首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang  Zi-Yi  Wang  Pei  Yin  Zhen-Yu  Wang  Rui 《Acta Geotechnica》2022,17(10):4277-4296

Particle size strongly influences the shear strength of granular materials. However, previous studies of the particle size effect have focused mainly on the macroscopic behavior of granular materials, neglecting the associated micro-mechanism. In this study, the effect of particle size on the shear strength of uncrushable granular materials in biaxial testing is investigated using the discrete element method (DEM). First, a comprehensive calibration against experimental results is conducted to obtain the DEM parameters for two types of quartz sand. Then, a series of biaxial tests are simulated on sands with parallel particle size distributions to investigate the effect of particle size on macro- and microscopic behaviors. Finally, by adopting the rolling resistance method and the clump method, irregular-shaped particles are simulated to investigate how the particle size effect will be influenced by the particle shape. Simulation results demonstrate that (1) the peak shear strength increases with particle size, whereas the residual shear strength is independent of particle size; (2) the thickness of the shear band increases with the particle size, but its ratio decreases with particle size; (3) the particle size effect can be explained by the increase of friction utilization ratio with particle size; and (4) the particle size effect is more significant in granular materials that consist of particles with higher angularity.

  相似文献   

2.
由颗粒定向排列导致的初始各向异性对净砂力学特性影响明显。为探究这一影响,首先采用自编的离散元软件生成4种不同沉积方向的椭圆颗粒净砂样,并分别对4种试样进行双轴压缩试验;其次,通过将离散元模拟结算与室内试验结果对比以验证该方法的可行性;最后,通过分析模拟结果研究沉积方向所产生的影响。结果表明:4种试样均出现应变软化及剪胀现象;随着沉积角? 的增加,试样具有由应变软化逐渐向应变硬化发展的趋势,试样的剪胀性逐渐减弱;在?=0°时试样取得最大峰值内摩擦角和最大残余内摩擦角,且随着? 的增大试样的峰值内摩擦角先降低然后基本不变,残余内摩擦角逐渐减小;颗粒排列初始优势方向基本与沉积方向平行,但随着轴向应变的增大,颗粒排列优势方向逐渐向平行于加载面方向旋转,接触点的优势方向由最初垂直于沉积方向逐渐向垂直于加载面方向旋转,且这两种旋转的改变幅度随着沉积角? 的增大而增大;而强接触力的优势方向始终垂直于试样的加载面。  相似文献   

3.
The paper presents Cauchy stress tensor computation over parallel grids of message passing interface (MPI) parallel three-dimensional (3D) discrete element method (DEM) simulations of granular materials, considering spherical and nonspherical particles. The stress tensor computation is studied for quasi-static and dynamic conditions, and its resulting symmetry or asymmetry is discussed within the context of classical continuum mechanics (CCM), granular materials mechanics (GMM), and micropolar continuum mechanics (MCM). The average Cauchy stress tensor computation follows Bagi's and Nicot's formulations and is verified within MPI parallel 3D DEM simulations involving dynamically adaptive compute grids. These grids allow calculation of temporal and spatial distributions of stress across granular materials under static and dynamic conditions. The vertical stress component in gravitationally deposited particle assemblies exhibits nonuniform spatial distributions under static equilibrium, and its zone of maximum value changes during the process of gravitational pluviation and collapse. These phenomena reveal a microstructural effect on stress distribution within granular materials that is attributed to their discrete particulate nature (particle size, shape, gradation, boundary conditions, etc).  相似文献   

4.

In granular soils grain crushing reduces dilatancy and stress obliquity enhances crushability. These are well-supported specimen-scale experimental observations. In principle, those observations should reflect some peculiar micromechanism associated with crushing, but which is it? To answer that question the nature of crushing-induced particle-scale interactions is here investigated using an efficient DEM model of crushable soil. Microstructural measures such as the mechanical coordination number and fabric are examined while performing systematic stress probing on the triaxial plane. Numerical techniques such as parallel and the newly introduced sequential probing enable clear separation of the micromechanical mechanisms associated with crushing. Particle crushing is shown to reduce fabric anisotropy during incremental loading and to slow fabric change during continuous shearing. On the other hand, increased fabric anisotropy does take more particles closer to breakage. Shear-enhanced breakage appears then to be a natural consequence of shear-enhanced fabric anisotropy. The particle crushing model employed here makes crushing dependent only on particle and contact properties, without any pre-established influence of particle connectivity. That influence does not emerge, and it is shown how particle connectivity, per se, is not a good indicator of crushing likelihood.

  相似文献   

5.
This paper investigates the existence of the critical force chain length and the buckling of unconfined grain columns in dense granular materials. Tests on assemblies of flat pentagon photoelastic particles were first carried out to demonstrate the maximum length of force chains. Then, the theoretical buckling analysis and distinct element method (DEM) simulations for grain columns composed of mono-sized elliptical particles were performed. The results revealed the existence of critical column length, which is generally affected by the particle shapes, the rotational resistance at particle contact points and the end constraints to the grain columns. The interparticle friction does not have explicit effect on the critical force chain length, but it has significant influence on the grain column’s curvature when collapse takes place. The thickness of shear band in granular soils can be determined as the critical length of grain columns by appropriately imposing the constraints on the boundaries, as confirmed by DEM simulations and experimental results.  相似文献   

6.
颗粒大小对颗粒材料力学行为影响初探   总被引:1,自引:0,他引:1  
戴北冰  杨峻  周翠英 《岩土力学》2014,35(7):1878-1884
利用一种特殊颗粒材料-玻璃珠进行了一系列室内直剪试验,研究颗粒大小对颗粒材料力学行为的影响。试验一共考虑了3条近乎平行的级配曲线和4种颗粒摩擦情况:干燥状态、水浸润状态、水淹没状态和油浸润状态。试验结果表明,颗粒大小对颗粒材料的力学行为有显著影响,剪胀性随着粒径的增大而增强。为考虑颗粒大小对剪胀性的影响,提出了一种新的剪胀关系式。在该剪胀关系式中,剪胀系数为依赖于颗粒大小和颗粒摩擦等颗粒基本性质的变量。试验研究同时表明临界状态摩擦角随着颗粒大小的增加而增加。此外,从颗粒细观运动的角度提出了颗粒滑动的功能模型,推导出了功能方程,并以此揭示了颗粒大小对临界状态摩擦角影响的细观机制。  相似文献   

7.
This paper analyses the influence of grain shape and angularity on the behaviour of granular materials from a two‐dimensional analysis by means of a discrete element method (Contact Dynamics). Different shapes of grains have been studied (circular, isotropic polygonal and elongated polygonal shapes) as well as different initial states (density) and directions of loading with respect to the initial fabric. Simulations of biaxial tests clearly show that the behaviour of samples with isotropic particles can be dissociated from that of samples with anisotropic particles. Indeed, for isotropic particles, angularity just tends to strengthen the behaviour of samples and slow down either local or global phenomena. One of the main results concerns the existence of a critical state for isotropic grains characterized by an angle of friction at the critical state, a critical void ratio and also a critical anisotropy. This critical state seems meaningless for elongated grains and the behaviour of samples generated with such particles is highly dependent on the direction of loading with respect to the initial fabric. The study of local variables related to fabric and particle orientation gives more information. In particular, the coincidence of the principal axes of the fabric tensor with those of the stress tensor is sudden for isotropic particles. On the contrary, this process is gradually initiated for elongated particles. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
煤矸石在排弃后粒径分布沿垂直剖面会呈现出明显的规律性,以现场煤矸石筛分级配为基础,进行了3试验级配下不同试样含水率时的风化煤矸石室内直剪试验。试验结果表明:低试样含水率时,风化煤矸石试验剪应力-剪位移曲线存在相对突出的峰值,呈明显应变软化现象;但随试样含水率的增加,风化煤矸石应力-应变关系呈现出明显的应变硬化特征。级配在不同含水条件下对风化矸石抗剪强度参数的影响存在差异,低试样含水率时粗颗粒形成的骨架对风化矸石内摩擦角有着重要影响,但随含水率增大,矸石细颗粒状态则对其起到控制性作用。各试验级配风化煤矸石内黏聚力随含水率增加差异减少试验值趋于一致,但内摩擦角的下降速率则明显存在区别,至饱和时风化煤矸石内摩擦角值下降至近零值,此时风化煤矸石试样抗剪强度主要由内黏聚力提供。  相似文献   

9.
This paper describes a three-dimensional random network model to evaluate the thermal conductivity of particulate materials. The model is applied to numerical assemblies of poly-dispersed spheres generated using the discrete element method (DEM). The grain size distribution of Ottawa 20–30 sand is modeled using a logistic function in the DEM assemblies to closely reproduce the gradation of physical specimens. The packing density and inter-particle contact areas controlled by confining stress are explored as variables to underscore the effects of micro- and macro-scales on the effective thermal conductivity in particulate materials. It is assumed that skeletal structure of 3D granular system consists of the web of particle bodies interconnected by thermal resistor at contacts. The inter-particle contact condition (e.g., the degree of particle separation or overlap) and the particle radii determine the thermal conductance between adjacent particles. The Gauss–Seidel method allows evaluation of the evolution of temperature variation in the linear system. Laboratory measurements of thermal conductivity of Ottawa 20–30 sand corroborate the calculated results using the proposed network model. The model is extended to explore the evolution of thermal conduction depending on the nucleation habits of secondary solid phase as an anomalous material in the pore space. The proposed network model highlights that the coordination number, packing density and the inter-particle contact condition are integrated together to dominate the heat transfer characteristics in particulate materials, and allows fundamental understanding of particle-scale mechanism in macro-scale manifestation.  相似文献   

10.
This paper presents a numerical investigation of shear behavior and strain localization in cemented sands using the distinct element method (DEM), employing two different failure criteria for grain bonding. The first criterion is characterized by a Mohr–Coulomb failure line with two distinctive contributions, cohesive and frictional, which sum to give the total bond resistance; the second features a constant, pressure-independent strength at low compressive forces and purely frictional resistance at high forces, which is the standard bond model implemented in the Particle Flow Code (PFC2D). Dilatancy, material friction angle and cohesion, strain and stress fields, the distribution of bond breakages, the void ratio and the averaged pure rotation rate (APR) were examined to elucidate the relations between micromechanical variables and macromechanical responses in DEM specimens subjected to biaxial compression tests.  相似文献   

11.
We perform a micromechanical analysis of general isotropic non-cohesive particulate materials idealized as three-dimensional random assemblies of uniform spheres with a simple linear elastic inter-particle contact force law and inter-particle Coulomb friction law. We obtain analytical relationships between the inter-particle friction coefficient \(\mu\) (or inter-particle friction angle \(\phi _\mu = \tan ^{-1} \mu\)) on the microscale and the material friction angle \(\phi\) on the macroscale. Our micromechanical analysis directly employs force and moment equilibrium (together with compatibility and the contact constitutive assumptions noted) rather than energy methods, and thus can account for the effects of particle rotation, and in particular the effects of mechanisms or zero-energy modes due to particle rotation. To explore the effects of particle rotation, we perform analyses with particle rotation either allowed or prohibited. To validate the analytical results obtained here, we compare the \(\phi\) versus \(\phi _\mu\) curves determined theoretically to those obtained by the discrete element method (DEM) for six randomly packed specimens of 3430–29, 660 uniform spherical elements with uniform inter-element Coulomb friction in Fleischmann et al. in Geotech Geol Eng 32(4):1081–1100, (2014). The \(\phi\) versus \(\phi _\mu\) curves derived here show remarkable agreement with those obtained via DEM simulations in Fleischmann et al. in Geotech Geol Eng 32(4):1081–1100, (2014), especially for the case in which particle rotation is not artificially restrained.  相似文献   

12.
The strength of granular materials during triaxial compression is investigated via a grain scale analysis in this paper. A 3D Discrete Element Method (DEM) program provides the triaxial strength data and helps to validate the micromechanical analysis. Some standard methods in statistics are employed first to quantitatively examine the assumptions made when deriving the stress-force-fabric (SFF) equation. After careful validation, a more concise format for the SFF equation is proposed for triaxial compressions. With this SFF equation, the strength is found to be jointly contributed by the magnitudes of the contact force anisotropy and fabric anisotropy. The influence of the initial void ratio, confining pressure and loading direction on the development of contact force anisotropy and fabric anisotropy is examined and presented. With similar techniques, the “force” term in the SFF equation is further decoupled, and an equation is obtained such that it explicitly links the contact force term with the friction coefficient between grains, a tensor defined as a statistic of the normal contact forces and a tensor defined as a statistic of the mobilisation status of contacts. Based on this equation, another equation regarding the stress ratio of granular assembly is obtained, and it clearly indicates two sources that contribute to the phenomenological friction nature of granular assembly. These two sources are caused by the contact force at the grain scale. The first is the anisotropy of the average normal contact forces, and the second is the mobilisation of contacts.  相似文献   

13.
张铎  刘洋  吴顺川 《岩土力学》2016,37(Z1):509-520
通过一系列真三轴离散元数值试验,模拟了不同应力路径下的等b试验中散体材料的强度特征。根据模拟结果详细地分析了三维应力条件下中主应力和应力路径对散体材料峰值强度的影响,研究了峰值摩擦角、峰值应力比的变化规律,并根据真应力的概念和组构张量的演化结果分析了散体材料的强度成因。研究表明,在不同类型的数值试验中峰值偏应力随b参数的变化规律不同,但采用初始围压归一化后的应力-应变曲线规律一致。峰值强度线的斜率只与b值有关而与应力路径无关,且随着b值的增加,峰值应力比qf /pf逐渐减小,数值模拟结果与室内试验结果吻合较好;随着应变的发展,数值试样的组构也随之发生变化,产生了明显的应力诱发各向异性;散体的强度为颗粒摩擦及材料各向异性共同作用的结果;理论上,组构比-应力比坐标系中破坏点位置仅取决于颗粒摩擦角 ,而数值模拟结果与理论值的差异源于颗粒间咬合和滚动摩擦的影响,其影响与颗粒表面摩擦系数有关,也受空间应力状态的影响。  相似文献   

14.
粗粒土三轴试验数值模拟与试样颗粒初始架构初探   总被引:4,自引:1,他引:3  
试样颗粒初始架构是粗粒土室内三轴试验中一个难以人为控制的因素。基于元胞自动机方法,结合粗粒土的室内三轴试验开发了能制备不同颗粒初始架构粗粒土试样的HHC-CA模型,该模型制备的粗粒土试样表征了粗粒土各粒组分布的不均匀性和随机性,再借助FLAC3D进行粗粒土三轴数值模拟试验,并探讨了试样剪切带内的砾石含量和试样砾石含量对内摩擦角的影响。数值模拟结果表明,同一粒径级配下,粗粒土的内摩擦角值与剪切带内的砾石含量呈增函数关系;试样砾石含量的增加可能会出现内摩擦角减小的现象,但同一粒径级配下的内摩擦角均值随试样砾石含量的增加而明显增大。  相似文献   

15.
探究断层泥力学行为是研究断裂带工程地质效应的基础,以延安神道沟断裂带断层泥为对象,借助颗粒分析、X射线衍射等微观测试手段研究了3种颜色断层泥的组构特征,并通过环剪试验分析了不同含水率条件下重塑断层泥的力学行为。研究结果表明:单峰型粒径曲线的断层泥级配明显优于双峰型,石英、云母和长石为主要的非黏土矿物,黏土矿物则以伊利石和高岭石为主,赤铁矿与绿泥石的相对含量是造成断层泥颜色差异的主要原因;受含水率和粗颗粒含量的影响,断层泥应变软化特征显著,应变软化随着含水率增大呈现先增强后减弱的变化规律,当含水率小于塑限含水率时,应变软化特征则随着粗颗粒含量升高而趋弱;内摩擦角是影响应变软化特征的主要力学指标,峰值内摩擦角和残余内摩擦角均与含水率呈负相关;矿物含量影响内摩擦角的变化,在5%和10%含水率条件下,内摩擦角随非黏土矿物含量的升高而增大。  相似文献   

16.
We present a micro‐mechanical analysis of macroscopic peak strength, critical state, and residual strength in two‐dimensional non‐cohesive granular media. Typical continuum constitutive quantities such as frictional strength and dilation angle are explicitly related to their corresponding grain‐scale counterparts (e.g., inter‐particle contact forces, fabric, particle displacements, and velocities), providing an across‐the‐scale basis for a better understanding and modeling of granular materials. These multi‐scale relations are derived in three steps. First, explicit relations between macroscopic stress and strain rate with the corresponding grain‐scale mechanics are established. Second, these relations are used in conjunction with the non‐associative Mohr–Coulomb criterion to explicitly connect internal friction and dilation angles to the micro‐mechanics. Third, the mentioned explicit connections are applied to investigate, understand, and derive micro‐mechanical conditions for peak strength, critical state, and residual strength. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
18.
The local pore spaces in granular materials tend to be aligned parallel to the major principal stress direction upon particle mobilization. Manifestation of this response has been numerically validated in our previous studies with the aid of discrete element method modeling and image processing techniques during creep and shearing. We now extend the modeling of pore geometry, constructed with spherical particles, to assemblies of particle clumps. Two-dimensional simulations are performed for both loose and dense assemblies of spherical particles and particle clumps. Each particle packing is bound by rigid or flexible walls and subjected to biaxial compression and the particle mobilization effect on the evolution of pore orientation is explored. Randomly shaped pores surrounded by adjacent particles are geometrically quantified by Delaunay tessellation and fitted with ellipses. Results show that localization is apparent in dense assemblies, in particular for clumped particle packing, while loose assemblies exhibit diffusive failure. Small pores within well-defined shear bands tend to align either parallel to the direction of the shear band or perpendicular to the major principal stress. On the other hand, small pores within the blocks and large pores have a tendency to become elongate towards the major principal stress direction. This study reveals for the first time that pore orientation is dependent upon particle shape, pore size, and assembly conditions on the pore and global scales.  相似文献   

19.
In an effort to study the relation of fabrics to the critical states of granular aggregates, the discrete element method (DEM) is used to investigate the evolution of fabrics of virtual granular materials consisting of 2D elongated particles. Specimens with a great variety of initial fabrics in terms of void ratios, preferred particle orientations, and intensities of fabric anisotropy were fabricated and tested with direct shear and biaxial compression tests. During loading of a typical specimen, deformation naturally localizes within shear bands while the remaining of the sample stops deforming. Thus, studying the evolution of fabric requires performing continuous local fabric measurements inside these bands, a suitable task for the proposed DEM methodology. It is found that a common ultimate/critical state is eventually reached by all specimens regardless of their initial states. The ultimate/critical state is characterized by a critical void ratio e which depends on the mean stress p, while the other critical state fabric variables related to particle orientations are largely independent of p. These findings confirm the uniqueness of the critical state line in the e ? p space, and show that the critical state itself is necessarily anisotropic. Additional findings include the following: (1) shear bands are highly heterogeneous and critical states exist only in a statistical sense; (2) critical states can only be reached at very large local shear deformations, which are not always obtained by biaxial compression tests (both physical and numerical); (3) the fabric evolution processes are very complex and highly dependent on the initial fabrics. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
堆石粗粒料颗粒破碎试验研究   总被引:30,自引:0,他引:30  
利用室内大型三轴试验,对堆石等粗粒料的颗粒破碎进行了分析。结果表明,颗粒破碎率随围压的增加而增加,呈非线性状态,二者之间的关系可以用双曲线表示。颗粒破碎的增加将导致粗粒料的抗剪强度降低,峰值内摩擦角与颗粒破碎率之间呈幂函数关系,不论颗粒的岩性、强度、大小、形状、级配和初始孔隙比等情况如何,试验资料都落在一个狭窄的区域,如果围压和材料的试验参数已知,则可估计颗粒破碎率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号