首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some of the properties of the oblate planet problem are derived. We use the technique of blowing up the singularity to study the collision orbits. We define some families of them in terms of their asymptotic behavior.  相似文献   

2.
The onset of chaotic motion in the restricted problem of three bodies   总被引:1,自引:0,他引:1  
A full characterization of a nonintegrable dynamical system requires an investigation into the chaotic properties of that system. One such system, the restricted problem of three bodies, has been studied for over two centuries, yet few studies have examined the chaotic nature of some ot its trajectories. This paper examines and classifies the onset of chaotic motion in the restricted three-body problem through the use of Poincaré surfaces of section, Liapunov characteristic numbers, power spectral density analysis and a newly developed technique called numerical irreversibility. The chaotic motion is found to be intermittent and becomes first evident when the Jacobian constant is slightly higher thanC 2.  相似文献   

3.
A high-precise analytical theory of a satellite in orbit around a non-spherical planet has been developed. The Poisson's small parameter method has been used. All secular and short-periodic perturbations proportional up to and including a product of five arbitrary harmonic coefficients of the planetary potential expansion are calculated. Long-periodic perturbations are derived with the accuracy of up to the fourth-order, inclusive. The influence of the high-order perturbations on the motion of ETALON-1 satellite has been investigated. The results of comparison of the numerical and analytical integration of the equations of its motion over a five year interval are as follows:
–  - the r.m.s. difference between the positions is 1.1 cm;
–  - the r.m.s. difference between the ranges is 0.5 cm.
The theory is intended to be used for processing precise laser range measurements of the Earth geodynamical satellites over long-term intervals.  相似文献   

4.
The regions of motions of a satellite for given values of energy and angular momentum about polar axes are shown. Special attention is paid to the circular equatorial orbits which have been shown to be Hill stable. The anomalistic and the nodal period for the motions near to the circular equatorial orbits have been found.  相似文献   

5.
Anonlinear analytical theory of secular perturbations in the problem of the motion of a systemof small bodies around a major attractive center has been developed. Themutual perturbations of the satellites and the influence of the oblateness of the central body are taken into account in the model. In contrast to the classical Laplace-Lagrange theory based on linear equations for Lagrange elements, the third-degree terms in orbital eccentricities and inclinations are taken into account in the equations. The corresponding improvement of the solution turns out to be essential in studying the evolution of orbits over long time intervals. A program inC has been written to calculate the corrections to the fundamental frequencies of the solution and the third-degree secular perturbations in orbital eccentricities and inclinations. The proposed method has been applied to investigate the motion of the major Uranian satellites. Over time intervals longer than 100 years, allowance for the nonlinear terms in the equations is shown to give corrections to the coordinates of Miranda on the order of the orbital eccentricity, which is several thousand kilometers in linear measure. For other satellites, the effect of allowance for the nonlinear terms turns out to be smaller. Obviously, when a general analytical theory of motion for the major Uranian satellites is constructed, the nonlinear terms in the equations for the secular perturbations should be taken into account.  相似文献   

6.
We consider the planar problem of three bodies which attract mutually with the force proportional to a certain negative integer power of the distance between the bodies. We show that such generalisation of the gravitational three-body problem is not integrable in the Liouville sense.  相似文献   

7.
8.
The paper offers the fully analytic solution to the motion of a satellite orbiting under the influence of the two major perturbations, due to the oblateness and the atmospheric drag. The solution is presented in a time-explicit form, and takes into account an exponential distribution of the atmospheric density, an assumption that is reasonably close to reality. The approach involves two essential steps. The first one concerns a new approximate mathematical model that admits a closed-form solution with respect to a set of new variables. The second step is the determination of an infinitesimal contact transformation that allows to navigate between the new and the original variables. This contact transformation is obtained in exact form, and afterwards a Taylor series approximation is proposed in order to make all the computations explicit. The aforementioned transformation accommodates both perturbations, improving the accuracy of the orbit predictions by one order of magnitude with respect to the case when the atmospheric drag is absent from the transformation. Numerical simulations are performed for a low Earth orbit starting at an altitude of 350 km, and they show that the incorporation of drag terms into the contact transformation generates an error reduction by a factor of 7 in the position vector. The proposed method aims at improving the accuracy of analytic orbit propagation and transforming it into a viable alternative to the computationally intensive numerical methods.  相似文献   

9.
In this paper the three-dimensional equilibria in a Magnetic-Binary system with oblate primaries are studied. It is also examined how the primaries oblateness affect the equilibria configuration of the spherical case.  相似文献   

10.
Within the framework of the Canonical Formalism in the extended phase space,a general Hamiltonian is investigated that covers a wide class of radial intermediaries accounting for themajor secular effects due to a planet's oblateness perturbations.An analytical, closed-form solution for this generic Hamiltonian is developed in terms of elementary functions via the corresponding Hamilton-Jacobi equation. The analytical solution so obtained can be contemplated according to a simple geometrical and dynamical interpretation in Keplerian language by means of the usual relations characterizing elliptic elements along ahypothetic Keplerian motion.Appropriate choices for the terms appearing in the proposed Hamiltonian lead to recovering the analogues of some well-known, classical radial intermediaries (those introduced by Deprit and the one built by Alfriend and Coffey), but also certain new ones derived by Ferrándiz for the Main Problem in the Theory of Artificial Satellites of the Earth. In any case, the results are also applicable to problems dealing with orbital motion of other planetary satellites.The generality of this pattern leads to asystematic obtaining of solutions to the considered intermediaries: special choices of the Hamiltonian yield the correspondinganalytical solution to the respective intermediary problem.  相似文献   

11.
We deal with the problem of the motion of a triaxial satellite of an oblate primary of larger mass. We show that the treatment is simplified by using a canonical set of variables previously introduced by the authors, that allows a drastic reduction in the expansions of the potential. A general method to avoid the appearance of virtual singularities when the angles between certain planes are small is designed. Our approach is applicable either to natural or artificial satellites.  相似文献   

12.
A mapping model is constructed to describe asteroid motion near the 3 : 1 mean motion resonance with Jupiter, in the plane. The topology of the phase space of this mapping coincides with that of the real system, which is considered to be the elliptic restricted three body problem with the Sun and Jupiter as primaries. This model is valid for all values of the eccentricity. This is achieved by the introduction of a correcting term to the averaged Hamiltonian which is valid for small values of the ecentricity.We start with a two dimensional mapping which represents the circular restricted three body problem. This provides the basic framework for the complete model, but cannot explain the generation of a gap in the distribution of the asteroids at this resonance. The next approximation is a four dimensional mapping, corresponding to the elliptic restricted problem. It is found that chaotic regions exist near the 3 : 1 resonance, due to the interaction between the two degrees of freedom, for initial conditions close to a critical curve of the circular model. As a consequence of the chaotic motion, the eccentricity of the asteroid jumps to high values and close encounters with Mars and even Earth may occur, thus generating a gap. It is found that the generation of chaos depends also on the phase (i.e. the angles andv) and as a consequence, there exist islands of ordered motion inside the sea of chaotic motion near the 3 : 1 resonance. Thus, the model of the elliptic restricted three body problem cannot explain completely the generation of a gap, although the density in the distribution of the asteroids will be much less than far from the resonance. Finally, we take into account the effect of the gravitational attraction of Saturn on Jupiter's orbit, and in particular the variation of the eccentricity and the argument of perihelion. This generates a mixing of the phases and as a consequence the whole phase space near the 3 : 1 resonance becomes chaotic. This chaotic zone is in good agreement with the observations.  相似文献   

13.
This paper discusses a constrained gravitational three-body problem with two of the point masses separated by a massless inflexible rod to form a dumbbell. This problem is a simplification of a problem of a symmetric rigid body and a point mass, and has numerous applications in Celestial Mechanics and Astrodynamics. The non-integrability of this system is proven. This was achieved thanks to an analysis of variational equations along a certain particular solution and an investigation of their differential Galois group. Nowadays this approach is the most effective tool for study integrability of Hamiltonian and non-Hamiltonian systems.  相似文献   

14.
There exist many comets with near-parabolic orbits in the Solar System. Among various theories proposed to explain their origin, the Oort cloud hypothesis seems to be the most reasonable (Oort, 1950). The theory assumes that there is a cometary cloud at a distance 103 – 105 AU from the Sun and that perturbing forces from planets or stars make orbits of some of these comets become of near-parabolic type. Concerning the evolution of these orbits under planetary perturbations, we can raise the question: Will they stay in the Solar System forever or will they escape from it? This is an attractive dynamical problem. If we go ahead by directly solving the dynamical differential equations, we may encounter the difficulty of long-time computation. For the orbits of these comets are near-parabolic and their periods are too long to study on their long-term evolution. With mapping approaches the difficulty will be overcome. In another aspect, the study of this model has special meaning for chaotic dynamics. We know that in the neighbourhood of any separatrix i.e. the trajectory with zero frequency of the unperturbed motion of an Hamiltonian system, some chaotic motions have to be expected. Actually, the simplest example of separatrix is the parabolic trajectory of the two body problem which separates the bounded and unbounded motion. From this point of view, the dynamical study on near-parabolic motion is very important. Petrosky's elegant but more abstract deduction gives a Kepler mapping which describes the dynamics of the cometary motion (Petrosky, 1988). In this paper we derive a similar mapping directly and discuss its dynamical characters.  相似文献   

15.
The Hannay adiabatic angles are computed for polar orbits in the gravitational field of an oblate spheroid described in the post-Newtonian framework of general relativity.  相似文献   

16.
By using the method of separating rapid and slow subsystem, we obtain an analytical solution for a stable three-dimensional motion of a circumbinary planet around a binary star. We show that the motion of the planet is more complicated than it was obtained for this situation analytically by Farago and Laskar (2010). Namely, in addition to the precession of the orbital plane of the planet around the angular momentum of the binary (found by Farago and Laskar (2010)), there is simultaneously the precession of the orbital plane of the planet within the orbital plane. We show that the frequency of this additional precession is different from the frequency of the precession of the orbital plane around the angular momentum of the binary. We demonstrate that this problem is mathematically equivalent both to the problem of the motion of a satellite around an oblate planet and to the problem of a hydrogen Rydberg atom in the field of a high-frequency linearly-polarized laser radiation, thus discovering yet another connection between astrophysics and atomic physics. We point out that all of the above physical systems have a higher than geometrical symmetry, which is a counterintuitive result. In particular, it is manifested by the fact that, while the elliptical orbit of the circumbinary planet (around a binary star) or of the satellite (around an oblate planet) or of the Rydberg electron (in the laser field) undergoes simultaneously two types of the precession, the shape of the orbit does not change. The fact that a system, consisting of a circumbinary planet around a binary star, possesses the hidden symmetry should be of a general physical interest. Our analytical results could be used for benchmarking future simulations.  相似文献   

17.
We prove an integrability criterion and a partial integrability criterion for homogeneous potentials of degree ?1 which are invariant by rotation. We then apply it to the proof of the meromorphic non-integrability of the n-body problem with Newtonian interaction in the plane on a surface of equation (H, C) = (H 0, C 0) with (H 0, C 0) ?? (0, 0) where C is the total angular momentum and H the Hamiltonian, in the case where the n masses are equal. Several other cases in the 3-body problem are also proved to be non integrable in the same way, and some examples displaying partial integrability are provided.  相似文献   

18.
Non-linear equations governing the temporal evolution of the vector of instantaneous rotation are developed for an Earth with a homogeneous mantle having a viscoelastic Maxwell rheology and with a homogeneous inviscid fluid core.This general theory is investigated using the angular momentum theorem applied to the coupled core-mantle system. It allows to study the influence upon the planetary rotation of a quasi-rigid rotational motion in the liquid core. It also enables to investigate the consequences of excitation sources (e.g. pressure), located at the core-mantle interface. Especially, the influence of viscoelastic variations in the inertia tensors resulting from the rotation itself or from various excitation sources are detailed with the help of a Love number formalism. The equations of the linear theory for an elastic Earth with a liquid core, and the non-linear theory for a viscous planet with a quasi-fluid behavior are shown to be particular cases of our generalized system of equations. Some planetological applications may be derived from the quasi-fluid approximation.  相似文献   

19.
20.
The purpose of this paper is to investigate the generalization of Hill's problem by using a central field of force deriving from a potential, not restricted to Newton's inverse square law. We establish the equations of motion, determine the equilibrium positions along with their linear stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号