首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 491 毫秒
1.
Kontar et al. (2004) have shown how to recover mean source electron spectra in solar flares through a physical constraint regularization analysis of the bremsstrahlung photon spectra I() that they produce. They emphasize the use of non-square inversion techniques, and preconditioning combined with physical properties of the spectra to achieve the most meaningful solution to the problem. Higher-order regularization techniques may be used to generate forms with certain desirable properties (e.g., higher-order derivatives). They further note that such analysis may be used to infer properties of the electron energy spectra at energies well above the maximum photon energy observed. In this paper we apply these techniques to data from a solar flare observed by RHESSI on 26 February, 2002. Results using different orders of regularization are presented and compared for various time intervals. Clear evidence is presented for a change in the value of the high-energy cutoff in the mean source electron spectrum with time. We also show how the construction of the injected electron spectrum F0(E0) (assuming that Coulomb collisions in a cold target dominate the electron transport) is facilitated by the use of higher-order regularization methods.  相似文献   

2.
The Bragg-type, flat ADP crystal spectrometer, launched on board the INTERCOSMOS 16 satellite has been used for measurements of the X-ray spectra emitted from solar active region plasmas. During the period of the instrument operation (August–September, 1976) only a few active regions were present on the Sun (minimum of the solar activity). About 60 spectra have been registered. In the present paper using a spectrum averaged over 20 scans, we measured the wavelengths corresponding to the statistically significant spectral features seen in this spectrum in the wavelength range 9.14–9.33 Å. By comparison with the calculated line wavelengths and intensities predicted in the framework of the thermal model of the average active region, we performed the identification of these features. Besides rather prominent resonance, intercombination, and forbidden lines of the He-like ion Mg xi, it was possible to identify the satellite lines which correspond to 1s 2 nl - 1s2p nl transitions from the states with n = 2, 3, and 4. The present paper is the first in a series dealing with the INTERCOSMOS 16 Mg xi spectra.  相似文献   

3.
In this paper, grain-grain collisions, which were recently suggested by Biermann and Harwit (1980) to occur in cool circumstellar envelopes and to be responsible for the interstellar grain size spectrum, are investigated. On the basis of the author's fragmentation theory, it is shown that in the result of such collisions size distributions of the typen(a) a –p arise. In the steady-state case the exponentp ranges from 3.4 to 3.7. This result matches well with grain size spectra derived from the interstellar extinction curve.  相似文献   

4.
The objective of this paper is to compare the spectral features of the recently derived Group Sunspot Numbers (R G) and the traditional Wolf Sunspot Numbers (R Z) for the 1700–1995 period. In order to study the spectral features of both time series, two methods were used, including: (a) the multitaper analysis and (b) the wavelet analysis. Well-known features of the solar variability, such as the 98.6-yr (Gleissberg cycle), 10–11-yr (Schwabe cycle) and 5-yr (second solar harmonic) periodicities were identified with high confidence using the multitaper analysis. Also observed was a larger amount of power spread in high frequencies for R Z than for R G spectra. Furthermore, a multitaper analysis of two subsets, A (1700–1850) and B (1851–1995), has indicated that the main differences occurred in the first subset and seem to be due to uncertainties in the early observations. The wavelet transform, which allows observing the spectra evolution of both series, showed a strong and persistent 10–11-yr signal that remained during the whole period. The Meyer Wavelet Transform was applied to both R Z and R G. This study indicates that the main spectral characteristics of both series are similar and that their long-term variability has the same behavior.  相似文献   

5.
Faria  H. H.  Echer  E.  Rigozo  N. R.  Vieira  L. E. A.  Nordemann  D. J. R.  Prestes  A. 《Solar physics》2004,223(1-2):305-318
The objective of this paper is to compare the spectral features of the recently derived Group Sunspot Numbers (R G) and the traditional Wolf Sunspot Numbers (R Z) for the 1700–1995 period. In order to study the spectral features of both time series, two methods were used, including: (a) the multitaper analysis and (b) the wavelet analysis. Well-known features of the solar variability, such as the 98.6-yr (Gleissberg cycle), 10–11-yr (Schwabe cycle) and 5-yr (second solar harmonic) periodicities were identified with high confidence using the multitaper analysis. Also observed was a larger amount of power spread in high frequencies for R Z than for R G spectra. Furthermore, a multitaper analysis of two subsets, A (1700–1850) and B (1851–1995), has indicated that the main differences occurred in the first subset and seem to be due to uncertainties in the early observations. The wavelet transform, which allows observing the spectra evolution of both series, showed a strong and persistent 10–11-yr signal that remained during the whole period. The Meyer Wavelet Transform was applied to both R Z and R G. This study indicates that the main spectral characteristics of both series are similar and that their long-term variability has the same behavior.  相似文献   

6.
Finsterle  W.  Fröhlich  C. 《Solar physics》2001,200(1-2):393-406
Several candidates for low-order p modes (n 5) and possibly g modes were found by applying mode-detection techniques such as multivariate spectral regression analysis and time-frequency analysis to the VIRGO full-disc solar irradiance data. Three out of the candidates for low-order p modes could be confirmed by significant peaks in the un-treated power spectra in good agreement with theoretical predictions. The frequency of a fourth candidate for a low-order p mode lies some 2.8 Hz below the predicted frequency. The candidates found for g modes are less reliable, since none of them could be confirmed neither by significant peaks in the un-treated power spectra nor by the detection of multiplets.  相似文献   

7.

Solar energetic particles (SEPs) are released into the heliosphere by solar flares and coronal mass ejections (CMEs). They are mostly protons, with smaller amounts of heavy ions from helium to iron, and lesser amounts of species heavier than iron. The spectra of heavy ions have been previously studied mostly by using the fluence of the particles in an event-integrated spectrum in a small number of spectral snapshots. In this article, we analyze the temporal evolution of the heavy-ion spectra using two large SEP events (27 January 2012 and 7 January 2014) from the Solar TErrestrial Relations Observatory (STEREO) era using Advanced Composition Explorer (ACE) Solar Isotope Spectrometer (SIS) and Ultra Low Energy Isotope Spectrometer (ULEIS), Energetic Particles: Acceleration, Composition and Transport (EPACT) onboard Wind, and the STEREO-A (Ahead) and -B (Behind) Low-Energy Telescope (LET) and Suprathermal Ion Telescope (SIT) instruments, taking a large number of snapshots covering the temporal evolution of the event. We find large differences in the spectra of the ions after the main flux enhancement in terms of the grouping of similar species, but also in terms of the location of the instruments. Although it is somewhat less noticeable than in the case of the temporal evolution of protons (Doran and Dalla, Solar Phys. 291, 2071, 2016), we observe a wave-like pattern travelling through the heavy ion spectra from the highest energies to the lowest, creating an “arch” structure that later straightens into a power law after 18 to 24 hours.

  相似文献   

8.
9.
We study magnetic power spectra of active and quiet regions by using Big Bear Solar Observatory and SOHO/MDI measurements of longitudinal magnetic fields. The MDI power spectra were corrected with Gaussian Modulation Transfer Function. We obtained reliable magnetic power spectra in the high wave numbers range, up to k=4.6 Mm−1, which corresponds to a spatial scale l=1.4 Mm. We find that the occurrence of the spectral discontinuity at high wave numbers, k≥3 Mm−1, largely depends on the spatial resolution of the data and it appears at progressively higher wave numbers as the resolution of the data improves. The spectral discontinuity in the raw spectra is located at wave numbers about 3 times smaller than wave numbers, corresponding to the resolution of the data, and about 1.5–2.0 times smaller in the case of the noise- and-resolution corrected spectra. The magnetic power spectra for active and quiet regions are different: active-region power spectra are described as ∼k −1.7, while in a quiet region the spectrum behaves as ∼k −1.3. We suggest that the difference can be due to small-scale dynamo action in the quiet-Sun photosphere. Our estimations show that the dynamo can generate more than 6% of the observed magnetic power.  相似文献   

10.
In the preceding paper by Vengeret al. (1984) the results of observations of neutral gas in the vicinity of some galacticHii regions were considered; and it was demonstrated that 17 of the regions observed are surrounded by expandingHi envelopes. This paper describes a model of interaction between theHii regions and the surrounding interstellar medium constructed on the basis of the said results. It is assumed that the main dynamic factor in the envelope formation mechanism is the total stellar wind from the stars which ionze theHii regions. The employment of the observations of the line at =21 cm, of the radio continuum and IR dust continuum made it possible to determine the differential mass spectra of the stars exciting theHii zones and calculate some characteristics of the stellar population. The mass spectrum index of the objects considered turned out to be much higher than that for the mass spectra of background stars and scattered clusters of stars.  相似文献   

11.
The redshift dependence of spectral index in powerful radio galaxies   总被引:1,自引:0,他引:1  
We present and discuss in this paper the rest frame radio spectra (1–25 GHz) of a sample of fourteen radio galaxies atz >2 from the newly defined MRC/1Jy complete sample of 558 radio sources. These galaxies are among the most powerful radio sources known and range in luminosity from 1028-1028·8 watt Hz-1 at 1 GHz. We find that the median rest frame spectral index of this sample of galaxies atz >2 is significantly steeper than that of a matched luminosity sample of 3CRR galaxies which are at a much lower redshift (0.85 <z < 1.7). This indicates that spectral index correlates primarily with redshift, at least in the luminosity range considered here. The difference between the distributions of rest frame spectral curvatures for the two samples does not appear to be statistically significant. We suggest a new explanation for the steeper spectra of radio galaxies at high redshift involving steeper electron energy spectra at injection. Electron energy spectra are expected to steepen in a first-order Fermi acceleration process, at both non-relativistic and relativistic shock fronts, as the upstream fluid velocity decreases. This may well be the case at high redshifts: the hotter and denser circum-galactic medium at high redshifts could result in slower speeds for the hotspot and the jet material behind it. The smaller sizes of radio sources at higher redshifts provide support to this scenario. Since deceased.  相似文献   

12.
The hyperfine-structure lines of highly charged ions may allow one to look at hot rarefied astrophysical plasmas from a new perspective. In this paper, we discuss the spectral lines of ions and isotopes abundant at temperatures 105–107 K characteristic of a warm-hot intergalactic gas, a hot interstellar medium, starburst galaxies, their superwinds, and young supernova remnants. Observations of these lines will make it possible to study the bulk and turbulent motions in the observed objects and will supplement the information about the ionization state and chemical and isotopic compositions of the gas. The line of the main nitrogen isotope with wavelength λ = 5.65 mm is of particular interest. The wavelength of this line is well suited for observations of objects at z ≈ 0.15−0.6, when it is redshifted to the spectral range 6.5–9 mm widely used in ground-based radio observations, and, for example, for z ≥ 1.3, when the line is redshifted to 1.3 cm or farther. Modern and future radio telescopes and interferometers are capable of observing the 14N VII absorption by the warm-hot intergalactic gas at redshifts higher than z ≈ 0.15 in the spectra of the brightest millimeter-band sources. The submillimeter emission lines of the most abundant isotopes with hyperfine splitting may also be detected in the spectra of young supernova remnants. The article was translated by the authors.  相似文献   

13.
We study the internal structure of coronal mass ejections (CMEs) using wavelet analysis. We derive wavelet spectra, spatially integrated over regions of interest within LASCO C2 white-light coronographic images. These spectra show an inflection point, which we use to characterize each spectrum. In a diagram of flux vs. spatial scale of the inflection point, we find that the analyzed structures fall into two, distinct groups: a low-flux, small-spatial-scale group (which we call the “homogeneous” type), and a high-flux, larger-spatial-scale group (the “collimated” type). Interestingly, if we study different regions of a given image, all of the structures fall into one of the two groups described above. From a qualitative comparison with the images, it is clear that the two groups identified by the wavelet analysis correspond to two types of morphologies, which are seen as either more-homogeneous or more-collimated structures.  相似文献   

14.
We present here an analysis of the X-ray properties of a sample of LINER galaxies observed with the ROSAT PSPC and HRI instruments. A spatial analysis shows that the bulk of the X-ray emission is consistent with arising from a point source; some extended emission appears at weak emission levels. The X-ray spectra are formally best described by a power law with photon indexΓx ≈ −2 or thermal emission from a Raymond-Smith plasma with highly subsolar abundances (Z ≤ 0.1).Several emission mechanisms that might contribute to the observed X-ray spectra are discussed. In particular, we take the very subsolar abundances derived from Raymond-Smith fits as an indication of a more complex emission mechanism, like the presence of a second hard component or plasma out of equilibrium. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
We have used the Giant Meterwave Radio Telescope (GMRT) to measure the Galactic HI 21-cm line absorption towards 102 extragalactic radio continuum sources, located at high (|b| > 15°) Galactic latitudes. The Declination coverage of the present survey is δ}> - 45°. With a mean rms optical depth of ∼ 0.003, this is the most sensitive Galactic HI 21-cm line absorption survey to date. To supplement the absorption data, we have extracted the HI 21-cm line emission profiles towards these 102 lines of sight from the Leiden Dwingeloo Survey of Galactic neutral hydrogen. We have carried out a Gaussian fitting analysis to identify the discrete absorption and emission components in these profiles. In this paper, we present the spectra and the components. A subsequent paper will discuss the interpretation of these results.  相似文献   

16.
The existence proof of continuous spectra of eigenvaluess developed in the framework of the function space ofq-regularizations (Perdang, 1976) is extended in this paper by relaxing the severe restrictions previously imposed o the mathematical structure of the stellar stability equations. It is stressed that these local modes depend on the variable system in terms of which the linearized stellar structure equations are set up. We therefore search for a systematic procedure to select the most satisfactory system to analyze Local Stability. Our procedure is illustrated in great detail in the case of nonradial adiabatic stability. Moreover when applied to nonadiabatic perturbations it reveals the existence of two new types of local instability which seem to prevail in the majority of stars in a thermonuclear burning phase: (a) a nonrdial local secular instability; (b) a radial local nuclear instability. Numerical test calculations exhibit that the latter helps us to understand certain evolutionary features of stars, in particular it provides an interpretation of Hayashiet al.'s (1962) rule.  相似文献   

17.
Kontar  Eduard P.  Brown  John C.  McArthur  Guillian K. 《Solar physics》2002,210(1-2):419-429
Past analyses of flare hard X-ray (HXR) spectra have largely ignored the effect of nonuniform ionization along the electron paths in the thick-target model, though it is very significant for well-resolved spectra. The inverse problem (photon spectrum to electron injection spectrum F 0(E 0)) is disturbingly non-unique. However, we show that it is relatively simple to allow for the effect in forward fitting of parametric models of F 0(E 0)) and provide an expression to evaluate it for the usual single power-law form of F 0(E 0)).The expression involves the column depth N * of the transition region in the flare loop as one of the parameters so data fitting can enable derivation of N * (and its evaporative evolution) as part of the fitting procedure. The fit to RHESSI data on four flares for a single power law F 0(E 0)) is much improved when ionization structure is included compared to when the usual fully ionized approximation is used. This removes the need, in these events at least, to invoke broken power laws, or other forms, of the acceleration spectrum F 0(E 0)) to explain the observed photon spectrum  相似文献   

18.
A simple model is presented to account for theYohkoh flare observations of Feldmanet al. (1994), and Masuda (1994). Electrons accelerated by the flare are assumed to encounter the dense, small regions observed by Feldmanet al. at the tops of impulsively flaring coronal magnetic loops. The values of electron density and volume inferred by Feldmanet al. imply that these dense regions present an intermediate thick-thin target to the energised electrons. Specifically, they present a thick (thin) target to electrons with energy much less (greater) thanE c , where 15 keV <E c < 40 keV. The electrons are either stopped at the loop top or precipitate down the field lines of the loop to the footpoints. Collisional losses of the electrons at the loop top produce the heating observed by Feldmanet al. and also some hard X-rays. It is argued that this is the mechanism for the loop-top hard X-ray sources observed in limb flares by Masuda. Adopting a simple model for the energy losses of electrons traversing the dense region and the ambient loop plasma, hard X-ray spectra are derived for the loop-top source, the footpoint sources and the region between the loop top and footpoints. These spectra are compared with the observations of Masuda. The model spectra are found to qualitatively agree with the data, and in particular account for the observed steepening of the loop-top and footpoint spectra between 14 and 53 keV and the relative brightnesses of the loop-top and footpoint sources.  相似文献   

19.
The long period classical cepheid RZ Vel (HD 73502) is known to be a member of an OB association, Vel OB1 in Vela, and a high metallicity is ascribed to it by the photometric work of Eggen (1982). We have done an abundance analysis for this long period (P = 20.4 days) and hence young (age ≈ 1.80×107 yr) classical cepheid using high resolution CCD spectra with good S/N ratio. We have used a detailed model atmosphere method to derive the abundances of the light elements C, O, A1, S and of many Fe-peak elements and a few s-process elements. Our present work indicates near solar abundance for most of the elements for RZ Vel and hence we do not confirm the high metallicity derived photometrically by Eggen (1982) for this star  相似文献   

20.
We have investigated spectral features of strong radio burst emission for the 21st cycle of solar activity. The maximum daily radio fluxes in 8 frequency ranges are analyzed. For every year, the classification of these daily spectra is obtained by the cluster analysis method.We have shown that strong bursts are characterized by the stable shape of the mean radio emission spectra. For these bursts the total level of radio emission does not depend on the phase of the solar 11-yr cycle and varies with the quasi-period of 4 yr.The basic features of burst spectra can be explained by the gyrosynchrotron radiation of nonthermal electrons and plasma radiation at the second harmonic of plasma frequency. We supposed that in the generation region of centimetric emission, if the strength of the magnetic field B 100 G, the number of microbursts can amount to (6–7) × 103. In the generation region of decimetric emission, the energy of Langmuir waves changes as W l n e 0.4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号