首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
中国虚拟天文台可视化服务   总被引:1,自引:0,他引:1  
虚拟天文台将使天文资料和相关资源的获取更加方便,阐述了可视化对虚拟天文台的必要性和重要性,着重说明了coneSearch界面可视化的内容以及实现方法和开发工具。  相似文献   

2.
An astronomical observatory is the core component of any astronomical research facility that connects astronomers with their lab: the Cosmos. The research quality of an astronomical facility is rooted in the precision of data, collected by its observatory. For optimal performance, an observatory is sited while considering certain astronomical, environmental, geological and social parameters. This study aims to identify the potential sites in Pakistan for locating an optical-astronomical observatory using the Multicriteria Decision Analysis(MCDA) technique. The study uses the Analytic Hierarchy Process(AHP) for deriving the influence weights of nine evaluation criteria: Photometric Night Fraction; Night-time Sky Brightness;Sky Transparency; Aerosol Concentration; Altitude; Terrain Slope; Accessibility; Seismic Vulnerability;and Landuse/Land Cover. On the basis of experts' opinions and previous studies, the evaluation criteria have been ordered in two possible preference sequences for identifying their influence weights with respect to each other for taking part in MCDA. Consequently, the process of MCDA identified certain areas with respect to each preference sequence, whereas some areas were found to be suitable according to both preference sequences. The study synchronizes the required eclectic data into an evaluation matrix that augments the process of astronomical site selection. In the future, this study will be useful for astronomical societies and for furthering astronomical research in the country.  相似文献   

3.
Karl Friedrich Knorre (1801–1883) was the son of Ernst Knorre, an astronomy professor at Dorpat university. During his education at Dorpat university, he became acquainted with Wilhelm Struve, the future director of Pulkovo observatory. Because of Knorre's passion for astronomy, Struve recommended him to the post of director of the planned naval observatory in Nikolaev. From its foundation in 1821, Karl Knorre was director of the Nikolaev Naval (and later Astronomical) Observatory. He carried out star position observations with the meridian circle, worked as an astronomy instructor for sea navigators, compiled the fifth section of the star charts of the Berlin Academy of Sciences and lead all hydrographic determinations on the Azov and Black seas. In 1871, Karl Nikolaev Observatory, and moved to Berlin.  相似文献   

4.
The Hubble Space Telescope has been the most successful space astronomy project to date, producing images that put the public in awe and images and spectra that have produced many scientific discoveries. It is the natural culmination of a dream envisioned when rocket flight into space was first projected and a goal set for the US space program soon after NASA was created. The design and construction period lasted almost two decades and its operations have already lasted almost as long. The capabilities of the observatory have evolved and expanded with periodic upgrading of its instrumentation, thus realizing the advantages of its unique design. The success of this long-lived observatory is closely tied to the availability of the Space Shuttle and the end of the Shuttle program means that the end of the Hubble program will follow before long.  相似文献   

5.
6.
LARDIÈRE  O.  GARRO  S.  MERLIN  J. -C. 《Earth, Moon, and Planets》1997,78(1-3):205-210
Comet Hale-Bopp was observed with the 80 cm reflector + CCD at the Haute-Provence observatory (OHP) and with the 62 cm reflector + CCD at the Saint-Véran observatory (Queyras, France). The morphology of the shells was followed from their first appearence on 1997 Jan. 30, until their disappearance on May 9. These shells spread from the nucleus region with a velocity in agreement with a nuclear rotation period of about 11.33 hours. We report also a short and bright dust ejection on May 8. CN images show a long spiral jet in the tailward side invisible on continuum images. The circumnuclear structures have been followed at Saint-Véran from Apr. 5 to Apr. 11, 1997 with a high spatial resolution (200 km/pixel). We have followed the emergence of a recurrent linear polar jet. Measurements of its expansion show a constant acceleration of material with typical expansion velocity of 1 km/s. The CCD frames show the interconnection between spiral jets and the successive shells. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The Thirty Meter Telescope (TMT) will be the first truly global ground-based optical/infrared observatory. It will initiate the era of extremely large (30-meter class) telescopes with diffraction limited performance from its vantage point in the northern hemisphere on Mauna Kea, Hawaii, USA. The astronomy communities of India, Canada, China, Japan and the USA are shaping its science goals, suite of instrumentation and the system design of the TMT observatory. With large and open Nasmyth-focus platforms for generations of science instruments, TMT will have the versatility and flexibility for its envisioned 50 years of forefront astronomy. The TMT design employs the filled-aperture finely-segmented primary mirror technology pioneered with the W.M. Keck 10-meter telescopes. With TMT’s 492 segments optically phased, and by employing laser guide star assisted multi-conjugate adaptive optics, TMT will achieve the full diffraction limited performance of its 30-meter aperture, enabling unprecedented wide field imaging and multi-object spectroscopy. The TMT project is a global effort of its partners with all partners contributing to the design, technology development, construction and scientific use of the observatory. TMT will extend astronomy with extremely large telescopes to all of its global communities.  相似文献   

8.
AstroSat is India’s first space-based observatory satellite dedicated to astronomy. It has the capability to perform multi-wavelength and simultaneous observations of cosmic bodies in a wide band of wavelengths. This paper briefly summarizes the challenges faced in the configuration of AstroSat spacecraft, accommodation and sizing of its critical subsystems, their realization and testing of payloads and the integrated satellite.  相似文献   

9.
《Experimental Astronomy》2009,23(1):221-244
Millimetron is a Russian-led 12 m diameter submillimeter and far-infrared space observatory which is included in the Space Plan of the Russian Federation for launch around 2017. With its large collecting area and state-of-the-art receivers, it will enable unique science and allow at least one order of magnitude improvement with respect to the Herschel Space Observatory. Millimetron will be operated in two basic observing modes: as a single-dish observatory, and as an element of a ground-space very long baseline interferometry (VLBI) system. As single-dish, angular resolutions on the order of 3 to 12 arc sec will be achieved and spectral resolutions of up to a million employing heterodyne techniques. As VLBI antenna, the chosen elliptical orbit will provide extremely large VLBI baselines (beyond 300,000 km) resulting in micro-arc second angular resolution.  相似文献   

10.
We describe the Caltech solar site survey in 1965–1967 directed by R. B. Leighton. The solar seeing at 102 locations in 34 sites in Southern California was evaluated by 6009 visual estimates with portable telescopes. Cloud cover and other meteorological factors were also measured, and sunlight recorders were operated at several sites. We have reanalyzed much of the data to determine its consistency and learn what else we could about the sites. The visual estimates show good internal consistency and correlation with photographic data.The seeing was found to be best at various sites associated with water, and we point out the importance of the Bowen ratio in determining the influence of water vapor on seeing. It was found that seeing at the different sites was not well correlated in time.The seeing was found to be best at Lake Elsinore, an inland sink. Good seeing was also found on the Caltech campus and at Big Bear Lake in the San Bernardino Mountains. Taking into account the better sky transparency and the feasibility of constructing an observatory in the lake, we chose Big Bear Lake for the site of a new observatory. The lack of correlation of seeing with transparency suggests the benefits of several smaller telescopes, targeted at specific goals, located at sites chosen for those goals.  相似文献   

11.
The World Space Observatory UltraViolet (WSO–UV) is an international space mission devoted to UV spectroscopy and imaging. The observatory includes a 170 cm aperture telescope capable of high-resolution and long slit low-resolution spectroscopy, and deep UV and optical imaging. The observatory is designed for observations in the ultraviolet domain where most of astrophysical processes can be efficiently studied with unprecedented capability.  相似文献   

12.
Primordial Black Holes (PBHs) are gravitationally collapsed objects that may have been created by density fluctuations in the early universe and could have arbitrarily small masses down to the Planck scale. Hawking showed that due to quantum effects, a black hole has a temperature inversely proportional to its mass and will emit all species of fundamental particles thermally. PBHs with initial masses of ∼5.0 × 1014 g should be expiring in the present epoch with bursts of high-energy particles, including gamma radiation in the GeV–TeV energy range. The Milagro high energy observatory, which operated from 2000 to 2008, is sensitive to the high end of the PBH evaporation gamma-ray spectrum. Due to its large field-of-view, more than 90% duty cycle and sensitivity up to 100 TeV gamma rays, the Milagro observatory is well suited to perform a search for PBH bursts. Based on a search on the Milagro data, we report new PBH burst rate density upper limits over a range of PBH observation times. In addition, we report the sensitivity of the Milagro successor, the High Altitude Water Cherenkov (HAWC) observatory, to PBH evaporation events.  相似文献   

13.
The expansion of the Australian Desert Fireball Network has been enabled by the development of a new digital fireball observatory based around a consumer digital camera. The observatories are more practical and much more cost effective than previous solutions whilst retaining high imaging performance. This was made possible through a flexible concurrent design approach, a careful focus on design for manufacture and assembly, and by considering installation and maintenance early in the design process. A new timing technique for long exposure fireball observatories was also developed to remove the need for a separate timing subsystem and data integration from multiple instruments. A liquid crystal shutter is used to modulate light transmittance during the long exposure which embeds a timecode into the fireball images for determining fireball arrival times and velocities. Using these observatories, the Desert Fireball Network has expanded to cover approximately 2.5 million square kilometres (around one third of Australia). The observatory and network design has been validated via the recovery of the Murrili Meteorite in South Australia through a systematic search at the end of 2015 and the calculation of a pre-atmospheric entry orbit. This article presents an overview of the design, implementation and performance of the new fireball observatories.  相似文献   

14.
This study is an attempt at identifying, during exceptionally quiet periods, both the regular magnetospheric effects at ground predicted by Olson (1970, 1971) and the night-time induced effects predicted by Ashour and Price (1965). Hourly values, and first and second differences of these, are analysed for a low-latitude observatory (Alibag) and a near-focus observatory (San Juan). The analysis fails to detect the magnetospheric expected regular variations. The night-time induced effects are probably identified in component Z at the near-focus station; their amplitude (0.4 gamma) is five times smaller than the predicted one but various reasons indicate that the deviation from the theoretical value is smaller.  相似文献   

15.
Solar System Research - Spektr-UF is a multipurpose space observatory equipped with a telescope with a primary mirror 170 cm in diameter. The main task of the observatory is obtaining...  相似文献   

16.
ISLA will be an astronomical observatory, operating at the upper limit of our planet Earth atmosphere, offering space like observing conditions in most aspects. ISLA can be maintained easily, modified easily if necessary, always kept at the state of the art and operated for very extended periods without polluting the stratosphere. ISLA is ideally suited to become the first world space observatory as the observing conditions are very much space-like – diffraction limited angular resolution, very low ambient temperature, remote control – however ISLA is easily accessible, telescopes and instruments can be continuously improved and ISLA's costs corresponds only to those of ground-based modern astronomical installations like the ESO-VLT-, KECK- and GEMINI-observatories. The cost of observing and experimenting on ISLA will be orders of magnitudes lower than those of building and operating any space telescope, allowing the astronomers of developing nations to participate in the ISLA observatory within their limited financial possibilities as competent and full partners. ISLA's 4-m and 2-m telescopes will operate diffraction limited from 0.3 μm in the optical, over the infrared, far-infrared to the sub-mm spectral range. ISLA's individual telescopes will permit imaging with 20 milli-arcsec spatial resolution in the optical, 5 times better than the Hubble Space Telescope. ISLA's telescopes can be combined to form an interferometer with a maximum baseline of 250 m with nearly complete coverage of the u,v plane. Interferometric resolution will be of the order of 20 micro-arcsec for the optical. ISLA will thus offer spatial resolution comparable or better than the intercontinental VLBI radio interferometers. ISLA's telescope efficiency will be many orders of magnitude better than comparable ground-based telescopes. The light collecting power of ISLA's interferometric telescopes will be orders of magnitudes greater than the future space interferometers under discussion. ISLA, being an aviation project and not a space project, can be realised in the typical time scale for the development of aviation: about 5 years. ISLA's cost for the whole observatory, including its movable ground station etc. will be of the order of a typical medium size ESA space mission. ISLA's lifetime will be in excess of many decades, as it can easily be maintained, modernised, repaired and improved. ISLA will become the origin of a new astronomical international organisation with worldwide participation. ISLA's telescopes will be of the greatest importance to all astronomical fields, as it will permit to study much fainter, much more distant objects with microscopic spatial resolution in wavelength regions inaccessible from ground. ISLA's many telescopes permit easily simultaneous observations at many wavelengths for rapidly varying objects, from continuously monitoring the surfaces of the planets in our solar system, surfaces of close-by stars, nuclei of galaxies to QSO's. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
A general framework for observatory control software would help to improve the efficiency of observation and operation of telescopes, and would also be advantageous for remote and joint observations. We describe a general framework for observatory control software, which considers principles of flexibility and inheritance to meet the expectations from observers and technical personnel. This framework includes observation scheduling, device control and data storage. The design is based on a finite state machine that controls the whole process.  相似文献   

18.
We analyze the observations of the X-ray pulsar LMCX-4 performed by the INTEGRAL observatory and the All-Sky Monitor (ASM) of the RXTE observatory over a wide energy range. The observed hard X-ray flux from the source is shown to change by more than a factor of 50 (from ~70 mCrab in the high state to ~1.3 mCrab in the low state) on the time scale of the accretion-disk precession period, whose mean value for 1996–2004 was determined with a high accuracy, Pprec = 30.275 ± 0.004 days. In the low state, a flare about 10 h in duration was detected from the source; the flux from the source increased by more than a factor of 4 during this flare. The shape of the pulsar’s broadband spectrum is essentially invariable with its intensity; no statistically significant features associated with the possible resonance cyclotron absorption line were found in the spectrum of the source.  相似文献   

19.
We present the observations of an intense X-ray burst from the recurrent transient source SAXJ1747.0-2853 located near the Galactic center. The burst was detected by the ART-P telescope onboard the Granat observatory on October 20, 1991. The burst time profile exhibits features that clearly point to an increase in the photospheric radius of the neutron star at the burst onset. This increase is attributable to an expansion of its outer hydrogen-rich atmospheric envelope under radiation pressure. After hydrogen-envelope outflow and photospheric contraction, the radiation flux emerging from deep within the star continued to rise, which several seconds later led to a recurrent, weaker photospheric expansion attributable to the outflow of the outer helium-envelope layers. Based on the described picture, we determined the distance to the source, d=7.9±0.4 kpc. No radiation was detected by the ART-P telescope from the source in quiescence. Actually, the source itself was discovered only seven years later by the BeppoSAX satellite during its X-ray activity.  相似文献   

20.
The Zeiss-2000 telescope of the International Center for Astronomic and Medico-Ecological Research, National Academy of Sciences of Ukraine (Terskol observatory), with a 2-meter aperture is the largest optical instrument in Europe that is regularly used for investigating space debris in the vicinity of the geostationary orbit. One of the main objectives is to detect and characterize small fragments of space debris that are difficult to approach for other telescopes. During each photometric night, we usually detect four to five unknown fragments of 17th to 20th magnitude. This article provides orbital parameters and physical characteristics of several small-sized fragments of space debris that were detected during observations at Terskol observatory in 2014–2015.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号