共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Regional source tsunamis pose a potentially devastating hazard to communities and infrastructure on the New Zealand coast. But major events are very uncommon. This dichotomy of infrequent but potentially devastating hazards makes realistic assessment of the risk challenging. Here, we describe a method to determine a probabilistic assessment of the tsunami hazard by regional source tsunamis with an “Average Recurrence Interval” of 2,500-years. The method is applied to the east Auckland region of New Zealand. From an assessment of potential regional tsunamigenic events over 100,000 years, the inundation of the Auckland region from the worst 100 events is modelled using a hydrodynamic model and probabilistic inundation depths on a 2,500-year time scale were determined. Tidal effects on the potential inundation were included by coupling the predicted wave heights with the probability density function of tidal heights at the inundation site. Results show that the more exposed northern section of the east coast and outer islands in the Hauraki Gulf face the greatest hazard from regional tsunamis in the Auckland region. Incorporating tidal effects into predictions of inundation reduced the predicted hazard compared to modelling all the tsunamis arriving at high tide giving a more accurate hazard assessment on the specified time scale. This study presents the first probabilistic analysis of dynamic modelling of tsunami inundation for the New Zealand coast and as such provides the most comprehensive assessment of tsunami inundation of the Auckland region from regional source tsunamis available to date. 相似文献
4.
Isaac V. Fine Evgueni A. Kulikov Josef Y. Cherniawsky 《Pure and Applied Geophysics》2013,170(6-8):1295-1307
We use a numerical tsunami model to describe wave energy decay and transformation in the Pacific Ocean during the 2011 Tohoku tsunami. The numerical model was initialised with the results from a seismological finite fault model and validated using deep-ocean bottom pressure records from DARTs, from the NEPTUNE-Canada cabled observatory, as well as data from four satellite altimetry passes. We used statistical analysis of the available observations collected during the Japan 2011 tsunami and of the corresponding numerical model to demonstrate that the temporal evolution of tsunami wave energy in the Pacific Ocean leads to the wave energy equipartition law. Similar equipartition laws are well known for wave multi-scattering processes in seismology, electromagnetism and acoustics. We also show that the long-term near-equilibrium state is governed by this law: after the passage of the tsunami front, the tsunami wave energy density tends to be inversely proportional to the water depth. This fact leads to a definition of tsunami wave intensity that is simply energy density times the depth. This wave intensity fills the Pacific Ocean basin uniformly, except for the areas of energy sinks in the Southern Ocean and Bering Sea. 相似文献
5.
William Power Xiaoming Wang Emily Lane Philip Gillibrand 《Pure and Applied Geophysics》2013,170(9-10):1621-1634
Regional source tsunamis represent a potentially devastating threat to coastal communities in New Zealand, yet are infrequent events for which little historical information is available. It is therefore essential to develop robust methods for quantitatively estimating the hazards posed, so that effective mitigation measures can be implemented. We develop a probabilistic model for the tsunami hazard posed to the Auckland region of New Zealand from the Kermadec Trench and the southern New Hebrides Trench subduction zones. An innovative feature of our model is the systematic analysis of uncertainty regarding the magnitude-frequency distribution of earthquakes in the source regions. The methodology is first used to estimate the tsunami hazard at the coastline, and then used to produce a set of scenarios that can be applied to produce probabilistic maps of tsunami inundation for the study region; the production of these maps is described in part II. We find that the 2,500 year return period regional source tsunami hazard for the densely populated east coast of Auckland is dominated by events originating in the Kermadec Trench, while the equivalent hazard to the sparsely populated west coast is approximately equally due to events on the Kermadec Trench and the southern New Hebrides Trench. 相似文献
6.
7.
8.
Centroid moment tensor solutions for the 2011 Tohoku earthquake are determined by W phase inversions using 5 and 10 min data recorded by the Full Range Seismograph Network of Japan (F-net). By a scaling relation of moment magnitude to rupture area and an assumption of rigidity of 4 × 1010 N m?2, simple rectangular earthquake fault models are estimated from the solutions. Tsunami inundations in the Sendai Plain, Minamisanriku, Rikuzentakata, and Taro are simulated using the estimated fault models. Then the simulated tsunami inundation area and heights are compared with the observations. Even the simulated tsunami heights and inundations from the W phase solution that used only 5 min data are considerably similar to the observations. The results are improved when using 10 min of W phase data. These show that the W phase solutions are reliable to be used for tsunami inundation modeling. Furthermore, the technique that combines W phase inversion and tsunami inundation modeling can produce results that have sufficient accuracy for tsunami early warning purposes. 相似文献
9.
Yong Wei Christopher Chamberlin Vasily V. Titov Liujuan Tang Eddie N. Bernard 《Pure and Applied Geophysics》2013,170(6-8):1309-1331
During the devastating 11 March 2011 Japanese tsunami, data from two tsunami detectors were used to determine the tsunami source within 1.5 h of earthquake origin time. For the first time, multiple near-field tsunami measurements of the 2011 Japanese tsunami were used to demonstrate the accuracy of the National Oceanic and Atmospheric Administration (NOAA) real-time flooding forecast system in the far field. To test the accuracy of the same forecast system in the near field, a total of 11 numerical models with grids telescoped to 2 arcsec (~60 m) were developed to hindcast the propagation and coastal inundation of the 2011 Japanese tsunami along the entire east coastline of Japan. Using the NOAA tsunami source computed in near real-time, the model results of tsunami propagation are validated with tsunami time series measured at different water depths offshore and near shore along Japan’s coastline. The computed tsunami runup height and spatial distribution are highly consistent with post-tsunami survey data collected along the Japanese coastline. The computed inundation penetration also agrees well with survey data, giving a modeling accuracy of 85.5 % for the inundation areas along 800 km of coastline between Ibaraki Prefecture (north of Kashima) and Aomori Prefecture (south of Rokkasho). The inundation model results highlighted the variability of tsunami impact in response to different offshore bathymetry and flooded terrain. Comparison of tsunami sources inferred from different indirect methods shows the crucial importance of deep-ocean tsunami measurements for real-time tsunami forecasts. The agreement between model results and observations along Japan’s coastline demonstrate the ability and potential of NOAA’s methodology for real-time near-field tsunami flooding forecasts. An accurate tsunami flooding forecast within 30 min may now be possible using the NOAA forecast methodology with carefully placed tsunameters and large-scale high-resolution inundation models with powerful computing capabilities. 相似文献
10.
M. Ioualalen P. Arreaga-Vargas N. Pophet M. Chlieh K. Ilayaraja J. Ordoñez W. Renteria N. Pazmiño 《Pure and Applied Geophysics》2010,167(10):1205-1214
A numerical simulation of the 26th December, 2004 Indian Ocean tsunami of the Tamil Nadu coastal zone is presented. The simulation approach is based on a fully nonlinear Boussinesq tsunami propagation model and included an accurate computational domain and a robust coseismic source. The simulation is first confronted to available tide gauge and runup observations. The agreement between observations and the predicted wave heights allowed a reasonable validation of the simulation. As a result, a full picture of the tsunami impact is provided over the entire coastal zone Tamil Nadu. The processes responsible for coastal vulnerability are discussed. 相似文献
11.
南海东南边缘的马尼拉海沟是国际上公认具有发生破坏性地震海啸条件的危险地区,由于南海没有大面积的岛屿阻隔海啸传播,如果在马尼拉海沟发生大地震引发海啸,那么将对广东省漫长的海岸线造成严重破坏。广东省南海地震海啸监测预警系统建设在广东省地震速报系统和国家地震自动速报备份系统的基础上,由地震速报、震源机制快速计算、海啸数值模拟计算等模块组成,对南海地震海啸进行实时监测,提供海啸波浪到达海岸线的估计时刻和最大海浪高度,提供预警信息等社会公共服务。 相似文献
12.
Patrick J. Lynett Jose C. Borrero Philip L.-F. Liu Costas E. Synolakis 《Pure and Applied Geophysics》2003,160(10-11):2119-2146
— The Papua New Guinea (PNG) tsunami of 1998 is re-examined through a detailed review of the field survey as well as numerous numerical computations. The discussion of the field survey explores a number of possible misinterpretations of the recorded data. The survey data are then employed by a numerical model as a validation tool. A Boussinesq model and a nonlinear shallow water wave (NLSW) model are compared in order to quantify the effect of frequency dispersion on the landslide-generated tsunami. The numerical comparisons indicate that the NLSW model is a poor estimator of offshore wave heights. However, due to what appears to be depth-limited breaking seaward of Sissano spit, both numerical models are in agreement in the prediction of maximum water elevations at the overtopped spit. By comparing three different hot-start initial profiles of the tsunami wave, it is shown that the initial shape and orientation of the tsunami wave is secondary to the initial displaced water mass in regard to prediction of water elevations on the spit. These numerical results indicate that agreement between numerical prediction of runup values with field recorded values at PNG cannot be used to validate either a NLSW tsunami propagation model or a specific landslide tsunami hot-start initial condition. Finally, with the use of traditional tsunami codes, a new interpretation of the PNG runup measurements is presented. 相似文献
13.
广东省地震海啸危险分析与监测预警系统构想 总被引:1,自引:0,他引:1
对广东省地震海啸的潜在危险进行了分析,认为广东省可能面临的海啸威胁主要来自南海东部。一旦发生地震海啸,将出现重大的灾害,并对广东省的社会和经济产生巨大的影响。提出了建立广东省地震海啸监测预警系统的初步构想。 相似文献
14.
15.
16.
17.
Roberto Tonini Alberto Armigliato Stefano Tinti 《Pure and Applied Geophysics》2011,168(6-7):1113-1123
The tsunamigenic earthquake (Mw?=?8.1) that occurred on 29 September 2009 at 17:48 UTC offshore of the Samoa archipelago east of the Tonga trench represents an example of the so-called ??outer-rise?? earthquakes. The areas most affected were the south coasts of Western and American Samoa, where almost 200 people were killed and run-up heights were measured in excess of 5?m at several locations along the coast. Moreover, tide gauge records showed a maximum peak-to-peak height of about 3.5?m near Pago Pago (American Samoa) and of 1.5?m offshore of Apia (Western Samoa). In this work, different fault models based on the focal mechanism solutions proposed by Global CMT and by USGS immediately after the 2009 Samoan earthquake are tested by comparing the near-field recorded signals (three offshore DART buoys and two coastal tide gauges) and the synthetic signals provided by the numerical simulations. The analysis points out that there are lights and shadows, in the sense that none of the computed tsunamis agrees satisfactorily with all the considered signals, although some of them reproduce some of the records quite well. This ??partial agreement?? and ??partial disagreement?? are analysed in the perspective of tsunami forecast and of Tsunami Early Warning System strategy. 相似文献
18.
The 1856 Tsunami of Djidjelli (Eastern Algeria): Seismotectonics, Modelling and Hazard Implications for the Algerian Coast 总被引:1,自引:0,他引:1
AbdelKarim Yelles-Chaouche Jean Roger Jacques Déverchère Rabah Bracène Anne Domzig Helene Hébert Abdelaziz Kherroubi 《Pure and Applied Geophysics》2009,166(1-2):283-300
On August 21st and 22nd 1856, two strong earthquakes occurred off the seaport of Djidjelli, a small city of 1000 inhabitants, located 300 km east of Algiers (capital of Algeria). In relation to these two earthquakes, an important tsunami (at least one) affected the western Mediterranean region and the eastern Algerian coastline between Algiers and La Calle (Algero-Tunisian border). Based on historical information as well as on data recently collected during the Maradja 2 survey conducted in 2005 over the Algerian margin, we show that the tsunami could have been generated by the simultaneous rupture of a set of three en echelon faults evidenced off Djidjelli. From synthetic models, we point out that the area affected along the Algerian coast extended from Bejaia to Annaba. The maximum height of waves reached 1.5 m near the harbor of Djidjelli. 相似文献
19.
Thierry Bergot 《Pure and Applied Geophysics》2007,164(6-7):1265-1282
Short-term forecasting of fog is a difficult issue which can have a large societal impact. Fog appears in the surface boundary
layer and is driven by the interactions between land surface and the lower layers of the atmosphere. These interactions are
still not well parameterized in current operational NWP models, and a new methodology based on local observations, an adaptive
assimilation scheme and a local numerical model is tested. The proposed numerical forecast method of foggy conditions has
been run during three years at Paris-CdG international airport. This test over a long-time period allows an in-depth evaluation
of the forecast quality. This study demonstrates that detailed 1-D models, including detailed physical parameterizations and
high vertical resolution, can reasonably represent the major features of the life cycle of fog (onset, development and dissipation)
up to +6 h. The error on the forecast onset and burn-off time is typically 1 h. The major weakness of the methodology is related
to the evolution of low clouds (stratus lowering). Even if the occurrence of fog is well forecasted, the value of the horizontal
visibility is only crudely forecasted. Improvements in the microphysical parameterization and in the translation algorithm
converting NWP prognostic variables into a corresponding horizontal visibility seems necessary to accurately forecast the
value of the visibility. 相似文献
20.
Numerical Simulation of the 2011 Tohoku Tsunami Based on a New Transient FEM Co-seismic Source: Comparison to Far- and Near-Field Observations 总被引:1,自引:0,他引:1
Stephan T. Grilli Jeffrey C. Harris Tayebeh S. Tajalli Bakhsh Timothy L. Masterlark Christodoulos Kyriakopoulos James T. Kirby Fengyan Shi 《Pure and Applied Geophysics》2013,170(6-8):1333-1359
In this work, we simulate the 2011 M9 Tohoku-Oki tsunami using new coseismic tsunami sources based on inverting onshore and offshore geodetic data, using 3D Finite Element Models (FEM). Such FEMs simulate elastic dislocations along the plate boundary interface separating the stiff subducting Pacific Plate from the relatively weak forearc and volcanic arc of the overriding Eurasian plate. Due in part to the simulated weak forearc materials, such sources produce significant shallow slip (several tens of meters) along the updip portion of the rupture near the trench. To assess the accuracy of the new approach, we compare observations and numerical simulations of the tsunami's far- and near-field coastal impact for: (i) one of the standard seismic inversion sources (UCSB; Shao et al. 2011); and (ii) the new FEM sources. Specifically, results of numerical simulations for both sources, performed using the fully nonlinear and dispersive Boussinesq wave model FUNWAVE-TVD, are compared to DART buoy, GPS tide gauge, and inundation/runup measurements. We use a series of nested model grids with varying resolution (down to 250 m nearshore) and size, and assess effects on model results of the latter and of model physics (such as when including dispersion or not). We also assess the effects of triggering the tsunami sources in the propagation model: (i) either at once as a hot start, or with the spatiotemporal sequence derived from seismic inversion; and (ii) as a specified surface elevation or as a more realistic time and space-varying bottom boundary condition (in the latter case, we compute the initial tsunami generation up to 300 s using the non-hydrostatic model NHWAVE). Although additional refinements are expected in the near future, results based on the current FEM sources better explain long wave near-field observations at DART and GPS buoys near Japan, and measured tsunami inundation, while they simulate observations at distant DART buoys as well or better than the UCSB source. None of the sources, however, are able to explain the largest runup and inundation measured between 39.5° and 40.25°N, which could be due to insufficient model resolution in this region (Sanriku/Ria) of complex bathymetry/topography, and/or to additional tsunami generation mechanisms not represented in the coseismic sources (e.g., splay faults, submarine mass failure). This will be the object of future work. 相似文献