首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Melt and fluid inclusions have been studied in olivine phenocrysts (Fo 81–79) from trachybasalts of the Southern Baikal volcanic area, Dzhida field. The melt inclusions were homogenized, quenched, and analyzed on an electron and ion microprobe. The study of homogenized glasses of nine inclusions showed that basaltic melts (SiO2 = 47.1–50.3 wt %, MgO = 5.0–7.7 wt %, CaO = 7.1–11.1 wt %) have high contents of Al2O3 (17.1–19.6 wt %), Na2O (4.1–6.2 wt %), K2O (2.2–3.3 wt %), and P2O5 (0.6–1.1 wt %). The volatile contents are low (in wt %): 0.24–0.31 H2O, 0.08 F, 0.03 Cl, and 0.02 S. Primary fluid inclusions in olivines from four trachybasalt samples contain high-density CO2 (0.73–0.87 g/cm3), indicating a CO2 fluid pressure of 4.3–6.6 kbar at 1200–1300°C and olivine crystallization depths of 16–24 km. Ion microprobe analyses of 20 glasses from melt inclusions for trace elements showed that the magmas of the Baikal rift were enriched in incompatible elements, thus differing from oceanic rift basalts and resembling oceanic island basalts. A comparison of our data on melt and fluid inclusions in olivine from trachybasalts of the Dzhida field with preexisting data on the Eastern Tuva volcanic highland in the Southern Baikal volcanic area showed that they had similar contents of volatiles, major, and trace elements.  相似文献   

2.
3.
大兴安岭南段晚中生代双峰式火山作用   总被引:52,自引:24,他引:52  
郭锋  范蔚茗等 《岩石学报》2001,17(1):161-168
大兴安岭南段晚中生代克头鄂博组山岩表现出双峰式特征,主要由玄武质安山岩、英安岩和流纹岩组成。基性火山岩属于代钾拉斑系列,轻微富集LREE,Eu异常不明显(Eu/Eu=0.99-1.04)和HREE无明显分馏的特征(Dy/YbcN=1.030-1.089);富集大离子亲石元素(LILE)而亏损高场强元素(HFSE),尤其是强烈亏损Nb,Ta。英安岩和流纹岩为钙碱性系列,在REE配分模式上为LREE富集型,其中英安岩为Eu弱负异常(Eu/Eu=0.81-1.01),流纹岩的Eu负异常明显(Eu^*/Eu=0.65-0.76);在微量元素蛛网图上,英安岩类似于基性火山岩,流纹岩除了具LILE富集和HFSE亏损特征外,还显示出Sr,P,Ti等元素的强烈亏损,可能与岩浆演化过程中斜长石、磷灰石的分离结晶作用相关。晚中生代双峰式火山岩分离结晶的结果。流纹岩表现出较高的La/Sm比值和很高的K/P、K/Ti比值,其成因可能与地壳混染作用或与大陆中、下地壳重熔作用有关。结合区域晚中生代盆岭构造格局特征、大兴安岭南段晚中生代双峰式火山岩形成于造山后阶段,是岩石圈快速伸展体制下导致受早期流体交代的岩石圈地幔发生减压部分熔融作用的产物。  相似文献   

4.
Detailed geochemical, isotopic, and geochronological studies were carried out on felsic volcanic rocks from the southern part of the North Baikal volcanoplutonic belt. U-Pb zircon dating showed that the rocks previously ascribed to a single stratigraphic unit (Khibelen Formation of the Akitkan Group or the Khibelen Complex) have significant age differences. The Khibelen Formation was found out to include both the oldest dated rocks (1877.7 ± 3.8 Ma) of the North Baikal belt and the younger volcanic rocks (1849 ± 11 Ma). Two other dated volcanic rocks have intermediate ages (1875 ± 14 and 1870.7 ± 4.2 Ma). It was established that the volcanic rocks from various areas in the southern part of the North Baikal belt not only have different ages but also differ in geochemical and isotopic signatures. In particular, the felsic volcanic rocks from various sites show the following variations in trace-element composition: from 220–280 to 650–717 ppm Zr, from 8–12 to 54–64 ppm Nb, and from 924–986 to 1576–2398 Ba. The ?Nd obtained for felsic volcanic rocks and comagmatic granitoids from various areas in the southern part of the North Baikal belt vary, respectively, from ?1.7 to ?2.8 and from ?8.0 to ?9.2. Based on geochemical and isotopic signatures, the felsic volcanic rocks in various areas of the southern part of the North Baikal volcanoplutonic belt were formed via the melting of a Mesoarchean crustal source of tonalite composition with contribution of variable amounts of juvenile mantle material at different magma generation conditions. Isotopic data indicate that the contribution of juvenile mantle material to their sources varied from ~33–40 to 77–86%. The maximal calculated temperatures of the parent melts for felsic volcanic rocks were 908–951°C, and the lowest temperatures were 800–833°C. The geochemical signatures of dacites with an age of 1877.7 ± 3.8 Ma such as high Th (46–51 ppm) and La (148–178 ppm) contents indicate that these rocks, along with Mesoarchean granitoid and juvenile mantle material, contain an upper crustal component with high Th and LREE contents. Extremely low Y and Yb contents in these dacites implies their formation at pressures of ~ 12–15 kbar in equilibrium with garnet-bearing residue. These rocks were presumably formed in the collisional-thickened crust at the earliest stages of its collapse, possibly during syncollisional collapse, with additional hear input to the lower crust. Other felsic rocks are geochemical analogues of A-type granites and were formed during the subsequent stages of collapse (post-collisional collapse).  相似文献   

5.
Early stages in the geologic evolution of the central eastern desert of Egypt (CED) reflect an intense episode of ensimatic volcanic activity similar to modern magmatism of the ocean floors and island arcs. This paper reports results from studies of the petrology and petrogenesis, and interprets the significance of these Late Precambrian volcanic rocks.A three-fold stratigraphy is preserved in the basement of the CED. A basal section of oceanic crust includes ultramafics, gabbros and pillowed basalts. These older metavolcanics (OMV) are conformably succeeded by dominantly volcanogenic metasediments, which are in turn succeeded by a dominantly andesitic, calc-alkaline sequence of younger metavolcanics (YMV). The OMV and YMV are largely restricted to the CED in Egypt, but analogous terranes are found in northern Arabia. (40–400 ppm) and Ni (30–260 ppm). They are poor in K2O (0.05–0.92%), Rb (0.3–5.0 ppm) and Ba (11–89 ppm). On Ti-Zr-Cr-V-Ni-P discriminant diagrams, the OMV plot in the field of modern abyssal tholeiites. High K/Rb (450–1800) and light REE depletions support this inference, although K/Ba (25–45) is lower than modern mid-ocean ridge basalts (MORB). The sum of OMV geochemical characteristics requires that these magmas were derived by the fractional fusion of the mantle. It is suggested that the OMV were generated by 20–25% fractional melting of previously depleted mantle at depths of less than 60 km. Relatively little fractionation accompanied ascent to the surface, where the OMV were erupted in a primitive crustal environment, either a small oceanic rift or a back-arc basin.Metamorphism of the YMV resulted in little elemental redistribution. These andesites have sub-alkaline clinopyroxenes and major-element geochemical characteristics indistinguishable from modern calc-alkaline andesites. YMV andesites in the central and western CED have K/Rb = 400–600, K/Ba = 20–40 and are light REE-enriched and heavy REE depleted. High concentrations of Cr (50–150 ppm) and Ni (20–100 ppm) and low initial 87Sr/86Sr ratios (0.7028–0.7030) indicate that these magmas were generated by melting in the mantle. Modelling studies and consideration of experimental data indicate that these andesites were formed by 2–10% fractional fusion of hydrous, undepleted, garnet therzolite at depths of 65 km or more in the mantle.The data show that an intense episode of instability, convection, and widespread melting occurred in the mantle beneath Afro-Arabia at the end of the Precambrian.  相似文献   

6.
The Burma Terrane has yielded some of the earliest pieces of evidence for monsoonal rainfall in the Bay of Bengal. However, Burmese ecosystems and their potential monsoonal imprint remain poorly studied. This study focuses on the late Eocene Yaw Formation (23° N) in central Myanmar, which was located near the equator (c. 5° N) during the Eocene. We quantitatively assessed the past vegetation, climate, and depositional environments with sporomorph diagrams, bioclimatic analysis, and sequence biostratigraphy. We calculated the palynological diversity and drew inferences with rarefaction analysis by comparing with four other middle to late Eocene tropical palynofloras. Palynological results highlight a high floristic diversity for the palynoflora throughout the section formed by six pollen zones characterized by different vegetation. They indicate that lowland evergreen forests and swamps dominated in the Eocene Burmese deltaic plains while terra firma areas were occupied by seasonal evergreen, seasonally dry, and deciduous forests. This vegetation pattern is typical to what is found around the Bay of Bengal today and supports a monsoon-like climate at the time of the Yaw Formation. Bioclimatic analysis further suggests that in the late Eocene, the Yaw Formation was more seasonal, drier, and cooler compared to modern-day climate at similar near-equatorial latitude. More seasonal and drier conditions can be explained by a well-marked seasonal migration of the Intertropical Convergence Zone (ITCZ), driver of proto-monsoonal rainfall. Cooler temperatures in the late Eocene of central Myanmar may be due to the lack of adequate modern analogues for the Eocene monsoonal climate, while those found at other three Eocene Asian paleobotanical sites (India and South China) may be caused by the effect of canopy evapotranspirational cooling. Our data suggest that paleoenvironmental change including two transgressive–regressive depositional sequences is controlled by global sea level change, which may be driven by climate change and tectonics. The high diversity of the Yaw Formation palynoflora, despite well-marked seasonality, is explained by its crossroads location for plant dispersals between India and Asia.  相似文献   

7.
Compositions of melt inclusions in olivine (Fo90-64) from 11 localities in Guatemala, Nicaragua and Cost Rica along the Central American Volcanic Arc are used to constrain combined systematics of major and trace elements and volatile components (H2O, S, Cl, F) in parental melts and to estimate volcanic fluxes of volatile elements. The melt inclusions cover the entire range of compositions reported for whole rocks from Central America. They point to large heterogeneity of magma sources on local and regional scales, related to variable contributions of diverse crustal (from the subducting and overriding plates) and mantle (from the wedge and incoming plate) components involved in magma genesis. Water in parental melts correlates inversely with Ti, Y and Na and positively with Ba/La and B/La (with the exception of Irazú Volcano), which indicates mantle melting fluxed by Ba-, B- and H2O-rich, possibly, serpentinite-derived fluid beneath most parts of the arc. Different components with melt-like characteristics (high LREE, La/Nb and probably also Cl, S and F and low Ba/La) control the geochemical peculiarities of Guatemalan and Costa Rican magmas. The composition of parental magmas together with published data on volcanic volumes and total SO2 flux from satellite measurements are used to constrain fluxes of volatile components and to estimate total magmatic flux in Central America. We found that volcanic flux accounts for only 13% of total magmatic and volatile fluxes. The remaining 87% of magmas remained in the lithosphere to form cumulates (∼39%) and intrusives (∼48%). The intrusive fraction of magmatic flux may be significantly larger beneath Nicaragua compared to Costa Rica. Interestingly, total fluxes of magmas and volatiles in Central America are quite similar to the global average estimates. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Melt inclusions in olivine and plagioclase phenocrysts from rocks (magnesian basalt, basaltic andesite, andesite, ignimbrite, and dacite) of various age from the Gorely volcanic center, southern Kamchatka, were studying by means of their homogenization and by analyzing the glasses in 100 melt inclusions on an electron microprobe and 24 inclusions on an ion probe. The SiO2 concentrations of the melts vary within a broad range of 45–74 wt %, as also are the concentrations of other major components. According to their SiO2, Na2O, K2O, TiO2, and P2O5 concentrations, the melts are classified into seven groups. The mafic melts (45–53 wt % SiO2) comprise the following varieties: potassic (on average 4.2 wt % K2O, 1.7 wt % Na2O, 1.0 wt % TiO2, and 0.20 wt % P2O5), sodic (3.2% Na2O, 1.1% K2O, 1.1% TiO2, and 0.40% P2O5), and titaniferous with high P2O5 concentrations (2.2% TiO2, 1.1% P2O5, 3.8% Na2O, and 3.0% K2O). The melts of intermediate composition (53–64% SiO2) also include potassic (5.6% K2O, 3.4% Na2O, 1.0% TiO2, and 0.4% P2O5) and sodic (4.3% Na2O, 2.8% K2O, 1.3% TiO2, and 0.4% P2O5) varieties. The acid melts (64–74% SiO2) are either potassic (4.5% K2O, 3.6% Na2O, 0.7% TiO2, and 0.15% P2O5) or sodic (4.5% Na2O, 3.1% K2O, 0.7% TiO2, and 0.13% P2O5). A distinctive feature of the Gorely volcanic center is the pervasive occurrence of K-rich compositions throughout the whole compositional range (silicity) of the melts. Melt inclusions of various types were sometimes found not only in a single sample but also in the same phenocrysts. The sodic and potassic types of the melts contain different Cl and F concentrations: the sodic melts are richer in Cl, whereas the potassic melts are enriched in F. We are the first to discover potassic melts with very high F concentrations (up to 2.7 wt %, 1.19 wt % on average, 17 analyses) in the Kuriles and Kamchatka. The average F concentration in the sodic melts is 0.16 wt % (37 analyses). The melts are distinguished for their richness in various groups of trace elements: LILE, REE (particularly HREE), and HFSE (except Nb). All of the melts share certain geochemical features. The concentrations of elements systematically increase from the mafic to acid melts (except only for the Sr and Eu concentrations, because of active plagioclase fractionation, and Ti, an element contained in ore minerals). The paper presents a review of literature data on volcanic rocks in the Kurile-Kamchatka area in which melt inclusions with high K2O concentrations (K2O/Na2O > 1) were found. K-rich melts are proved to be extremely widespread in the area and were found on such volcanoes as Avachinskii, Bezymyannyi, Bol’shoi Semyachek, Dikii Greben’, Karymskii, Kekuknaiskii, Kudryavyi, and Shiveluch and in the Valaginskii and Tumrok Ranges.  相似文献   

9.
量化研究幔源岩浆从源区运移至喷发或者侵位的时间尺度,对理解基性岩浆作用具有重要意义。然而,对于岩浆的喷发和就位的时间尺度研究仍缺乏有效的约束,位于我国华北克拉通北部山西大同新生代火山岩群是理想的研究地区。本文以该火山群~0.2 Ma喷发的神泉寺碱性玄武岩为研究对象,重点研究其中携带的地幔橄榄石捕掳晶来约束喷发前的时间尺度。通过对其开展详细的矿物化学研究,发现地幔捕掳晶核部的Fo值高达97.7,为极富镁橄榄石,结合其极低的Ca、Mn和Ni含量特征,认为它们捕获自被交代的地幔橄榄岩。另外,地幔橄榄石捕掳晶发育明显的CaO成分环带,表明其在地壳岩浆系统内经历了复杂的岩浆演化过程。地幔橄榄石捕掳晶反应边宽度变化很大,说明它们在源区被捕获时及在运移过程中经过了多次破碎过程。橄榄石捕掳晶最边缘的Fo值为70左右,平衡计算表明它们在边部已与主岩浆(碱性玄武岩)达到平衡。Fe-Mg元素扩散计时结果显示,橄榄石地幔捕掳晶仅在岩浆中滞留了几个月的时间。对于40~70 km的岩石圈地幔厚度来说,岩浆平均上升速率最快可能超过500 m/d。  相似文献   

10.
Fractional crystallization of peraluminous F- and H2O-rich granite magmas progressively enriches the remaining melt with volatiles. We show that, at saturation, the melt may separate into two immiscible conjugate melt fractions, one of the fractions shows increasing peraluminosity and the other increasing peralkalinity. These melt fractions also fractionate the incompatible elements to significantly different degrees. Coexisting melt fractions have differing chemical and physical properties and, due to their high density and viscosity contrasts, they will tend to separate readily from each other. Once separated, each melt fraction evolves independently in response to changing T/P/X conditions and further immiscibility events may occur, each generating its own conjugate pair of melt fractions. The strongly peralkaline melt fractions in particular are very reactive and commonly react until equilibrium is attained. Consequently, the peralkaline melt fraction is commonly preserved only in the isolated melt and mineral inclusions.

We demonstrate that the differences between melt fractions that can be seen most clearly in differing melt inclusion compositions are also visible in the composition of the resulting ore-forming and accessory minerals, and are visible on scales from a few micrometers to hundreds of meters.  相似文献   


11.
The paper presents data on primary carbonate–silicate melt inclusions hosted in diopside phenocrysts from kalsilite melilitite of Cupaello volcano in Central Italy. The melt inclusions are partly crystalline and contain kalsilite, phlogopite, pectolite, combeite, calcite, Ba–Sr carbonate, baryte, halite, apatite, residual glass, and a gas phase. Daughter pectolite and combeite identified in the inclusions are the first finds of these minerals in kamafugite rocks from central Italy. Our detailed data on the melt inclusions in minerals indicate that the diopside phenocrysts crystallized at 1170–1190°C from a homogeneous melilitite magma enriched in volatile components (CO2, 0.5–0.6 wt % H2O, and 0.1–0.2 wt % F). In the process of crystallization at the small variation in P-T parameters two-phase silicate-carbonate liquid immiscibility occurred at lower temperatures (below 1080–1150°C), when spatially separated melilitite silicate and Sr-Ba-rich alkalicarbonate melts already existed. The silicate–carbonate immiscibility was definitely responsible for the formation of the carbonatite tuff at the volcano. The melilitite melt was rich in incompatible elements, first of all, LILE and LREE. This specific enrichment of the melt in these elements and the previously established high isotopic ratios are common to all Italian kamafugites and seem to be related to the specific ITEM mantle source, which underwent metasomatism and enrichment in incompatible elements.  相似文献   

12.
Summary We present compositions of reheated melt inclusions in clinopyroxene phenocrysts from three mafic xenoliths in Breccia Museo, Campi Flegrei, Italy. Melt inclusion compositions are remarkably different from the compositions of known contemporary Campi Flegrei lavas, being significantly enriched in K2O and depleted in Na2O. Some differences are also evident in FeO* (total Fe as FeO) and TiO2 contents. The clinopyroxene phenocrysts could not have crystallised from Campi Flegrei magmas. We suggest that they originated from a volcanic system genetically very similar to, and possibly linked with, the >14 ka volcanic system of Mt. Somma, another Campanian volcano ∼ 30 km east from Campi Flegrei, from which Vesuvius subsequently developed. This result indicates a close relationship (or link) between the two volcanic systems which have until now been considered separate. We speculate that the link was established prior to eruption of the Neapolitan Yellow Tuff (NYT) (∼ 12 ka). The xenoliths were derived from a volcanic system older than the host breccias themselves. We suggest that this older volcanism had close similarities with the volcanism of the older products of Mt. Somma (∼25 ka). Received March 20, 2000; accepted November 2, 2000  相似文献   

13.
Statistical analysis of a data bank of the compositions of glasses and melt inclusions in minerals from ocean-island basalts. The initial database contains more than 45 000 published analyses of ocean-island igneous rocks from around the world. Much attention was given to the contents of volatiles (H2O, Cl, F, and S) and their ratios to one another and to nonvolatile components of close incompatibility (Ti, P, K, and Ce). The average compositions of melt inclusions are similar to those of glasses of the rocks, including volatiles, with consideration for a somewhat higher degree (by approximately 20%) of the differentiation of glasses. The average compositions of ocean-island melts differ from those of mid-ocean basalts in having wider variations and elevated contents of some of the most incompatible elements (Sr, Nb, Ta, Ba, U, Th, and others), as well as H2O, F, and Cl. Based on the correlation of volatiles to one another and to incompatible elements, three groups of ocean-island basalts are distinguished: (I) low-K, P, Ti magma compositions approximating mid-ocean ridge magmas, (II) high-K, Ce, P, and Ti magmas that resemble continental rift magmas but differ from them in low H2O content, and (III) high-K, H2O, Ce, P, and Ti magmas close to continental rift magma. All three types of the melts were found only in the Hawaiian Archipelago, whereas other ocean islands are dominated by any one of these types. The distinguished melt types presumably reflect the differences (heterogeneity) in the compositions of the sources.  相似文献   

14.
15.
Unusually magnesian (Mg# ∼76) basalts have been sampled from a small submarine volcano situated on the Mariana arc magmatic front. Total alkalis range from 1.7 to 1.94%, Al2O3 from 9.09 to 10.3% and CaO from 13.9 to 14.09%. These lavas can be classified based on mineralogy as picrite and ankaramite. Olivine-hosted melt inclusions (MIs) have median MgO contents of 17.17–17.86 wt%, 0.35–0.5% TiO2, 42–50% SiO2 and 1.66–3.43% total alkalis, which suggest that the parental magmas were primitive mantle melts. Trace element concentrations for both MIs and lavas are arc-like, although more depleted than most arc lavas. Chlorine (182–334 ppm) and H2O contents (0.11–0.64 wt%) in the MIs are consistent with the estimated median oxygen fugacities (log ΔFMQ of + 1.53–1.66) which lie at the low end of the range estimates for arc basalts and picrites (ΔFMQ = + 1 to + 3). Isotopic compositions of Sr, Nd, Hf and Pb are similar to those of other Mariana arc lavas and indicate derivation from an Indian Ocean mantle domain. The averaged magmatic temperature estimate from several geothermometers was 1,367°C at 1–1.5 GPa. We propose that high-Mg magmagenesis in this region results from the adiabatic decompression melting of relatively anhydrous but metasomatized mantle wedge. This melting is attributed to enhanced upwelling related to unusual tectonics on the over-riding plate related to a tear or other discontinuity on the subducted slab.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

16.
17.
Compositional relations among natural glasses in basalts recovered by Legs 45 and 46 (DSDP) provide powerful constraints on their differentiation histories. Residual glass compositions in the moderately evolved aphyric and abundantly phyric basalts within each site demonstrate that none of the units is mutually related to any other or to a common parent by simple fractional crystallization. At Site 396, where clinopyroxene phenocrysts are absent, progressively more evolved liquids (lower Mg/ (Mg+Fe) and higher TiO2) are characterized by lower calcium-aluminum ratios, which can only be generated by clinopyroxene fractionation. This paradox is amplified by some melt inclusions in olivine phenocrysts that have higher CaO/Al2O3 and lower TiO2 than any residual glasses. The occurrences of these distinctive compositions are correlated with the highly magnesian character of the host olivines (Fo90–89), and the melts are interpreted as trapped primitive liquids, parental to the more fractionated derivatives.Melt inclusions intermediate in composition between the residual glasses and the most primitive olivine melt inclusions are present in the cores of some plagioclase phenocrysts that have had a history of resorption. On the basis of a petrographic and microprobe analysis of the zoning relations in these phenocrysts, the inclusions are inferred to be melts entrapped at the time of extensive corrosion of the host crystals.Interpreted in conjunction with other mineral and geochemical data, the compositional trends in the glasses indicate that magma mixing has played a major role in the genesis of the Leg 45 and 46 basalts. The reality of mixing is demonstrated by extensive disequilibrium textures in the plagioclase phenocrysts and the presence in evolved lavas of refractory plagioclase and olivine phenocrysts bearing primitive melt inclusions. The chemical imprint of clinopyroxene fractionation despite the absence of clinopyroxene phenocrysts is believed to be accomplished by plating of gabbro on to the upper walls of the subvolcanic magma chamber as it evolves between mixing events. Repeated influxes of primitive magma batches will move the resultant hybrids alway from clinopyroxene saturation and generate olivine-plagioclase cotectic magmas. This model provides a physical buffering mechanism that accounts for the volumetric dominance of moderately evolved basalts among ocean floor tholeiites. Major and trace element models based on the combination of mixing and fractional crystallization also explain heretofore enigmatic geochemical characteristics of MORB.Lunar and Planetary Institute Contribution no. 326After August 1, 1978: Department of Geological Sciences, Southern Methodist University, Dallas, TX 75275, USAThe Lunar and Planetary Institute is operated by the Universities Space Research Association under Contract No. NSR 09-051-001 with the National Aeronautics and Space Administration  相似文献   

18.
Zircon U–Pb ages, geochemical and Sr–Nd isotopic data are presented for the late Carboniferous Baoligaomiao Formation (BG Fm.) and Delewula Formation (DW Fm.) volcanic rocks, widely distributed in northern Inner Mongolia, in the northern part of the Xing'an–Mongolia Orogenic Belt (XMOB). The BG Fm. rocks mainly consist of basaltic andesites and andesites while the DW Fm. rocks include dacites, trachytes, rhyolites, pyroclastic rocks and minor andesites. New LA-ICPMS zircon U–Pb analyses constrain their eruption to late Carboniferous (317–322 Ma and 300–310 Ma, respectively). The BG Fm. volcanic rocks are characterized by enriched large ion lithophile elements (LILE) and depleted high field strength elements (HFSE), with initial 87Sr/86Sr ratios of 0.70854–0.70869 and negative εNd(t) (− 2.1 to − 2.4) values. They have low La/Ba (0.03–0.05), high La/Nb (2.05–3.70) ratios and variable Ba/Th (59.5–211) ratios. Such features suggest that they are derived from melting of heterogeneous sources including a metasomatized mantle wedge and Precambrian crustal material. The DW Fm. volcanic rocks are more depleted in HFSE with significant Nb, Ta, P, Ti anomalies. They have high initial 87Sr/86Sr ratios (0.72037–0.72234) and strong negative εNd(t) (− 11 to − 11.6) values which indicate those igneous rocks were mainly derived from reworking of the Paleoproterozoic crust. The late Carboniferous volcanic rocks have geochemical characteristics similar to those of the continental arc rocks which indicate the northward subduction of the Paleo Asian Ocean may have continued to the late Carboniferous. The volcanic association of this study together with the early Permian post-collisional magmatic rocks suggests that a tectonic transition from subduction-related continental margin arc volcanism to post-collisional magmatism occurred in the northern XMOB between the late Carboniferous and the early Permian.  相似文献   

19.
The Ordovician terrigenous, volcanic–sedimentary and volcanic sequences that formed in rifts of the active continental margin and igneous complexes of intraoceanic suprasubduction settings structurally related to ophiolites are closely spaced in allochthons of the Sakmara Zone in the southern Urals. The stratigraphic relationships of the Ordovician sequences have been established. Their age and facies features have been specified on the basis of biostratigraphic and geochronological data. The gabbro–tonalite–trondhjemite complex and the basalt–andesite–rhyolite sequence with massive sulfide mineralization make up a volcanic–plutonic association. These rock complexes vary in age from Late Ordovician to Early Silurian in certain structural units of the Sakmara Allochthon and to the east in the southern Urals. The proposed geodynamic model for the Ordovician in Paleozoides of the southern Urals reconstructs the active continental margin, whose complexes formed under extension settings, and the intraoceanic suprasubduction structures. The intraoceanic complexes display the evolution of a volcanic arc, back-, or interarc trough.  相似文献   

20.
Christoffer Nielsen  H. Thybo   《Tectonophysics》2009,470(3-4):298-318
The Cenozoic Baikal Rift Zone (BRZ) is situated in south-central Siberia in the suture between the Precambrian Siberian Platform and the Amurian plate. This more than 2000-km long rift zone is composed of several individual basement depressions and half-grabens with the deep Lake Baikal at its centre. The BEST (Baikal Explosion Seismic Transect) project acquired a 360-km long, deep seismic, refraction/wide-angle reflection profile in 2002 across southern Lake Baikal. The data from this project is used for identification of large-scale crustal structures and modelling of the seismic velocities of the crust and uppermost mantle. Previous interpretation and velocity modelling of P-wave arrivals in the BEST data has revealed a multi layered crust with smooth variation in Moho depth between the Siberian Platform (41 km) and the Sayan-Baikal fold belt (46 km). The lower crust exhibits normal seismic velocities around the rift structure, except for beneath the rift axis where a distinct 50–80-km wide high-velocity anomaly (7.4–7.6 ± 0.2 km/s) is observed. Reverberant or “ringing” reflections with strong amplitude and low frequency originate from this zone, whereas the lower crust is non-reflective outside the rift zone. Synthetic full-waveform reflectivity modelling of the high-velocity anomaly suggests the presence of a layered sequence with a typical layer thickness of 300–500 m coinciding with the velocity anomaly. The P-wave velocity of the individual layers is modelled to range between 7.4 km/s and 7.9 km/s. We interpret this feature as resulting from mafic to ultra-mafic intrusions in the form of sills. Petrological interpretation of the velocity values suggests that the intrusions are sorted by fractional crystallization into plagioclase-rich low-velocity layers and pyroxene- and olivine-rich high-velocity layers. The mafic intrusions were probably intruded into the ductile lower crust during the main rift phase in the Late Pliocene. As such, the intrusive material has thickened the lower crust during rifting, which may explain the lack of Moho uplift across southern BRZ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号