low-frequency (LF) earthquakes. Magma was discharged nearly continuously through the period of dome growth, and the rate decreased roughly with time. The lava dome grew in an unstable form on the shoulder of Mt. Fugen, with repeating partial collapses. The growth was exogenous when the lava effusion rate was high, and endogenous when low. A total of 13 lobes grew as a result of exogenous growth. Vigorous swarms of LF earthquakes occurred just prior to each lobe extrusion. Endogenous growth was accompanied by strong deformation of the crater floor and HF and LF earthquakes. By repeated exogenous and endogenous growth, a large dome was formed over the crater. Pyroclastic flows frequently descended to the northeast, east, and southeast, and their deposits extensively covered the eastern slope and flank of Mt. Fugen. Major pyroclastic flows took place when the lava effusion rate was high. Small vulcanian explosions were limited in the initial stage of dome growth. One of them occurred following collapse of the dome. The total volume of magma erupted was 2.1×108 m3 (dense-rock-equivalent); about a half of this volume remained as a lava dome at the summit (1.2 km long, 0.8 km wide and 230–540 m high). The eruption finished with extrusion of a spine at the endogenous dome top. Several monitoring results convinced us that the eruption had come to an end: the minimal levels of both seismicity and rockfalls, no discharge of magma, the minimal SO2 flux, and cessation of subsidence of the western flank of the volcano. The dome started slow deformation and cooling after the halt of magma effusion in February 1995. 相似文献
15.
16.
Amos Ecker 《Journal of Hydrology》1976,28(1):73-86
Tenerife is the largest of the seven Canary Islands, encompassing an area of 2,058 km2. It is situated in the Atlantic Ocean between 16–17°W longitude and 28–29°N latitude. The topography of the island is characterized by generally steep slopes. The Teide Volcano has an elevation of 3,718 m. Precipitation is caused mainly by invasions of maritime polar air. Maximum mean precipitation recorded for 25-year period (1940–1965) is 1,000 mm.The fractured volcanic aquifer of the Old Basaltic Series is the main supplier of groundwater in Tenerife. Smaller quantities of groundwater are supplied by the Cañadas Series and minor amounts by alluvial sediments. Groundwater compartments develop in areas of dikes and contacts between permeable and impermeable zones. These compartments are irregular in volume, shape, and structure. The groundwater system forms a tortuous chain of compartments. Water circulates from one groundwater compartment to another through secondary fractures and other permeable elements which branch and intersect. Fractures which extend to the surface play an important role in recharge.The hydrologic system at Tenerife is characterized by three zones: the upper vadose, the lower vadose, and the saturated zone. In both the upper and lower vadose zones the dominant direction of flow is vertical, while in the saturated zone flow is generally oblique toward the sea. 相似文献
17.
《Journal of Volcanology and Geothermal Research》2001,105(4):323-342
Relaxation geospeedometry has been applied to two series of clastogenic obsidian flows on Tenerife to determine their thermal history across the glass transition. The phonolite flows investigated were both generated by lava fountaining activity followed by rheomorphism of the deposits. The detailed sampling resolution within the two series enabled an accurate quantification of their thermal history. Cooling rates within the investigated spatter-fed flows vary over more than two orders of magnitude. The highest cooling rates of 0.39 K/min were modeled for the central vesiculated part of one flow. The dense basal obsidian layers of both flows were cooled at substantially lower rates of 0.0042 and 0.0028 K/min, respectively. There appears to be an influence of in-situ vesiculation processes on the thermal budget of the investigated flows. In addition, the slow cooling rates for the basal portions of both flows seem to be associated with a stage of thermal buffering. Continual advective heat transport of hot material along a basal shear plane may sustain elevated temperatures associated with (quasi-) isothermal annealing within this “décollement”. Numerical simulations based on conductive heat loss concepts fail to resolve the cooling history quantified through relaxation geospeedometry for the investigated flows. The effects of vesiculation and thermal annealing on the cooling behavior of the clastogenic flows across the glass transition are discussed in the light of these new data. In addition, viscometric data on these phonolites are used to correlate the known cooling rates to viscosities at the glass transition. 相似文献
18.
The question as to whether there is a seasonality in the occurrence of local seismic activity in the volcanic island of Tenerife, and if it could be associated to intense rainfall events is addressed. Analogue records from the TFMB seismic station and records on the daily precipitation at the Izaña Meteorological Observatory for the period December 1987–October 1992 were used to check this question. Statistical analyses show a non-random component in the temporal distribution of local microearthquakes at greater than 99% confidence, and a relatively strong contemporaneous correlation with intense rainfall periods. If the suggested correlation is confirmed by further investigations, it will allow better identification and discrimination of local seismic events that could be associated with volcanic activity, and thereby increase the performance of surveillance measures. 相似文献
19.
Ramón Casillas Carlos Fernández Juan Ramón Colmenero Julio de la Nuez Encarnación García-Navarro M. Candelaria Martín 《Bulletin of Volcanology》2010,72(8):945-960
Deformation structures below the basal plane of gravitational slides can provide useful information about the state of stress undergone by rocks prior to the sliding process and about the triggering forces acting at each particular sliding event. In the present work we conducted a structural analysis of the rocks below the surface of the gravitational slide of Tazo (La Gomera, Canary Islands) and determined the epigenetic processes involved in the filling of the amphitheatre. We also inferred the possible triggering phenomena related to the Tazo landslide. The rocks located below the surface of the gravitational slide of Tazo -i.e., the basaltic lava flows, sills and dikes of the Lower Old Edifice and the submarine volcanic rocks, gabbros, pyroxenites and dikes of the Basal Complex of La Gomera- are strongly deformed close to this sliding surface. The lava flows and dikes of the Lower Old Edifice are folded, with fault breccias and gouges, and locally foliated, defining the sliding surface. The dikes of the Basal Complex are also folded, and the gabbros and pyroxenites are affected by a large number of small faults. In the Basal Complex, the sliding surface is defined by a foliated granular gouge. In the damage zone, the Basal Complex rocks show an incipient fracture cleavage. The sliding amphitheatre has been filled by the debris avalanche or cohesive debris flow generated within the slide, as well as by later debris flows, hyperconcentrated flows, sheet flows, and by interspersed lava flows from the Upper Old Edifice. We suggest here that the collapse of the north-western flank of the Lower Old Edifice at Tazo could in part have been triggered by continuous magma injection, associated with the emplacement of dikes in a rift zone with an ENE-WSW direction, enhanced by the mechanical weakness of the Basal Complex unit, which was affected by hydrothermal metamorphism under greenschist facies conditions and by the displacement along the Montaña de Alcalá and Guillama normal faults, which are deeply entrenched in the altered rocks of the Basal Complex. 相似文献
20.
Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K-Ar data 总被引:2,自引:0,他引:2
Eumenio Ancochea JosMaría Fuster Elisa Ibarrola Antonio Cendrero Juan Coello Francisco Hernan Jean M. Cantagrel Colette Jamond 《Journal of Volcanology and Geothermal Research》1990,44(3-4)
New age determinations from Tenerife, together with those previously published (93 in all), provide a fairly comprehensive picture of the volcanic evolution of the island. The oldest volcanic series, with ages starting in the late Miocene, are formed mainly by basalts with some trachytes and phonolites which appear in Anaga, Teno and Roque del Conde massifs. In Anaga (NE), three volcanic cycles occurred: one older than 6.5 Ma, a second one between 6.5 and 4.5 Ma, with a possible gap between 5.4 and 4.8 Ma, and a late cycle around 3.6 Ma. In Teno (NW), after some undated units, the activity took place between 6.7 and 4.5 Ma, with two main series separated by a possible pause between 6.2 and 5.6 Ma. In the zone of Roque del Conde (S), the ages are scattered between 11.6 and 3.5 Ma. Between 3.3 and 1.9 Ma, the whole island underwent a period of volcanic quiescence and erosion.The large Cañadas volcano, made up of basalts, trachytes and phonolites, was built essentially between 1.9 and 0.2 Ma. To the NE of this central volcano, linking it with Anaga, is a chain of basaltic emission centers, with a peak of activity around 0.8 Ma. The Cañadas Caldera had several collapse phases, associated with large ignimbrite emissions. There were, at least, an older phase more than 1 Ma old, on the western part of the volcano, and a younger one, less than 0.6 Ma old, in the eastern side. The two large “valleys” of Guimar and la Orotava were formed by large landslides less than 0.8 Ma ago, and probably before 0.6 Ma ago. The present Cañadas caldera was formed by another landslide, less than 0.2 Ma ago. This caldera was later filled by the huge Teide volcano, which has been active even in historic times. During the same period a series of small volcanoes erupted at scattered locations throughout the island.The average eruptive rate in Tenerife was 0.3 km3/ka, with relatively small variations for the different eruptive periods. This island and La Gomera represent a model of growth by discontinuous pulses of volcanic activity, separated by gaps often coinciding with episodes of destruction of the edifices and sometimes extended for several million years. The neighbouring Gran Canaria, on the other hand, had an initial, rapid “shield-building phase” during which more than 90% of the island was built, and a series of smaller pulses at a much later period.A comparison between these three central islands indicates that the previously postulated westward displacement in time of a gap in the volcanic activity is valid only as a first approximation. Several gaps are present on each island, overlapping in time and not clearly supporting either of the models proposed to explain the evolution of the Canaries. 相似文献