首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report the structure of a novel sunscreen based on the scytoneman skeleton. This pigment, scytonemin-3a-imine, was isolated from cultures of the cyanobacterium, Scytonema hoffmani, only when grown under high to intense (300–1500+ μmol quanta m−2 s−1) light conditions, with or without added UVR (ultraviolet radiation). It was also isolated from samples of natural cyanobacterial mats growing in shallow/short hydroperiod fresh water (Florida Everglades), soils (Loxahatchee, Florida) and saline cyanobacterial mats (Eleuthera, The Bahamas). These natural samples were all growing under intense (e.g. > 1500 μmol quanta m−2 s−1) light conditions. Scytonemin-3a-imine may eventually become a biomarker for such biota.Characterization included UV/Vis spectrophotometry, Fourier transform infrared (FTIR) spectroscopy, matrix assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometry (MS and MSn), and both 1- and 2-D 1H nuclear magnetic resonance (NMR) spectrometry. Derivatization (NaBH4 reduction, acetylation, deuterium exchange) were utilized to confirm structural features. The UV/Vis spectrum had maxima at 237, 366, 437 and 564 nm. The absorption of UVR is in line with other scytoneman-based pigments. The strong visible absorption bands (437 and 564 nm) indicate an alternate or additional physiological role for the pigment. We propose that it may protect both the chlorophyll reaction centers and the cytochromes from excess radiation. We speculate that excitation of the cytochromes, potentially leading to excess electron transport, or photo-oxidative destruction of the cytochromes, may enhance reactive oxygen species (ROS) generation.  相似文献   

2.
Three models were examined to predict C aromaticity (fa) of biochars based on either their elemental composition (C, H, N and O) or fixed C (FC) content. Values of fa from solid state 13C nuclear magnetic resonance (NMR) analysis with Bloch-decay (BD) or direct polarisation (DP) techniques, concentrations of total C, H, N, and organic O, and contents of FC of 60 biochars were either compiled from the literature (dataset 1, n = 52) or generated in this study (dataset 2, n = 8). Models were first calibrated with dataset 1 and then validated with dataset 2. All models were able to fit dataset 1 when atomic H to C ratio (H/C) < 1 (except two ash rich biochars) and to estimate fa of HF treated biochars (H/C < 1). Model 1, which was based on values of H/C only and calibrated with a root mean square of error (RMSE) of 0.04 fa-unit (n = 41), could predict the experimental data with a RMSE = 0.02 fa-unit (n = 6). Model 2, which was based on biochar elemental composition data, showed the most accurate prediction, with a RMSE of 0.03 fa-unit (n = 41) for the calibration data, and of 0.02 fa-unit (n = 6, H/C < 1) for the validation data. Model 3, which was based on contents of FC and C, and modified with a correction factor of 0.96, displayed the highest RMSE (0.06 fa-unit, n = 19) among the three models. Models 1 and 2 did not work properly for samples having either an H/C ratio > 1, high concentrations of carbonate or high inorganic H. These models need to be further tested with a wider range of biochars before they can be recommended for classification of biochar stability.  相似文献   

3.
《Quaternary Science Reviews》2003,22(10-13):961-966
Luminescence dating of loess has generally been restricted to a maximum of 100–150 ka, due primarily to the anomalous fading behaviour of feldspar. Recent studies have shown that the far-red luminescence from feldspar does not suffer from anomalous fading, and as such may have the potential to extend the age range of the luminescence dating method. The purpose of the present project is to further develop luminescence dating techniques using red and far-red emissions to date loess older than 100–150 ka. We present results demonstrating the presence of a far-red (λ>665 nm) IRSL emission in Chinese loess, and describe a series of basic experiments which seek to characterise aspects of this emission. These include an examination of sensitivity change, and dose reconstruction tests via the employment of a modified single aliquot regeneration (SAR) protocol. It is demonstrated that (a) far-red IRSL can be observed from Chinese loess; (b) far-red IRSL signal is highly reproducible; and (c) a range of laboratory doses from 100 up to 600 Gy can be accurately recovered using a modified SAR procedure.  相似文献   

4.
《Applied Geochemistry》2004,19(11):1655-1686
Water samples from short-screen monitoring wells installed along a 90-km transect in southwestern Kansas were analyzed for major ions, trace elements, isotopes (H, B, C, N, O, S, Sr), and dissolved gases (He, Ne, N2, Ar, O2, CH4) to evaluate the geochemistry, radiocarbon ages, and paleorecharge conditions in the unconfined central High Plains aquifer. The primary reactions controlling water chemistry were dedolomitization, cation exchange, feldspar weathering, and O2 reduction and denitrification. Radiocarbon ages adjusted for C mass transfers ranged from <2.6 ka (14C) B.P. near the water table to 12.8 ± 0.9 ka (14C) B.P. at the base of the aquifer, indicating the unconfined central High Plains aquifer contained a stratified sequence of ground water spanning Holocene time. A cross-sectional model of steady-state ground-water flow, calibrated using radiocarbon ages, is consistent with recharge rates ranging from 0.8 mm/a in areas overlain by loess to 8 mm/a in areas overlain by dune sand. Paleorecharge temperatures ranged from an average of 15.2 ± 0.7 °C for the most recently recharged waters to 11.6 ± 0.4 °C for the oldest waters. The temperature difference between Early and Late Holocene recharge was estimated to be 2.4 ± 0.7 °C, after taking into account variable recharge elevations. Nitrogen isotope data indicate NO3 in paleorecharge (average concentration=193 μM) was derived from a relatively uniform source such as soil N, whereas NO3 in recent recharge (average concentration=885 μM) contained N from varying proportions of fertilizer, manure, and soil N. Deep water samples contained components of N2 derived from atmospheric, denitrification, and deep natural gas sources. Denitrification rates in the aquifer were slow (5 ±  10−3 μmol N L−1 a−1), indicating this process would require >10 ka to reduce the average NO3 concentration in recent recharge to the Holocene background concentration.  相似文献   

5.
The North China Craton (NCC) is bounded by two Paleozoic accretionary arc terranes: the North Qinling terrane to the south and the Bainaimiao terrane to the north. The timing of arc accretion to the NCC and the architecture of the Bainaimiao arc remain unclear. During the building and accretion of the arcs along its margins, the NCC experienced a long sedimentary hiatus since the Ordovician, which ended with the deposition of bauxite-bearing sediments in the Late Carboniferous. In this paper we report the U–Pb and Hf isotopes of detrital zircons from the Late Carboniferous bauxite layer and use these data to constrain the tectonic evolution of the margin of the NCC. The detrital zircons yield a minimum U–Pb age of ca. 310 Ma and a prominent age peak at ca. 450 Ma. Zircon crystals with ages of ca. 330 Ma and ca. 1900 Ma are more common in the bauxite samples from the northern part of the NCC than in those from the central part. The εHf(t) values of the ca. 450 Ma detrital zircon crystals of the bauxite samples from the NCC are similar to those of the contemporaneous detrital zircon crystals from the North Qinling arc terrane to the south, but different from those of the contemporaneous detrital zircon crystals from the Bainaimiao arc terrane to the north. The ca. 450 Ma detrital zircon crystals in the ca. 310 Ma bauxite deposits are therefore interpreted to have been derived from the North Qinling arc terrane. The source of the ca. 330 Ma detrital zircon crystals of the bauxite deposits is interpreted to be the northern margin of the NCC, where intermediate-felsic plutons formed at ca. 330 Ma are common. The results from this study support the interpretation that the Paleozoic continental arc terranes and their concomitant back-arc basins were developed along the margins of the NCC before ca. 450 Ma, and the arc complexes were subsequently accreted to the craton in the Late Carboniferous. This was then followed by the formation of a walled continental basin within the NCC.  相似文献   

6.
Although the effects of biodegradation on the composition and physical properties of crude oil have been well studied, effects of in-reservoir petroleum biodegradation on molecular and isotopic compositions of crude oils are not yet clearly understood. The Alberta Basin, in western Canada, is one of the world’s largest petroleum accumulations and constitutes an ideal example of a natural suite of sequentially biodegraded oils. The basin hosts moderately to severely biodegraded petroleum, regionally distributed and in single, more or less continuous, oil columns. In this study, a series of oil samples from the Alberta heavy oil and oil sands provinces, with varying degrees of biodegradation, were analyzed to assess the impact of progressive biodegradation on the molecular and C, H, N, and S isotopic compositions of oils. The results of the molecular characterization of the hydrocarbon fraction of the studied oils show that the oils have suffered biodegradation levels from 2 to 10+ (toward the Alberta–Saskatchewan border) on the Peters and Moldowan scale of biodegradation (abbreviated PM 2 to PM 10) and from tens to hundreds on the Manco scale. Within single reservoirs, increasing biodegradation was observed from top to bottom of the oil columns at all sites studied. The whole oil stable isotopic compositions of the samples varied in the ranges δ13C = −31.2‰ to −29.0‰, δ2H = −147‰ to −133‰, δ15N = 0.3–4.7‰ and δ34S = 0.4–6.4‰. The maximum differences between δ values of samples (Δ) within single oil columns were Δ13C = 1.4‰, Δ2H = 7‰, Δ15N = 1.7‰ and Δ34S = 1.0‰. Regional variations in the isotopic compositions of oil samples from different wells (averaged values from top to bottom) were 1.2‰ for δ13C, 12‰ for δ2H, 4.1‰ for δ15N and 5.5‰ for δ34S and hence generally significantly larger variations were seen than variations observed within single oil columns, especially for N and S. It appears that even severe levels of biodegradation do not cause observable systematic variations in carbon, nitrogen or sulfur isotope composition of whole oils. This indicates that sulfur and nitrogen isotopic compositions may be used in very degraded oils as indicators for oil charge from different source rock facies.  相似文献   

7.
Pedo-sedimentological fieldwork were carried out in the Lajia Ruins within the Guanting Basin along the upper Yellow River valley. In the eolian loess-soil sections on the second river terrace in the Lajia Ruins, we find that the land of the Qijia Culture (4.20–3.95 ka BP) are fractured by several sets of earthquake fissures. A conglomerated red clay covers the ground of the Qijia Culture and also fills in the earthquake fissures. The clay was deposited by enormous mudflows in association with catastrophic earthquakes and rainstorms. The aim of this study is to provide a luminescence chronology of the sediment stratigraphy of the Lajia Ruins. Eight samples were taken from an eolian loess-soil section (Xialajia section) in the ruins for optically stimulated luminescence (OSL) dating. The OSL ages are in stratigraphic order and range from (31.94 ± 1.99) ka to (0.76 ± 0.02) ka. Combined OSL and 14C ages with additional stratigraphic correlations, a chronological framework is established. We conclude that: (1) the second terrace of the upper part of Yellow River formed 35.00 ka ago, which was followed by the accumulation of the eolian loess-soil section; and (2) the eolian loess-soil section is composed of the Malan Loess of the late last glacial (MIS-2) and Holocene loess-soil sequences.  相似文献   

8.
Arsenic concentrations are reported for the <2 mm fraction of ca. 2200 soil samples each from agricultural (Ap horizon, 0–20 cm) and grazing land (Gr, 0–10 cm), covering western Europe at a sample density of 1 site/2500 km2. Median As concentrations in an aqua regia extraction determined by inductively coupled plasma emission mass spectrometer (ICP-MS) were 5.7 mg/kg for the Ap samples and 5.8 mg/kg for the Gr samples. The median for the total As concentration as determined by X-ray fluorescence spectrometry (XRF) was 7 mg/kg in both soil materials. Maps of the As distribution for both land-use types (Ap and Gr) show a very similar geographical distribution. The dominant feature in both maps is the southern margin of the former glacial cover seen in the form of a sharp boundary between northern and southern European As concentrations. In fact, the median As concentration in the agricultural soils of southern Europe was found to be more than 3-fold higher than in those of northern Europe (Ap: aqua regia: 2.5 vs. 8.0 mg/kg; total: 3 vs. 10 mg/kg). Most of the As anomalies on the maps can be directly linked to geology (ore occurrences, As-rich rock types). However, some features have an anthropogenic origin. The new data define the geochemical background of As in agricultural soils at the European scale.  相似文献   

9.
The Duolong district in central Tibet hosts a number of porphyry as well as high sulfidation epithermal copper–gold deposits and prospects, associated with voluminous calc-alkaline volcanism and plutonism. In this study, we present new geochronological, geochemical, isotopic and mineralogical data for both economically mineralized and barren porphyritic intrusions from the Duobuza and Naruo porphyry Cu–Au deposits. Zircon U–Pb analyses suggest the emplacement of economically mineralized granodiorite porphyry and barren granodiorite porphyry at Naruo deposit took place at 119.8 ± 1.4 Ma and 117.2 ± 0.5 Ma, respectively. Four molybdenite samples from the Naruo deposit yield an isochron Re–Os age of 119.5 ± 3.2 Ma, indicating mineralization occurred synchronously with the emplacement of the early granodiorite porphyry. At Duobuza deposit, the barren quartz diorite porphyry intruded at 119.5 ± 0.7 Ma, and two economically mineralized intrusions intruded at 118.5 ± 1.2 Ma (granodiorite porphyry) and 117.5 ± 1.2 Ma (quartz diorite porphyry), respectively. Petrographic investigations and geochemical data indicate that all of the porphyritic intrusions were oxidized, water rich, and subduction-related calc-alkaline magmas. Zircons from the porphyritic intrusions have a wide range in the εHf (0–11.1) indicating that they were sourced from mixing of mantle-derived mafic, and crust-derived felsic melts. Moreover, the variation of trace element content of plagioclase phenocrysts indicates that the magma chambers were recharged by mafic magmas.Comparison of the composition of amphibole phenocrysts indicates the porphyry copper–gold mineralization at Duolong was generated in magma chambers at low crystallization temperatures and pressures (754° to 791 °C, 59 M to 73 MPa, n = 8), and under highly oxidizing conditions (ΔNNO 2.2 to 2.7, n = 8). In contrast, barren intrusions were sourced from the magma chambers with higher crystallization temperatures and pressures (816° to 892 °C, 111 to 232 MPa, n = 22) that were less oxidizing (ΔNNO 0.6 to 1.6, n = 22). The requirement for a thermal contrast is supported by the declining of Ti content in magnetite crystals in barren intrusions (12,550 to 34,200 ppm) versus those from economically mineralized intrusions (600 to 3400 ppm). Moreover, the V content in magnetite crystals from economically mineralized intrusions (990 to 2510 ppm) is lower than those recorded from barren intrusions (2610 to 3510 ppm), which might reflect the variation in oxidation state of the magma. The calculated water solubility of the magma forming the economically mineralized intrusions (3.2–3.7 wt%) is lower than that of magma forming the barren intrusions (4.6–6.4 wt%). Based on the chemical–physical characteristics of economically mineralized magma, our study suggests that the development of porphyry Cu–Au mineralization at Duolong was initiated by shallow-level emplacement of a magma that crystallized at lower temperatures and pressures. Experimental studies show that copper and water solubilities in silicate melts decrease with falling temperatures and pressures, indicating metals and ore-forming fluids are more likely to be released from a magma reservoir emplaced at shallow crustal levels. We propose the magnetite might be a convenient exploration tool in the search for porphyry copper mineralization because the variations in Ti and V content of mineral concentrates and rock samples are indicative of barren versus mineralized intrusions.  相似文献   

10.
《Quaternary Science Reviews》2003,22(10-13):1207-1211
The time-integrated slip rate in fault zones can be determined if the deformed deposits are reliably dated. Here, we report optically stimulated luminescence (OSL) ages of Late Pleistocene fluvial deposits cut by the Wangsan fault, southeastern Korea, which displaces a hanging wall block of about 28 m. Five sandy samples of the deformed Quaternary deposits were dated by quartz OSL using the single aliquot regenerative-dose (SAR) protocol. Three samples taken from the footwall block show stratigraphically consistent OSL ages of 54±7, 76±5 and 90±6 ka, from top to bottom. Two samples collected from the same layer in the hanging wall block show reproducible OSL ages of 81±5 and 82±5 ka, which are also in good agreement with the stratigraphic relationships. Our OSL ages yield an average sedimentation rate of the Quaternary deposits as around 0.04 mm a−1, and a minimum value of time-integrated slip rate as 0.52 mm a−1. This minimum slip rate is considerably higher than those reported earlier for Quaternary faults in southeastern Korea. The youngest OSL age (54±7 ka) constrains the maximum value of the recurrence interval of the fault movement.  相似文献   

11.
The contents of biogenic components in 1511 samples of the Baltic Sea sediments (depth range 0–5 cm) are studied, and maps of their distribution are compiled. The sediments contain < 13.03% Corg, < 1.33% N, < 9.0% SiO2am, < 5.0% CaCO3, and < 1.45% P. The maximum and elevated contents of components are found in the mud of the sea deeps. The more fraction < 0.01 mm the sediments contain, the higher are the contents of components. Four facies types of carbonaceous mud, precursors of shales, have been recognized: (1) shallow-water (lagoon) lime sapropel, (2) carbonaceous mud of the shallow-water Gulf of Finland, (3) carbonaceous mud of the middle-depth Baltic Sea, and (4) laminated carbonaceous metal-bearing mud. The latter type of mud is strongly enriched in manganese and ore-forming trace elements, which points to its formation in the stagnant environment. In composition the Baltic Sea mud is similar to petroliferous mudstones of the Bazhenov Formation in West Siberia and to ancient black shales.  相似文献   

12.
Vis–NIR spectroscopy is nowadays presented as a possible routine method for soil sample analysis. However, there is still no consensus on which is the best multivariate statistical method to use. We propose to use principal component analysis to complete the spectral data treatment. The soil samples came from a pedological cover made up of red–yellow Latosols: 88 samples of 11 soil profiles on four toposequences were collected; clay, organic matter, silica, iron, aluminum and titanium total contents were determined; the contents of goethite, hematite, gibbsite, and kaolinite were calculated. Diffuse reflectance Vis–NIR spectroscopy at wavelengths from 400 to 2400 nm combined with principal component analysis (PCA) was sufficiently sensitive to discriminate different Latosols. Wavelengths of 700 nm and 2200 to 2300 nm were influenced by content ratios of organic matter and iron oxides (700 nm), and kaolinite and gibbsite absorption (2200 and 2300 nm). The spectral responses were affected not only by the content of these constituents, but also by the composition of the minerals, so that the same class of Latosol may have different or similar spectral responses. The role of microaggregation is discussed.  相似文献   

13.
Trace element contents and distributions in authigenic quartz cement in deeply buried (2500–4000 m) Haushi Group sandstones from wells in Oman have been investigated in order to determine the factors that control trace element uptake during precipitation.Scanning electron microscope-cathodoluminescence images show well developed growth zones within the quartz cement, which correlate with chemical zonations observed in electron microprobe Al distribution maps. The most abundant trace elements are Al (50–3000 μg g?1), Li (1–100 μg g?1), Na (1–40 μg g?1), and Ge (0.3–5 μg g?1) with a strong linear correlation between Li and Al and a weaker one between Ge and Al. The molar concentration of Li (+ Na) accounts only for ~ 15% of the charge compensation for Al3+ substitution of Si4+. Though H was not measured in this study, these data indicate a major role of H in charge balancing Al3+. The samples belong to the same stratigraphic unit and have similar petrography, but show considerable variability in absolute trace element concentrations between different wells. This variability does not correlate with either sample depth or temperature and shows no regional pattern, but seems to reflect petrophysical and tectonic differences within the sedimentary basin.Petrographic observations of the cogenetic mineral assemblages and hydrochemical modelling indicate that a change from the equilibrium assemblage quartz–kaolinite (–dolomite) to quartz–illite (–dolomite) reflects a decrease in the CO2 concentration and concurrent variations of the Al concentration. It is concluded that changes in the CO2 concentrations are responsible for fluctuations in fluid Al concentrations and thus likely also in the investigated quartz cements.  相似文献   

14.
The concentration and the role of colloids in the transport of elements in the vicinity of a fossil reactor at Bangombé, Gabon, were assessed. Colloid sampling was conducted in seven boreholes around and in the extinguished natural reactor. The ground waters are of Na–Mg–Ca–HCO3 type, with variable salinities, pH 4.6–6.8 and anaerobic Eh values. Filtered ground water and colloid samples were taken from the reactor and the surroundings. Filtered fluids and colloid samples collected on membranes and resuspended in solution were analysed by ICP-MS and ICP-AES in order to examine the element association in the colloid phase within the size range 3000 to 400 to 50 nm. The colloid concentrations for the size 400 to 50 nm range from 80 to 300 ng ml−1. They consist of silica particles associated with ferrihydrite coated with organics. Trace element results show that metals including Pb, Sc, Y, La, Ce, Pr, Nd, Bi, Th and U are associated to various degrees with the colloid phase. The distribution ratios of these trace elements between the water and the colloid phase (Kp) were experimentally determined. The high Pb distribution ratios of 10+7 ml g−1 are specifically discussed. Values range from 10+6 to 10+5 ml g−1for the trivalent elements (Sc, Y, La, Ce,  , Bi). For uranium, a Kp of the order of 10+5 ml g−1 may be calculated and compared with data gained using the surface complexation model. These Kp values suggest that the uranium is partially sorbed or associated with ground water colloids. Measurements from the reactor zone show that about 2–4% of the uranium is associated with the colloid phase, which contributes partially to the uranium transport. The rather low colloid concentrations are due to the relatively high concentrations of Ca, Mg and Na in these quasi-neutral waters. These soluble elements contribute to the attachment of the colloids, restricting their transport. This indicates that the colloid phase may not be an important transport medium for the radionuclides in the Bangombé system if their association is reversible. The Bangombé colloid results are compared with those studied for other systems.  相似文献   

15.
Agricultural (Ap, Ap-horizon, 0–20 cm) and grazing land soil samples (Gr, 0–10 cm) were collected from a large part of Europe (33 countries, 5.6 million km2) at an average density of 1 sample site/2500 km2. The resulting more than 2 × 2000 soil samples were air dried, sieved to <2 mm and analysed for their Hg concentrations following an aqua regia extraction. Median concentrations for Hg are 0.030 mg/kg (range: <0.003–1.56 mg/kg) for the Ap samples and 0.035 mg/kg (range: <0.003–3.12 mg/kg) for the Gr samples. Only 5 Ap and 10 Gr samples returned Hg concentrations above 1 mg/kg. In the geochemical maps the continental-scale distribution of the element is clearly dominated by geology. Climate exerts an important influence. Mercury accumulates in those areas of northern Europe where a wet and cold climate favours the build-up of soil organic material. Typical anthropogenic sources like coal-fired power plants, waste incinerators, chlor-alkali plants, metal smelters and urban agglomerations are hardly visible at continental scales but can have a major impact at the local-scale.  相似文献   

16.
A peralkaline, ultrapotassic dyke found at ?ebkovice (T?ebí? district, western Moravia) is a mineralogically extreme member of a dyke swarm occurring along the south-eastern border of the Moldanubian Region of the Bohemian Massif. The dyke shows a simple zoning, with a very fine-grained marginal zone grading into a medium-grained central zone. It has a primary mineral assemblage of microcline and potassic amphiboles, with accessory apatite and altered phlogopite. The microcline exhibits an unusual red luminescence colour and pronounced substitution of Fe3+ for Al, with measured contents of Fe2O3 up to 8.5 wt.% (0.31 apfu Fe3+). Amphiboles have very high K (up to 0.99 apfu) and Si contents; their compositions follow an alkaline fractionation trend from potassic-richterite to potassic-magnesio-arfvedsonite, characterized by an increase of Na/K and a decrease of Ca, Mg, Fe2+ and Ti via heterovalent substitutions [B]Ca + [C](Mg,Fe2+)  [B]Na + [C]Fe3+ and Ti + Mg  2Fe3+. The most evolved apatite is significantly enriched in SrO (up to 9.7 wt.%; 0.49 apfu Sr). The core of the dyke and late veinlets contain unique late- to post-magmatic Ba–Ti–Zr-bearing mineral assemblages of baotite, henrymeyerite, titanite, rutile, benitoite and bazirite. Anhedral baotite fills interstices distributed inhomogeneously in the dyke centre; it is locally replaced by a Ba-bearing titanite + henrymeyerite + rutile + quartz assemblage. Henrymeyerite (the second record in a lamproite) shows variable Fe/Ti ratios and represents a solid solution of the hepta- and hexatitanate components. Euhedral crystals of benitoite and bazirite are enclosed in the late-stage quartz–titanite–apatite veinlets in the fine-grained margin of the intrusion. In terms of a mineralogical–genetic classification, the ?ebkovice dyke can be considered as a new high-silica (~ 57 wt.% SiO2) variety of lamproite (variety ?ebkovice), and represents a unique expression of post-collisional potassic magmatism on the south-eastern border of the Bohemian Massif. The peralkaline dykes from this area show mineralogical and geochemical features similar to those of silica-rich orogenic lamproites emplaced at destructive plate margins. In terms of the modern classification of lamproites, the ?ebkovice dyke is the first lamproite recognised in the Variscan orogenic belt.  相似文献   

17.
Field Emission SEM (FESEM) textural observations, crystal size distribution (CSD) analyses, UV-excited luminescence imaging, and photoluminescence (PL) microspectroscopy excited by 488 nm laser were conducted on two texturally contrasting samples of carbonado, a kind of natural polycrystalline diamond from the Central African Republic (CAR). The investigated carbonado samples A and B show extremely different textures: sample A is made up of faceted crystals accompanied by abundant, small rectangular pores, whereas sample B has a granular texture with coarser crystals and scarce, large pores. Diamond crystals smaller than 2–3 µm are enriched in sample A but depleted in sample B. These textural features indicate that sample B diamonds were annealed under thermodynamically stable P–T conditions. The pore characteristics indicate that fluid permeability was higher for sample A than sample B. Photoluminescence (PL) spectra indicate that samples A and B correspond to Group A and B carbonados in the classification of Kagi et al. (1994), respectively, so that sample A reveals emissions from the H3 center without any N–V0 derived emission at 575 nm, whereas sample B shows emissions from the 3H center and the N–V0 defect. In addition, UV-excited luminescence images and photoluminescence spectra for sample B indicate that the rims of diamond crystals within several microns of a pore show luminescence features similar to those of Group AB carbonados (Kagi et al., 1994), indicating that this Group AB material was formed from Group B by irradiation from pore-filling, radioactive-element-bearing materials at a low temperature. The extent of the low-temperature irradiation is considered to depend on fluid permeability, and the Group A material was strongly irradiated due to its permeable texture whereas the Group B material was not significantly irradiated due to its less permeable granular texture. These results indicate that Group B carbonados have retained their original PL spectral features produced under high pressures and temperatures at mantle depths.  相似文献   

18.
Predicting pyrogenic carbon (PyC) or biochar stability from its precursor properties is critical for evaluating and managing terrestrial C stocks. Transmission mode Fourier transform infrared spectroscopy (FTIR) spectroscopy was compared with proximate analysis data and H/C and O/C for predicting C mineralization. PyC produced at 7 different temperatures from 6 different feedstocks, in addition to the original feedstock materials, was incubated for 3 yr at 30 °C in a sand matrix. A C debt or credit ratio was calculated by comparing the C remaining in the incubated PyC sample (accounting for the measured C lost during initial PyC production) to the C remaining in the incubated original feedstock. A value > 1 indicates that more C remains in the PyC than in the original feedstock (credit), while a value < 1 indicates a debt. After 3 yr, PyC produced at 300 °C lost significantly more C than higher temperature PyC material, but significant differences in C loss between PyC produced at temperatures  350 °C were not detectable. The best predictor of C loss was a multiple linear regression model using the fractional FTIR signals at 816, 1048, 1374, 1424, 1460, 1590, 1700 and 2925 cm−1 as parameters (R2 0.80, p < 0.0001). After 3 yr, the C debt or credit ratio reached values significantly > 1 for all corn PyC samples and some bull, dairy and poultry PyC samples, resulting in net C credit, while all pine and oak PyC samples remained in debt. This C debt or credit ratio reveals that, depending on the timeline of interest, producing relatively low temperature PyC with less initial C loss can result in greater C savings than producing higher temperature PyC, even though the C remaining after exposure to higher pyrolysis temperatures is more stable.  相似文献   

19.
Rubidium (Rb) and strontium (Sr) contents and ratios were analyzed in 197 sediment samples collected from the CGS1 segment of the Chagelebulu Section in the Badain Jaran Desert of China to study millennial scale climate change during the Holocene. The results showed that the Rb and Sr contents and Rb/Sr ratios were low in the samples of dune sands and loess (Mz < 5.64Φ), and those values were high in the samples of loess (Mz > 5.64Φ) and paleosols, these data displayed 11 changing cycles in alternation of peaks and valleys in the chart. In addition, the Rb contents were positively correlated with Mz (mean particle diameter) and clay contents. While the correlations were weaker, Sr contents also showed a tendency to increase with increases in the Mz and clay contents. Based on a comprehensive analysis of the distribution of Rb and Sr within the CGS1 segment, it appears that the observed Rb and Sr contents and ratios varied in accordance with fluctuations of the East Asian winter and summer monsoons. In terms of timing and climate, low values (C1–C11) resulting from winter monsoons had a strong correlation with cold events in the North Atlantic: the period C1 corresponded to times ranging from 400 a to 1400 a and the periods C2, C3, C4, C7, C9, C10, and C11 corresponded to times of 3000 a, 4000 a, 5900 a, 8200 a, 9400 a, 10,300 a, and 11,000 a, respectively. The cold event C5 (6200 a) was also discovered in the North Atlantic in recent; and C6 (7100 a), C8 (8700 a) were discovered in some other places of China. These cold events indicated by Rb and Sr contents and ratios in the Chagelebulu Section of the Badain Jaran Desert recorded the regional response of global climate change during the Holocene.  相似文献   

20.
A series of 30-day biochemical oxygen demand (BOD) experiments were conducted on water column samples from a reach of the upper Klamath River that experiences hypoxia and anoxia in summer. Samples were incubated with added nitrification inhibitor to measure carbonaceous BOD (CBOD), untreated to measure total BOD, which included demand from nitrogenous BOD (NBOD), and coarse-filtered to examine the effect of removing large particulate matter. All BOD data were fit well with a two-group model, so named because it considered contributions from both labile and refractory pools of carbon: BODt = a1(1 ? e? a0t) + a2t. Site-average labile first-order decay rates a0 ranged from 0.15 to 0.22/day for CBOD and 0.11 to 0.29/day for BOD. Site-average values of refractory zero-order decay rates a2 ranged from 0.13 to 0.25 mg/L/day for CBOD and 0.01 to 0.45 mg/L/day for BOD; the zero-order CBOD decay rate increased from early- to mid-summer. Values of ultimate CBOD for the labile component a1 ranged from 5.5 to 28.8 mg/L for CBOD, and 7.6 to 30.8 mg/L for BOD. Two upstream sites had higher CBOD compared to those downstream. Maximum measured total BOD5 and BOD30 during the study were 26.5 and 55.4 mg/L; minimums were 4.2 and 13.6 mg/L. For most samples, the oxygen demand from the three components considered here were: labile CBOD > NBOD > refractory CBOD, though the relative importance of refractory CBOD to oxygen demand increased over time. Coarse-filtering reduced CBOD for samples with high particulate carbon and high biovolumes of Aphanizomenon flos-aquae. There was a strong positive correlation between BOD, CBOD, and the labile component of CBOD to particulate C and N, with weaker positive correlation to field pH, field dissolved oxygen, and total N. The refractory component of CBOD was not correlated to particulate matter, instead showing weak but statistically significant correlation to dissolved organic carbon, UV absorbance at 254 nm, and total N. Particulate organic matter, especially the alga A.flos-aquae, is an important component of oxygen demand in this reach of the Klamath River, though refractory dissolved organic matter would continue to exert an oxygen demand over longer time periods and as water travels downstream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号