首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Daily and zonal (latitudinal belt) averages of heat and momentum fluxes were computed using bulk aerodynamic formulae, from the meteorological parameters measured onboard M. S. Thuleland during the sixth Indian scientific expedition to Antarctica (26th November, 1986 to 22nd March, 1987). Both estimates showed significant variations, the momentum flux showing the largest variation. The maximum values of sensible and latent heat fluxes were observed over the 30°–40° S and 10°–20° S zones during the southern summer and fall respectively while the minimum values of latent heat flux were observed in the 60°–70° S zone for both seasons. The sensible heat flux minimum was observed in the 50°°60° S and 60°–70° S zones for summer and fall, respectively. Higher momentum flux values over the 40°–50° S zone in summer shifted to the 50°–60° S zone during fall.  相似文献   

2.
北京冬季降水粒子谱及其下落速度的分布特征   总被引:2,自引:0,他引:2  
为了深入探讨北京冬季云降水的微物理特征,提高雷达反演冬季固态降水的精度和冬季降水的预报水平,利用PARSIVEL(Particle Size and Velocity)降水粒子谱仪所观测的冬季降水粒子谱,结合地面显微镜粒子图像和云雷达数据,对比分析了北京海坨山地区冬季过冷雨滴、霰粒、雪花、混合态降水的粒子谱和下落速度特征,得到主要结论如下:(1)霰粒降水过程的云顶最高,整层的含水量最大,低层的退偏振比(LDR)最小,粒子更接近于球形;降雪过程的云顶最低,云中含水量最少,低层的退偏振比较大;混合态降水过程的雷达回波强度和高度特征介于两者之间,但低层的退偏振比最大;(2)在云中上升或下沉气流及湍流的影响下,过冷雨滴、霰粒和雪的下落速度均对称分布于各自理论下落末速度曲线的两侧。因此可根据粒子浓度相对于其直径和速度分布的中轴线位置,判断出该段降水过程中的主要粒子形态;(3)冬季雪花、霰粒和混合态降水粒子下落速度分布的散度较雨滴更大,其原因是由于冷云降水过程的粒子形态复杂,且固态粒子下落过程中更容易受破碎、聚并和凇附等微物理过程影响;(4)在4种降水类型中,雪的平均直径和离散度最大,雨滴最小;混合态降水粒子的总数浓度最大,雨滴的总数浓度最低,并且4种降水类型的粒子数浓度、平均直径和离散度均随降水强度的增大而增大。   相似文献   

3.
华南秋旱的大气环流异常特征   总被引:4,自引:2,他引:2  
简茂球  乔云亭 《大气科学》2012,36(1):204-214
利用实测降水量资料及NCEP再分析资料, 通过统计方法分析了华南秋旱及其相关的环流异常特征。结果发现, 华南秋旱以全区性的干旱出现居多。华南秋旱事件对应的同期海温异常分布型大致可分两类。一类是热带中东太平洋的负海表温度距平 (SSTA) 区的极值中心位于赤道东太平洋, 在海洋性大陆和热带西太平洋有马蹄形的正SSTA, 而在热带西印度洋, 南海至日本东、 南部西北太平洋是负SSTA; 另一类是热带中东太平洋正SSTA极值中心位于赤道中太平洋, 热带—副热带西太平洋、 南海和热带印度洋为负SSTA区, 副热带北太平洋东部和南太平洋东部为显著的正SSTA。 与第一类SSTA相关的华南秋旱与海洋性大陆区域上空的上升运动异常增强 (与其下垫面海温异常偏暖有关)。而与第二类SSTA相关的华南秋旱则与中纬度环流的长波调整造成的东北亚上空的异常上升运动距平有关。而两类华南秋旱都是通过大气环流对华南地区的异常下沉运动产生强迫作用而产生的。另外, 华南秋旱还与菲律宾和台湾东侧洋面上空出现上升运动距平有关。两类华南秋旱都与南海中北部热带气旋频数偏少, 菲律宾和台湾东侧热带气旋频数偏多有关, 因此, 使得登陆华南的热带气旋偏少, 导致华南秋季干旱。  相似文献   

4.
Indian monsoon is the most prominent of the world’s monsoon systems which primarily affects synoptic patterns of India and adjacent countries such as Iran in interaction with large-scale weather systems. In this article, the relationship between the withdrawal date of the Indian monsoon and the onset of fall precipitation in Iran has been studied. Data included annual time series of withdrawal dates of the Indian monsoon prepared by the Indian Institute for Tropical Meteorology, and time series of the first date of 25 mm accumulated precipitation over Iran’s synoptic weather stations in a 10-day period which is the basis for the cultivation date. Both time series were considered in Julian calendar with the starting date on August 1. The studied period is 1960–2014 which covers 55 years of data from 36 meteorological stations in Iran. By classifying the withdrawal dates of the Indian monsoon in three stages of late, normal, and early withdrawals, its relation with the onset of fall precipitation in western, southwestern, southern, eastern, central, and northern regions of Iran was studied. Results demonstrated that in four out of the six mentioned regions, the late withdrawal of the Indian monsoon postpones the onset of fall precipitation over Iran. No significant relation was found between the onset of fall precipitation in central region of Iran and the monsoon’s withdrawal date. In the western, southwestern, southern, and eastern regions of Iran, the late monsoon delays the onset of fall’s precipitation; while in the south Caspian Sea coastal area, it causes the early onset of autumnal precipitation. The lag in onset of fall precipitation in Iran which is coordinated with the late withdrawal of monsoon is accompanied with prolonged subtropical high settling over Iran’s plateau that prevents the southward movement of polar jet frontal systems. Such conditions enhance northerly wind currents over the Caspian Sea which, in turn, increase the precipitation in Caspian coastal provinces, which has a different behavior from the overall response of Iran’s climate to the late withdrawal of monsoon. In the phase of early monsoon withdrawal, the subtropical jet is located at the 200 hPa level in 32.5° north latitude; compared with the late withdrawal date, it shows a 2° southward movement. Additionally, the 500 hPa trough is also located in the Eastern Mediterranean, and the MSL pressure anomaly is between ? 4 to ? 7 hPa. The Mediterranean trough in the late withdrawal phase is located in its central zones. It seems that the lack of significant correlation between late withdrawal date of Indian monsoon and late fall’s precipitation onset in the central region of Iran depends on three reasons:1. Lack of adequate weather stations in central region of Iran.2. Precipitation standard deviations over arid and warm regions are high.3. Central flat region of Iran without any source of humidity is located to the lee side of Zagros mountain range. So intensification or development of frontal systems is almost prohibited over there.  相似文献   

5.
This paper shows demonstrable improvement in the global seasonal climate predictability of boreal summer (at zero lead) and fall (at one season lead) seasonal mean precipitation and surface temperature from a two-tiered seasonal hindcast forced with forecasted SST relative to two other contemporary operational coupled ocean–atmosphere climate models. The results from an extensive set of seasonal hindcasts are analyzed to come to this conclusion. This improvement is attributed to: (1) The multi-model bias corrected SST used to force the atmospheric model. (2) The global atmospheric model which is run at a relatively high resolution of 50 km grid resolution compared to the two other coupled ocean–atmosphere models. (3) The physics of the atmospheric model, especially that related to the convective parameterization scheme. The results of the seasonal hindcast are analyzed for both deterministic and probabilistic skill. The probabilistic skill analysis shows that significant forecast skill can be harvested from these seasonal hindcasts relative to the deterministic skill analysis. The paper concludes that the coupled ocean–atmosphere seasonal hindcasts have reached a reasonable fidelity to exploit their SST anomaly forecasts to force such relatively higher resolution two tier prediction experiments to glean further boreal summer and fall seasonal prediction skill.  相似文献   

6.
华南前汛期持续暴雨环流分型初步研究   总被引:3,自引:0,他引:3       下载免费PDF全文
采用1961—2010年NCEP/NCAR逐日再分析资料和台站观测降水量资料,按一定标准选取了华南前汛期24个持续暴雨过程;并且按基本判据确定逐年华南夏季风降水开始日期。然后依据南亚高压环流型和相对于该年夏季风降水开始的早晚,将这些暴雨过程划分为夏季风降水前、后南亚高压东部型,夏季风降水后南亚高压带状、西部型共4个类型;其中,夏季风后南亚高压西部型次数最多、平均持续时间最长。所有类型持续暴雨的相同点是:广东东北部附近均为暴雨频率和雨量高值区;暴雨期间华南150 h Pa位势高度增加、500 h Pa位势高度减少;华南处在150 h Pa偏西风急流南侧辐散区中;850 h Pa华南沿海有明显的西南气流,低层辐合在华南东北部最明显;两广沿海为可降水量大值区;华南的整层水汽输送主要呈现西南向。不同点是:夏季风后南亚高压西部型平均雨量较小,夏季风后南亚高压带状型与西部型在印度洋上存在明显的偏东风高空急流;夏季风后南亚高压类型在两广沿海的可降水量数值较大。  相似文献   

7.
冰云是影响气候变化最为重要的因子之一,其生命周期的变化在很大程度上决定了冰云的气候辐射效应。冰云粒子下降末速度是影响冰云生命周期的关键参数。为了开展对冰云粒子下降末速度的研究,利用兰州大学半干旱气候与环境监测站Ka波段毫米波云雷达2013年8月至2015年7月连续观测数据,反演了冰云粒子的下降末速度(Vt),并根据雷达反射率因子(Z)与Vt的关系计算了拟合因子a、b的值;在此基础上应用聚类分析方法,对比分析了4种不同特性冰云Z、Vt和拟合因子a、b的时、空分布特征,进而尝试通过参数垂直分布特征识别研究云中不同位置上云微物理过程的变化。结果表明:冰云粒子下降末速度的分布与雷达反射率因子有很好的对应,最大频率都出现在距离地面约7 km高度处,且具有显著的季节变化,粒子下降末速度在暖季较冷季可增大25%,峰值出现在6月和9月;云层较厚且持续时间长的第一、三类冰云,其雷达反射率因子、粒子下降末速度及拟合因子a和b的平均值都显著大于云层较薄且持续时间短的第二、四类云。垂直方向上,Z、Vt和拟合因子b从云顶到云...  相似文献   

8.
ABSTRACT

Because of the high elevation and complex topography of the Tibetan Plateau (TP), the role of lakes in the climate system over the Tibetan Plateau is not well understood. For this study, we investigated the impact of lake processes on local and regional climate using the Weather Research and Forecasting (WRF) model, which includes a one-dimensional physically based lake model. The first simulation with the WRF model was performed for the TP over the 2000–2010 period, and the second was carried out during the same period but with the lakes filled with nearby land-use types. Results with the lake simulation show that the model captures the spatial and temporal patterns of annual mean precipitation and temperature well over the TP. Through comparison of the two simulations, we found that the TP lakes mainly cool the near-surface air, inducing a decreasing sensible heat flux for the entire year. Meanwhile, stronger evaporation produced by the lakes is found in the fall. During the summer, the cooling effect of the lakes decreases precipitation in the surrounding area and generates anomalous circulation patterns. In conclusion, the TP lakes cool the near-surface atmosphere most of the time, weaken the sensible heat flux, and strengthen the latent heat flux, resulting in changes in mesoscale precipitation and regional-scale circulation.  相似文献   

9.
Fall velocity-diameter relationships for four different snowflake types (dendrite, plate, needle, and graupel) were investigated in northeastern South Korea, and a new algorithm for classifying hydrometeors is proposed for distrometric measurements based on the new relationships. Falling ice crystals (approximately 40 000 particles) were measured with a two-dimensional video disdrometer (2DVD) during a winter experiment from 15 January to 9 April 2010. The fall velocity-diameter relationships were derived for the four types of snowflakes based on manual classification by experts using snow photos and 2DVD measurements: the coefficients (exponents) for different snowflake types were 0.82 (0.24) for dendrite, 0.74 (0.35) for plate, 1.03 (0.71) for needle, and 1.30 (0.94) for graupel, respectively. These new relationships established in the present study (PS) were compared with those from two previous studies. Hydrometeor types were classified with the derived fall velocity-diameter relationships, and the classification algorithm was evaluated using 3× 3 contingency tables for one rain-snow transition event and three snowfall events. The algorithm showed good performance for the transition event: the critical success indices (CSIs) were 0.89, 0.61 and 0.71 for snow, wet-snow and rain, respectively. For snow events, the algorithm performance for dendrite and plate (CSIs = 1.0 and 1.0, respectively) was better than for needle and graupel (CSIs = 0.67 and 0.50, respectively).  相似文献   

10.
《大气与海洋》2013,51(2):181-197
Abstract

Moisture recycling over the Mackenzie basin is investigated by estimating the precipitation recycling ratio (the ratio of precipitation derived from local evaporation to the total precipitation within the basin) for the region with the National Centers for Environmental Prediction (NCEP) reanalysis dataset and the Meteorological Service of Canada (MSC) precipitation climatology. The results suggest that recycling is very active over the region during the warm season (April – August) and extremely inactive during the cold season. The annual recycling ratio estimated for the basin is about 0.25, which is close to that estimated by others for the Mississippi and Amazon basins despite the lower annual evapotranspiration over the Mackenzie basin.

The high recycling ratios and the recycling patterns estimated for the basin during the warm season are found to be consequences of the unique topographical and climatic settings characterizing the region. Analysis of conditions during the years having anomalous spring and summer precipitation suggests that the large‐scale atmospheric setting could act in concert with the basin's unique topographic and surface characteristics to increase or to decrease precipitation and its recycling over the basin, depending on whether the basin is under the influence of a persistent large‐scale low or a high pressure system. In the former case, much of the recycled precipitation would fall over the north‐western parts of the basin where the runoff ratios are relatively high, and thus enhance the summer discharge from the basin. When the basin is under the influence of a persistent high pressure system, much of the recycled precipitation would fall over the southern part of the basin where the runoff ratios are relatively low, and thus reduce the discharge from the basin. It is suggested that this latter effect might have contributed to the record low summer discharge from the basin during 1995.  相似文献   

11.
冬半年欧亚雪盖变化对东亚环流的影响   总被引:7,自引:1,他引:6  
杨秋明 《气象学报》1998,56(5):627-634
对1973~1994年期间欧亚雪盖和东亚500hPa高度距平资料进行旋转扩展主成分分析,研究了冬半年欧亚雪盖异常与后期夏半年东亚环流分布连续演变的关系及其可能机制。结果表明前期秋冬春季欧洲、中亚和东亚中高纬雪盖异常不同的动态变化激发出具有不同持续性的东亚低频流型,而夏半年东亚副热带环流纬向扩展型演变与前期冬半年欧亚雪盖异常无关。  相似文献   

12.
The role of terrestrial snow cover in the climate system   总被引:2,自引:0,他引:2  
Snow cover is known to exert a strong influence on climate, but quantifying its impact is difficult. This study investigates the global impact of terrestrial snow cover through a pair of GCM simulations run with prognostic snow cover and with all snow cover on land eliminated (NOSNOWCOVER). In this experiment all snowfall over land was converted into its liquid–water equivalent upon reaching the surface. Compared with the control run, NOSNOWCOVER produces mean-annual surface air temperatures up to 5 K higher over northern North America and Eurasia and 8–10 K greater during winter. The globally averaged warming of 0.8 K is one-third as large as the model’s response to 2 × CO2 forcing. The pronounced surface heating propagates throughout the troposphere, causing changes in surface and upper-air circulation patterns. Despite the large atmospheric warming, the absence of an insulating snow pack causes soil temperatures in NOSNOWCOVER to fall throughout northern Asia and Canada, including extreme wintertime cooling of over 20 K in Siberia and a 70% increase in permafrost area. The absence of snow melt water also affects extratropical surface hydrology, causing significantly drier upper-layer soils and dramatic changes in the annual cycle of runoff. Removing snow cover also drastically affects extreme weather. Extreme cold-air outbreaks (CAOs)—defined relative to the control climatology—essentially disappear in NOSNOWCOVER. The loss of CAOs appears to stem from both the local effects of eliminating snow cover in mid-latitudes and a remote effect over source regions in the Arctic, where −40°C air masses are no longer able to form.  相似文献   

13.
A general parameterization for solid and liquid hydrometeors is presented. hydrometeors basically are viewed as porous spheroids with the following variable parameters: diameter, axial ratio, mass, and porosity. Based on this parameterization a functional dependence on the Reynolds number of the drag of hydrometeors is derived, which is based on boundary layer theory. The basic form of this functional dependence is consistent with viscous theory and the inertial drag at low Reynolds numbers is predicted with good accuracy by matching the results from the boundary layer theory with Oseen's theory of creeping motion. Based on this solution a general semi-empirical expression for the Reynolds number and fall speed of particles is found. The results from the present theory are in remarkable agreement with experiments: The errors generally are < 5–10% for a wide variety of hydrometeors in the range of Reynolds numbers 0<NRe<5×105, including columnar and variously branched planar ice crystals, rimed and unrimed aggregates, lump, conical, and hexagonal graupel, hail, and rain drops. The present parameterisation aims far beyond the limits of the conventional methods since it is suitable for mixed-phase models of the microphysics of precipitation with continuously varying particle mass and shape characteristics and including processes such as depositional growth of ice crystals under varying environmental conditions, collisional growth of particles, and melting.  相似文献   

14.
2009年秋至2010年春我国西南地区严重干旱的成因分析   总被引:20,自引:10,他引:20  
黄荣辉  刘永  王林  王磊 《大气科学》2012,36(3):443-457
我国西南地区从2009年秋季到2010年春季发生了严重干旱,这次干旱无论持续时间和发生区域或降水减少程度都是近50年来所罕见的,因而本文利用ERA-40再分析资料和海温资料从热带西太平洋和热带印度洋热力异常对热带西太平洋和南亚上空大气环流的影响来分析了这次西南地区干旱发生的成因。分析结果表明:从2009年秋到2010年春季,热带西太平洋和热带印度洋处于升温状态,它使得热带西太平洋上空产生反气旋异常环流,造成了西南气流异常在我国东南沿海加强,而华南和华中地区上空处于低槽控制,因而在高原东部为槽后西北气流和下沉气流所控制,造成了从孟加拉湾来的水汽很难到达云贵高原,从而引起了此区域降水长期偏少。并且,分析结果还表明了中高纬度地区的环流异常对此次严重干旱也有重要影响。由于从2009年冬季到2010年春季中高纬度准定常行星波传播的极地波导偏强,而低纬波导偏弱,这导致波的E-P通量在60°N附近对流层和平流层为辐合,而在35°N附近对流层中、上层为辐散,从而引起纬向平均西风在60°N附近对流层和平流层减弱,而在35°N附近对流层中、上层加强,造成了北极涛动(AO)为很大的负值。由于AO为负值,东亚冬季冷空气活动强且路径偏东,使得到达西南地区冷空气偏弱,从而引起西南地区持续性严重干旱的发生。  相似文献   

15.
东亚夏季风指数的年际变化与东亚大气环流   总被引:66,自引:9,他引:66  
文中从夏季东亚热带、副热带环流系统特点出发 ,定义了能较好表征东亚夏季风环流年际变化的特征指数 ,并分析了东亚夏季风指数的年际变化与东亚大气环流及夏季中国东部降水的关系。文中定义的东亚夏季风指数既反映了夏季东亚大气环流风场的变化特征 ,也较好地反映了夏季中国东部降水的年际变化特征。此外 ,还探讨了东亚夏季风指数变化的先兆信号  相似文献   

16.
We compared the regional synoptic patterns and local meteorological conditions during persistent and non-persistent pollution events in Beijing using US NCEP–Department of Energy reanalysis outputs and observations from meteorological stations. The analysis focused on the impacts of high-frequency (period < 90 days) variations in meteorological conditions on persistent pollution events (those lasting for at least 3 days). Persistent pollution events tended to occur in association with slow-moving weather systems producing stagnant weather conditions, whereas rapidly moving weather systems caused a dramatic change in the local weather conditions so that the pollution event was short-lived. Although Beijing was under the influence of anomalous southerly winds in all four seasons during pollution events, notable differences were identified in the regional patterns of sea-level pressure and local anomalies in relative humidity among persistent pollution events in different seasons. A region of lower pressure was present to the north of Beijing in spring, fall, and winter, whereas regions of lower and higher pressures were observed northwest and southeast of Beijing, respectively, in summer. The relative humidity near Beijing was higher in fall and winter, but lower in spring and summer. These differences may explain the seasonal dependence of the relationship between air pollution and the local meteorological variables. Our analysis showed that the temperature inversion in the lower troposphere played an important part in the occurrence of air pollution under stagnant weather conditions. Some results from this study are based on a limited number of events and thus require validation using more data.  相似文献   

17.
冬季亚欧500hPa高度与下表面温度异常的大尺度相关型   总被引:3,自引:0,他引:3  
使用NCEP/NCAR再分析资料,分析了冬季欧亚地区500hPa高度距平场与下表面温度距平场间的大尺度相关空间型,结果表明,两个场整体相关程度远高于随机水平,得到4对显著的耦合空间型,解释两场间协方差平方和的86%和各自方差的58%和38%,反映500hPa环流两种不同纬带的纬向环流异常和两种不同形态的经向环流异常,两个场距平之间的配合是受静力平衡关系支配的,秋季的表面温度异常能给出中低续500hPa高度距平符号的信息。  相似文献   

18.
We present an analysis of a regional simulation of present-day climate (1981–1990) over southern South America. The regional model MM5 was nested within time-slice global atmospheric model experiments conducted by the HadAM3H model. We evaluate the capability of the model in simulating the observed climate with emphasis on low-level circulation patterns and surface variables, such as precipitation and surface air mean, maximum and minimum temperatures. The regional model performance was evaluated in terms of seasonal means, seasonal cycles, interannual variability and extreme events. Overall, the regional model is able to capture the main features of the observed mean surface climate over South America, its seasonal evolution and the regional detail due to topographic forcing. The observed regional patterns of surface air temperatures (mean, maxima and minima) are well reproduced. Biases are mostly within 3°C, temperature being overestimated over central Argentina and underestimated in mountainous regions during all seasons. Biases in northeastern Argentina and southeastern Brazil are positive during austral spring season and negative in other seasons. In general, maximum temperatures are better represented than minimum temperatures. Warm bias is larger during austral summer for maximum temperature and during austral winter for minimum temperature, mainly over central Argentina. The broad spatial pattern of precipitation and its seasonal evolution are well captured; however, the regional model overestimates the precipitation over the Andes region in all seasons and in southern Brazil during summer. Precipitation amounts are underestimated over the La Plata basin from fall to spring. Extremes of precipitation are better reproduced by the regional model compared with the driving model. Interannual variability is well reproduced too, but strongly regulated by boundary conditions, particularly during summer months. Overall, taking into account the quality of the simulation, we can conclude that the regional model is capable in reproducing the main regional patterns and seasonal cycle of surface variables. The present reference simulation constitutes the basis to examine the climate change simulations resulting from the A2 and B2 forcing scenarios which are being reported in a separate study.  相似文献   

19.
北极海冰变化的时间和空间型   总被引:14,自引:0,他引:14  
汪代维  杨修群 《气象学报》2002,60(2):129-138
利用 4 4a(195 1~ 1994年 )北极海冰密度逐月资料 ,分析提出了一种与北极冰自然季节变化相吻合的分季法 ,并根据这种分季法 ,使用EOF分解 ,揭示了北极各季海冰面积异常的特征空间型及其对应的时间变化尺度。结果表明 :(1)北极冰面积异常变化的关键区 ,冬季 (2~ 4月 )主要位于北大西洋一侧的格陵兰海、巴伦支海和戴维斯海峡以及北太平洋一侧的鄂霍次克海和白令海 ,夏季 (8~ 10月 )则主要限于从喀拉海、东西伯利亚海、楚科奇海到波佛特海的纬向带状区域内 ,格陵兰海和巴伦支海是北极海冰面积异常变化的最重要区域 ;(2 )春 (5~ 7月 )、秋 (11月~次年 1月 )季各主要海区海冰面积异常基本呈同相变化 ,夏季东西伯利亚海、楚科奇海、波佛特海一带海冰面积异常和喀拉海呈反相变化 ,而冬季巴伦支海、格陵兰海海冰面积异常和戴维斯海峡、拉布拉多海、白令海、鄂霍次克海的海冰变化呈反相变化 ;(3)北极冰总面积过去 4 4a来确实经历了一种趋势性的减少 ,并且叠加在这种趋势变化之上的是年代尺度变化 ,其中春季 (5~ 7月 )海冰面积异常变化对年平均北极冰总面积异常变化作出了主要贡献 ;(4)位于北太平洋一侧极冰面积异常型基本具有半年的持续性 ,而位于北大西洋一侧极冰面积异常型具有半年至一年的持续性  相似文献   

20.
霰粒子下落速度对云系及降水发展影响的数值研究   总被引:1,自引:0,他引:1  
云和降水的形成是动力过程与微物理过程相瓦作用的产物,云数值模式中的微物理过程参数化方案对云和降水发展过程有直接影响.在云数值模式中,粒子群体的下落速度都足用质量加权下落末速度公式来表达,而且不同的模式采用的公式存在差异,质量加权下落末速度中参数取值不同,引起的粒子下落末速度不同.为了了解粒子下落末速度变化对云系和降水发展的影响,对2004年8月12日一次冷锋降水过程,利用中尺度ARPS模式做模拟研究.在分析降水机制的基础上,对霰这一下落末速度较大的降水粒子,做下落末速度(Vg)的敏感性试验,从动力、热力、微物理的角度,通过数值模拟对比分析了霰下落末速度减小对降水分布和强度、云系的移动、云系的宏观热力和动力场的影响,并给出了影响的途径和机理.结果表明:Vg变化对云的厚度和含水量有影响,下落末速度减小对冰晶、雪、霰的含水量垂直分布及分布随时间变化影响较大,其中,霰的含水量显著减少,雪的含水量增加,并调整了云中水质粒的空间分布;Vg减小对地面累积总降水量的分布影响较小,但对降水强度的分布影响较大.Vg减小时,降水强度减小,降水时间延迟,因此,霰下落末速度变化将调整底层降水分布;对于云系的移动情况基本上没有影响,但对云中水质粒的空间分布有影响;霰下落末速度变化影响云中霰的融化和撞冻增长从而影响热力场.末速度减小时,霰和雪的融化罱明显减小,导致非绝热冷却率的减小,引起下沉气流的减小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号