首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The northern part of the Dead Sea Fault Zone is one of the major active neotectonic structures of Turkey. The main trace of the fault zone (called Hacıpaşa fault) is mapped in detail in Turkey on the basis of morphological and geological evidence such as offset creeks, fault surfaces, shutter ridges and linear escarpments. Three trenches were opened on the investigated part of the fault zone. Trench studies provided evidence for 3 historical earthquakes and comparing trench data with historical earthquake records showed that these earthquakes occurred in 859 AD, 1408 and 1872. Field evidence, palaeoseismological studies and historical earthquake records indicate that the Hacıpaşa fault takes the significant amount of slip in the northern part of the Dead Sea Fault Zone in Turkey. On the basis of palaeoseismological evidence, it is suggested that the recurrence interval for surface faulting event is 506 ± 42 years on the Hacıpaşa fault.  相似文献   

2.
A detailed study of the syndepositional Masada Fault Zone (MFZ) provides an example for fundamental characteristics of earthquakes, such as long term temporal clustering, repeated faulting on the same planes for a limited time of the order of a few thousands of years, and the formation of subaqueous breccia layers interpreted as seismites. The MFZ was studied in outcrops of 70–15 ka Lake Lisan sediments. Detailed columnar sections on both sides of well-exposed faults show that each individual fault exhibits a cluster, up to 4 ky long, with 3–5 slip events on the same plane. Each slip event is associated with the formation of widespread layers exhibiting soft sediment deformation, which are interpreted to be seismite layers. The uppermost part of the Lisan section, about 5 m, is not faulted, hence the last cluster of slip events ended about 25 ky ago. The clusters of activity of individual faults coalesce to form larger clusters. These are evident in the distribution of seismite layers throughout the entire Lisan section which shows earthquake clustering during periods of 10 ky. The clusters are separated by relatively quiescent periods of comparable duration.  相似文献   

3.
The Elat fault (a segment of the Dead Sea Transform) runs along the southern Arava valley (part of the Dead Sea Rift, Israel) forming a complex fault zone that displays a time-dependent seismic behaviour. Paleoseismic evidence shows that this fault zone has generated at least 15 earthquakes of magnitude larger than M 6 during the late Pleistocene and the Holocene. However, at present the Elat fault is one of the quietest segments of the Dead Sea Transform, lacking even microsesimicity. The last event detected in the southern Arava valley occurred in the Avrona playa and was strong enough to have deformed the playa and to change it from a closed basin with internal drainage into an open basin draining to the south.Paleoseismological, geophysical and archaeological evidences indicate that this event was the historical devastating earthquake, which occurred in 1068 AD in the eastern Mediterranean region. According to the present study this event was strong enough to rupture the surface, reactivate at least two fault branches of the Elat fault and vertically displace the surface and an early Islamic irrigation system by at least 1 m. In addition, the playa area was uplifted between 2.5 and 3 m along the eastern part of the Elat fault shear zone. Such values are compatible with an earthquake magnitude ranging between M 6.6 and 7. Since the average recurrence interval of strong earthquakes during the Holocene along the Elat fault is about 1.2 ± 0.3 ky and the last earthquake occurred more about 1000 years ago, the possibility of a very strong earthquake in this area in the future should be seriously considered in assessing seismic hazards.  相似文献   

4.
The Dead Sea is a terminal lake whose level is currently dropping at a rate of about 1 m per year due to the over exploitation of all its tributaries. The lowering started about four decades ago but geological hazards appeared more and more frequently from the end of the 1980s. The water level lowering is matched by a parallel groundwater level drop, which results in an increasing intensity of underground and surface water flow. The diagonal interface between the Dead Sea brine and the fresh groundwater is pushed downwards and seawards. Nowadays, sinkholes, subsidence, landslides and reactivated salt-karsts affect wide coastal segments. Until now, mainly infrastructures were damaged and few people/animals were injured, but the ongoing development of tourism in this very attractive situation will increase the risk if precautionary measures are not included in the development plans. This paper discusses the main observations made all around the Dead Sea and shed a light on the differences between the geological hazards of the western shore (Israel, Palestinian Authority) and the eastern shore (Jordan). It is the first attempt to bring together an overview of the human-induced geological hazards encountered along the Dead Sea coast.  相似文献   

5.
 A sediment core from the southern Dead Sea was analyzed using gamma spectroscopy as well as 210Pb dating in order to ascertain if any radioactive contamination could be detected and to determine the sedimentation rates in the area. Results of this study show no presence of man-made radionuclides in the area. Sedimentation rates were determined to be between 0.25 and 0.4 g/cm2/year. (∼0.5 cm/year), which is in line with what would be expected assuming carbonate layers are annual varves. Received: 31 January 1997 · Accepted: 11 March 1997  相似文献   

6.
 The demand for water resources in the area south of the Dead Sea due to continued development, especially at the Arab Potash Company (APC) works necessitates that water quality in the area be monitored and evaluated based on the local geology and hydrogeology. The objective of this paper is to provide information on the past and present status of the main aquifers under exploitation or planned for future development. Two main aquifers are discussed: the Safi water field, presently being operated, and the Dhiraa water field, which is being developed. The aquifer developed in the Safi water field is shallow and fed by the Hasa fault system, which drains a significant portion of the Karak mountains. This aquifer seems to be well replenished within the core, where no obvious long-term degradation in water quality can be identified. However, in the low recharge areas within the distal portions of the alluvial fan, there has been a degradation in water quality with time. The degradation is caused by the dissolution of the Lisan Marl, which is present at the outskirts of the fan system, based on hydrochemistry of water in the wells. The Dhiraa field is a deep (800–950 m) aquifer drilled specifically for the extraction of brackish water present in the Kurnub aquifer. Available data indicate that there are at least three distinct water types within this field. These water types are variable in quality, and there may be potential for mixing of these waters, thus affecting the quality of the freshest waters presently available. Tritium and oxygen isotope analysis indicate that the water is old and possibly nonrenewable. Received: 24 July 1995 · Accepted: 26 September 1995  相似文献   

7.
Evaporitic‐lagoonal marl and dolomite laminar fill sediments are preserved in relict dry caves of the Dead Sea Fault Escarpment (Israel) which has been tectonically active since the Late Neogene. The hosting caves are located within Turonian massive carbonate bedrock and at higher altitudes than previously documented fill sediments of the Dead Sea depression. Based on the relative altitudes of the cave sediments, the ‘reversed stratigraphy’ of the Dead Sea depression fill sediments, possible partial correlation of the cave sediments with other fill sedimentary units of the depression, and sedimentary, geochemical and mineralogical characteristics, it is concluded that: (i) the cave sediments are among the oldest of the depression fill; and (ii) the deposition of the cave sediments took place in hypersaline dolomite‐precipitating water bodies of Late Neogene age, during the initial morphotectonic stages of the depression formation. Variable and relatively low Sr/Ca and δ34S ratios of the cave sediments (assuming precipitation from sea water) suggest variable fresh water input into the depositional brine. The present altitudes of the cave sediments reflect Late Neogene levels of water bodies in the depression, modified by vertical post‐Late Neogene tectonic movements within the still active fault escarpment. According to these altitudes, a 50 to 250 m uplift of the western margins of the depression since the Late Miocene to Early Pliocene is inferred.  相似文献   

8.
Shmuel Marco   《Tectonophysics》2007,445(3-4):186-199
The location of the active fault strands along the Dead Sea Transform fault zone (DST) changed through time. In the western margins of Dead Sea basin, the early activity began a few kilometers west of the preset shores and moved toward the center of the basin in four stages. Similar centerward migration of faulting is apparent in the Hula Valley north of the Sea of Galilee as well as in the Negev and the Sinai Peninsula. In the Arava Valley, seismic surveys reveal a series of buried inactive basins whereas the current active strand is on their eastern margins. In the central Arava the centerward migration of activity was followed by outward migration with Pleistocene faulting along NNE-trending faults nearly 50 km west of the center. Largely the faulting along the DST, which began in the early–middle Miocene over a wide zone of up to 50 km, became localized by the end of the Miocene. The subsidence of fault-controlled basins, which were active in the early stage, stopped at the end of the Miocene. Later during the Plio-Pleistocene new faults were formed in the Negev west of the main transform. They indicate that another cycle has begun with the widening of the fault zone. It is suggested that the localization of faulting goes on as long as there is no change in the stress field. The stresses change because the geometry of the plates must change as they move, and consequently the localization stage ends. The fault zone is rearranged, becomes wide, and a new localization stage begins as slip accumulates. It is hypothesized that alternating periods of widening and narrowing correlate to changes of the plate boundaries, manifest in different Euler poles.  相似文献   

9.
We resolve the anisotropy of magnetic susceptibility (AMS) axes along fault planes, cores and damage zones in rocks that crop out next to the Dead Sea Transform (DST) plate boundary. We measured 261 samples of mainly diamagnetic dolostones that were collected from 15 stations. To test the possible effect of the iron content on the AMS we analyzed the Fe concentrations of the samples in different rock phases. Dolostones with mean magnetic susceptibility value lower than −4 × 10−6 SI and iron content less than ∼1000 ppm are suitable for diamagnetic AMS-based strain analysis. The dolostones along fault planes display AMS fabrics that significantly deviate from the primary “sedimentary fabric”. The characteristics of these fabrics include well-grouped, sub-horizontal, minimum principal AMS axes (k3) and sub-vertical magnetic foliations commonly defined by maximum and intermediate principal AMS axes (k1 and k2 axes, respectively). These fabrics are distinctive along fault planes located tens of kilometers apart, with strikes ranging between NNW-SSE and NNE-SSW and different senses of motion. The obtained magnetic foliations (k1k2) are sub-parallel (within ∼20°) to the fault planes. Based on rock magnetic and geochemical analyses, we interpret the AMS fabrics as the product of both shape and crystallographic anisotropy of the dolostones. Preferred shape alignment evolves due to mechanical rotation of subordinate particles and rock fragments at the fault core. Preferred crystallographic orientation results from elevated frictional heating (>300 °C) during faulting, which enhances c-axes alignment in the cement-supported dolomite breccia due to crystal-plastic processes. The penetrative deformation within fault zones resulted from the local, fault-related strain field and does not reflect the regional strain field. The analyzed AMS fabrics together with fault-plane kinematics provide valuable information on faulting characteristics in the uppermost crust.  相似文献   

10.
A seismic refraction profile and several seismic CDP reflection lines were recently occupied in the southwestern part of the Dead Sea. The seismic data, which are of good quality, give a clear picture of the structure of the area. The western flank of the rift comprises a series of step faults, downthrown to the east with a total throw of some 7 km at which depth the Cretaceous base of the post-Cretaceous fill is located. On the east—west lines the base of the fill dips to the east while on the north—south lines this complex dips to the south with a change in direction of dip being evident in the southern portion of this profile. The post-Cretaceous sediments reach a maximum thickness of 7 km but may be even thicker eastward near the main eastern rift fault. These sediments are gently folded, possibly due to differential compaction and are dislocated by small-magnitude adjustment faults. Lateral transition from bedded layers of salt in the graben fill to a diapir is clearly seen.  相似文献   

11.
Rockfall ages in tectonically active regions provide information regarding frequency and magnitude of earthquakes. In the hyper-arid environment of the Dead Sea fault (DSF), southern Israel, rockfalls are most probably triggered by earthquakes. We dated rockfalls along the western margin of the DSF using terrestrial cosmogenic nuclides (TCN). At each rockfall site, samples were collected from simultaneously exposed conjugate boulders and cliff surfaces. Such conjugate samples initially had identical pre-fall (“inherited”) TCN concentrations. After boulder detachment, these surfaces were dosed by different production rates due to differences in post-fall shielding and geometry. However, in our study area, pre-rockfall inheritance and post-rockfall production rates of TCN cannot be evaluated. Therefore, we developed a numerical approach and demonstrated a way to overcome the above-mentioned problems. This approach can be applied in other settings where rockfalls cannot be dated by simple exposure dating. Results suggest rockfall ages between 3.6 ± 0.8 and 4.7 ± 0.7 ka. OSL ages of sediment accumulated behind the boulders range between 0.6 ± 0.1 and 3.4 ± 1.4 ka and support the TCN results. Our ages agree with dated earthquakes determined in paleoseismic studies along the entire length of the DSF and support the observation of intensive earthquake activity around 4–5 ka.  相似文献   

12.
For the last four decades, the level of the Dead Sea has been subjected to continual variation which, among other important factors, has led to the occurrence of much subsidence and many sinkholes in the southern Dead Sea area. Sinkhole activities occurred repetitively and were observed in open farms, across roads, near dwellings and near an existing factory, thus causing a serious threat to the locals and farmers of the area and their properties. This paper presents the main results from detailed geological and geotechnical studies of this area. Aerial photo interpretation and borehole drilling aided these studies. Parallel geophysical investigations (vertical electrical sounding and seismic refraction) and hydrological and hydrogeological studies were made by others in the same area to also investigate this phenomenon. It was found that sinkholes are aligned to and follow old water channels and are concentrated parallel to the recent shoreline of the Dead Sea. The development of subsurface cavities is associated mainly with the variation in the level of the Dead Sea over the four past decades, the presence of regional salt intrusion under the surface of salt beds, the fluctuation of the water table and continuous dissolution and the active tectonism of the area. Moreover, this work showed that the area is still under active sinkhole hazards and other parts of the area will be inevitably affected by sinkholes in the future.No practical engineering solution to this problem is feasible. Received: 1 July 1999 / Accepted: 11 October 1999  相似文献   

13.
The Dead Sea fault (DSF) is one of the most active plate boundaries in the world. Understanding the Quaternary history and sediments of the DSF requires investigation into the Neogene development of this plate boundary. DSF lateral motion preceded significant extension and rift morphology by ~ 10 Ma. Sediments of the Sedom Formation, dated here between 5.0 ± 0.5 Ma and 6.2− 2.1inf Ma, yielded extremely low 10Be concentrations and 26Al is absent. These reflect the antiquity of the sediments, deposited in the Sedom Lagoon, which evolved in a subdued landscape and was connected to the Mediterranean Sea. The base of the overlying Amora Formation, deposited in the terminal Amora Lake which developed under increasing relief that promoted escarpment incision, was dated at 3.3− 0.8+ 0.9 Ma. Burial ages of fluvial sediments within caves (3.4 ± 0.2 Ma and 3.6 ± 0.4 Ma) represent the timing of initial incision. Initial DSF topography coincides with the earliest Red Sea MORB's and the East Anatolian fault initiation. These suggest a change in the relative Arabian–African plate motion. This change introduced the rifting component to the DSF followed by a significant subsidence, margin uplift, and a reorganization of relief and drainage pattern in the region resulting in the topographic framework observed today.  相似文献   

14.
The Dead Sea basin is often cited as one of the classic examples for the evolution of pull-apart basins along strike–slip faults. Despite its significance, the internal structure of the northern Dead Sea basin has never been addressed conclusively. In order to produce the first comprehensive, high-resolution analysis of this area, all available seismic data from the northern Dead Sea (lake)–lower Jordan valley (land) were combined. Results show that the northern Dead Sea basin is comprised of a system of tectonically controlled sub-basins delimited by the converging Western and Eastern boundary faults of the Dead Sea fault valley. These sub-basins grow shallower and smaller to the north and are separated by structural saddles marking the location of active transverse faults. The sedimentary fill within the sub-basins was found to be relatively thicker than previously interpreted. As a result of the findings of this study, the “classic” model for the development of pull-aparts, based on the Dead Sea, is revised. The new comprehensive compilation of data produced here for the first time was used to improve upon existing conceptual models and may advance the understanding of similar basinal systems elsewhere.  相似文献   

15.
For about four decades, the Dead Sea (DS) level and the surrounding water table has been dropping dramatically. At least from the eighties, the direct vicinity of the Lisan Peninsula (LP), Jordan, has been facing high rates of subsidence and sinkhole hazards. Between 2000 and 2002, the Arab Potash Company (APC) lost two salt evaporation ponds resulting in a loss of $70 million. In the fertile plain of Ghor al Haditha (GAH), three deep and wide bowl-shaped subsidence areas threaten human activities and infrastructures. Over the part of the Lisan Peninsula that emerged before the 1960s, relict fossil sinkholes occurred everywhere, whereas new collapses constantly appear in the southern area only. In this paper, we have integrated 15 years of field observations related to sinkholes and subsidence with interpretation of space borne radar interferometric outputs, aerial photographs and satellite images. This has helped to place hazardous areas in their geological context and to clarify them within the framework of the general tectonic setting of the area.  相似文献   

16.
Recently released reflection seismic lines from the Eastern side of the Jordan River north of the Dead Sea were interpreted by using borehole data and incorporated with the previously published seismic lines of the eastern side of the Jordan River. For the first time, the lines from the eastern side of the Jordan River were combined with the published reflection seismic lines from the western side of the Jordan River. In the complete cross sections, the inner deep basin is strongly asymmetric toward the Jericho Fault supporting the interpretation of this segment of the fault as the long-lived and presently active part of the Dead Sea Transform. There is no indication for a shift of the depocenter toward a hypothetical eastern major fault with time, as recently suggested. Rather, the north-eastern margin of the deep basin takes the form of a large flexure, modestly faulted. In the N–S-section along its depocenter, the floor of the basin at its northern end appears to deepen continuously by roughly 0.5 km over 10 km distance, without evidence of a transverse fault. The asymmetric and gently-dipping shape of the basin can be explained by models in which the basin is located outside the area of overlap between en-echelon strike-slip faults.  相似文献   

17.
《International Geology Review》2012,54(10):1219-1228
This article examines a report in the 27th chapter of the Gospel of Matthew in the New Testament that an earthquake was felt in Jerusalem on the day of the crucifixion of Jesus of Nazareth. We have tabulated a varved chronology from a core from Ein Gedi on the western shore of the Dead Sea between deformed sediments due to a widespread earthquake in 31 BC and deformed sediments due to an early first-century earthquake. The early first-century seismic event has been tentatively assigned a date of 31 AD with an accuracy of ±5 years. Plausible candidates include the earthquake reported in the Gospel of Matthew, an earthquake that occurred sometime before or after the crucifixion and was in effect ‘borrowed’ by the author of the Gospel of Matthew, and a local earthquake between 26 and 36 AD that was sufficiently energetic to deform the sediments at Ein Gedi but not energetic enough to produce a still extant and extra-biblical historical record. If the last possibility is true, this would mean that the report of an earthquake in the Gospel of Matthew is a type of allegory.  相似文献   

18.
胡惟  朱光  宋利宏  严乐佳  刘备 《地学前缘》2013,20(4):137-150
郯庐断裂带渤海段也称为营潍断裂带。文中利用一系列地震剖面,对营潍断裂带第四纪活断层的几何学特征、活动方式与时间、应力场及活动性进行了综合分析,探讨其第四纪活动规律。结果表明,该断裂带第四纪以来活动广泛而强烈,基本上继承了新近纪的断裂格局,由东、西两支主干断裂构成,各自呈左阶雁列式展布。其主干断裂在第四系内陡立的断面、常见的第四系背斜构造及区域上NEESWW向挤压应力状态,皆表明该断裂带第四纪以来呈逆右行平移活动。大量的地震剖面揭示,该断裂带渤中地区为全新世活断层,而潍北-莱州湾和辽东湾地区呈现为全新世、晚更新世与第四纪活断层相间出现的现象。地震分布表明,该断裂带近代在中段渤中地区活动性最强,而南、北段活动性较弱。  相似文献   

19.
Ground-penetrating radar (GPR) was used in an effort to locate a major active fault that traverses Aqaba City, Jordan. Measurements over an exposed (trenched) cross fault outside of the city identify a radar signature consisting of linear events and horizontal offset/flexured reflectors both showing a geometric correlation with two known faults at a control site. The asymmetric linear events are consistent with dipping planar reflectors matching the known direction of dip of the faults. However, other observations regarding this radar signature render the mechanism generating these events more complex and uncertain.GPR measurements in Aqaba City were limited to vacant lots. Seven GPR profiles were conducted approximately perpendicular to the assumed strike of the fault zone, based on regional geological evidence. A radar response very similar to that obtained over the cross fault was observed on five of the profiles in Aqaba City, although the response is weaker than that obtained at the control site. The positions of the identified responses form a near straight line with a strike of 45°. Although subsurface verification of the fault by trenching within the city is needed, the geophysical evidence for fault zone location is strong. The location of the interpreted fault zone relative to emergency services, military bases, commercial properties, and residential areas is defined to within a few meters. This study has significant implications for seismic hazard analysis in this tectonically active and heavily populated region.  相似文献   

20.
Shmuel Marco   《Tectonophysics》2008,453(1-4):148
Archaeological structures that exhibit seismogenic damage expand our knowledge of temporal and spatial distribution of earthquakes, afford independent examination of historical accounts, provide information on local earthquake intensities and enable the delineation of macroseismic zones. They also illustrate what might happen in future earthquakes. In order to recover this information, we should be able to distinguish earthquake damage from anthropogenic damage and from other natural processes of wear and tear. The present paper reviews several types of damage that can be attributed with high certainty to earthquakes and discusses associated caveats. In the rare cases, where faults intersect with archaeological sites, offset structures enable precise determination of sense and size of slip, and constrain its time. Among the characteristic off-fault damage types, I consider horizontal shifting of large building blocks, downward sliding of one or several blocks from masonry arches, collapse of heavy, stably-built walls, chipping of corners of building blocks, and aligned falling of walls and columns. Other damage features are less conclusive and require additional evidence, e.g., fractures that cut across several structures, leaning walls and columns, warps and bulges in walls. Circumstantial evidence for catastrophic earthquake-related destruction includes contemporaneous damage in many sites in the same area, absence of weapons or other anthropogenic damage, stratigraphic data on collapse of walls and ceilings onto floors and other living horizons and burial of valuable artifacts, as well as associated geological palaeoseismic phenomena such as liquefaction, land- and rock-slides, and fault ruptures. Additional support may be found in reliable historical accounts. Special care must be taken in order to avoid circular reasoning by maintaining the independence of data acquisition methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号