首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《International Geology Review》2012,54(15):1885-1901
The Dachang gold deposit is located in the Late Triassic Songpan-Ganzi Fold Belt, NE Tibetan Plateau. Gold ore is concentrated as veins along secondary faults and fracture zones in the Bayan Har Group metaturbidites. No exposed felsic plutons are present in the vicinity of the deposit. The auriferous veins contain <15% sulphide minerals, mainly arsenopyrite, pyrite, and stibnite. Gold is commonly enclosed within arsenopyrite and pyrite. Typical alteration around the ore bodies includes silicification, sericitization, and weak carbonatization.

Gold-bearing quartz samples have δ18O values of 16.9–21.2‰ (V-SMOW) from which δ18OH2O values of 6.2–9.6‰ can be calculated from the fluid inclusion temperatures (or 10.0 to 12.7‰ if we used the average arsenopyrite geothermometer temperature of 301°C). The δD values of fluid inclusions in quartz range from –90‰ to –72‰. δ34S values of gold-bearing sulphides mainly range from –5.9‰ to –2.8‰ (V-CDT). Pyrite and arsenopyrite in ores have 206Pb/204Pb ratios of 18.2888 to 18.4702, 207Pb/204Pb ratios of 15.5763 to 15.6712, and 208Pb/204Pb ratios of 38.2298 to 38.8212. These isotopic compositions indicate that the ore-forming fluids were of metamorphic origin, and the S and Pb may have been derived from the host metaturbidites of the Bayan Har Group. The Dachang Au deposit has geological and geochemical features similar to orogenic gold deposits. We propose that the ores formed when the Songpan-Ganzi Fold Belt was intensely deformed by Late Triassic folding and thrusting. Large-scale thrusting resulted in regional allochthons of different scales, followed by secondary faults or fracture zones that controlled the ore bodies.  相似文献   

2.
The Zhaima gold–sulfide deposit is located in the northwestern part of the West Kalba gold belt in eastern Kazakhstan. The mineralization is hosted in Lower Carboniferous volcanic and carbonate rocks formed under conditions of marginal-sea and island-arc volcanic activity. The paper considers the mineralogy and geochemistry of primary gold–sulfide ore and Au-bearing weathering crusts. Au-bearing arsenopyrite–pyrite mineralization formed during only one productive stage. Disseminated, stringer–disseminated, and massive rocks are enriched in Ti, Cr, V, Cu, and Ni, which correspond to the mafic profile of basement. The main ores minerals are represented by finely acicular arsenopyrite containing Au (up to few tens of ppm) and cubic and pentagonal dodecahedral pyrite with sporadic submicroscopic inclusions of native gold. The sulfur isotopic composition of sulfides is close to that of the meteoritic standard (δ34S =–0.2 to +0.2). The 40Ar/39Ar age of three sericite samples from ore veinlets corresponds to the Early Permian: 279 ± 3.3, 275.6 ± 2.9, and 272.2 ± 2.9 Ma. The mantle source of sulfur, ore geochemistry, and spatial compatibility of mineralization with basic dikes allow us to speak about the existence of deep fluid–magmatic systems apparently conjugate with the Tarim plume.  相似文献   

3.
The Sawuershan region, one of the important gold metallogenic belts of Xinjiang, is located in the western part of the Kalatongke island arc zone of north Xinjiang, NW China. There are two gold deposits in mining, namely the Kuoerzhenkuola and the Buerkesidai deposits. Gold ores at the Kuoerzhenkuola deposit occur within Carboniferous andesite and volcanic breccias in the form of gold‐bearing quartz–pyrite veins and veinlet groups containing native gold, electrum, pyrite, pyrrhotite and chalcopyrite. Gold ores at the Buerkesidai deposit occur within Carboniferous tuffaceous siltstones in the form of gold‐bearing quartz veinlet groups and altered rocks, with electrum, pyrite and arsenopyrite as major metallic minerals. Both gold deposits are hosted by structurally controlled faults associated with intense hydrothermal alteration. The typical alteration assemblage is sericite + chlorite + calcite + quartz, with an inner pyrite–sericite zone and an outer chlorite–calcite–epidote zone between orebodies and wall rocks. δ34S values (0.3–1.3‰) of pyrite of ores from Kuoerzhenkuola deposit are similar to those (0.4–2.9‰) of pyrite of ores from Buerkesidai deposit. δ34S values (1.1–2.8‰) of pyrite from altered rocks are similar to δ34S values of magmatic or igneous sulfide sulfur, but higher than those from ores. 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb data of sulfide from ores range within 17.72–18.56, 15.34–15.61, and 37.21–38.28, respectively. These sulfur and lead isotope compositions imply that ore‐forming materials might originate from multiple, mainly deep sources. He and Ar isotope study on fluid inclusions of pyrites from ores of Kuoerzhenkuola and Buerkesidai gold deposits produces 40Ar/36Ar and 3He/4He ratios in the range of 282–525 and 0.6–9.4 R/Ra, respectively, indicating a mixed source of deep‐seated magmatic water (mantle fluid) and shallower meteoric water. In terms of tectonic setting, the gold deposits in the Sawuershan region can be interpreted as epithermal. These formations resulted from a combination of protracted volcanic activity, hydrothermal fluid mixing, and a structural setting favoring gold deposition. Fluid mixing was possibly the key factor resulting in Au deposition in the gold deposits in Sawuershan region.  相似文献   

4.
Electron microprobe analyses of gold and associated ore minerals as well as stable isotope analyses of sulphide and carbonate minerals were performed in order to determine the metal and fluid sources and temperature of the mineralizing systems to better understand the genesis of the Atud gold deposit hosted in the metagabbro–diorite complex of Gabal Atud (Central Eastern Desert, Egypt). The gold can be classified as electrum (63.6–74.3 wt.% Au and 24.6–26.6 wt.% Ag) and is associated with arsenopyrite and As-bearing pyrite in the main mineralization (gold-sulphides) phase within the main mineralized quartz veins and altered host rocks. Based on the arsenopyrite geothermometer, As-contents (29.3–32.7 atom%) in arsenopyrite point to deposition in the Log ?S2 and T ranges of ?10.5 to ?5.5 and 305–450°C, respectively, during the main mineralizing phase. Based on the δ34S isotopic compositions of the sulphides, they are originated from magmatic fluids in which the sulphur is either sourced directly from magma or remobilized from the magmatic rocks (gabbroic rocks). On the other hand, calcite formed from fluids having mainly magmatic mixed with variable metamorphic signatures based on its δ13C and δ18O values. This work concluded that the gold-bearing ores at Atud deposit have magmatic sources leaching from the country intrusive rocks during water/rock interactions then remobilized during a metamorphic event. Therefore, the Atud gold deposit is classified as an intrusion-related gold deposit, in which the gabbro–diorite host intrusion acted as the source of metals which were mobilized and deposited as a result of the effects of NW–SE shearing.  相似文献   

5.
甘肃省阳山金矿田金的赋存状态和金矿物特征   总被引:1,自引:0,他引:1  
甘肃阳山金矿田属于类卡林型金矿床,金矿化类型主要有蚀变千枚岩、蚀变斜长花岗斑岩、蚀变砂岩、蚀变灰岩四种。金多呈独立金矿物形式出现,少许呈分散状,矿石中金矿物以自然金为主,其次是银金矿。金矿物以包体金、裂隙金、粒间金等形式嵌布于毒砂、黄铁矿、辉锑矿、粘土矿物等主要载金矿物中,且毒砂、黄铁矿、辉锑矿较其它金属硫化物中占优势。金矿物形态各样,粒度以微细粒为主。金矿物特征反映出本区金矿床的成矿物质主要来源于变质岩、岩浆岩和地幔,成矿作用与印支晚期中酸性侵入岩有关。这与地质地球化学研究所获得的矿床成因认识相一致。  相似文献   

6.
Abstract: The Kanggur gold deposit lies in East Tianshan mountains, eastern section of Central Asia orogenic belt. The gold mineralization occurs on the northern margin of the Aqishan‐Yamansu Paleozoic island arc in the Tarim Plate. It was hosted mainly in Middle‐Lower Carboniferous calc‐alkaline volcanic rocks, and controlled by the distributions of syn‐tectonic intrusions and ductile shear zones. In order to determine ore‐forming age of the Kanggur deposit, samples were collected from ores, wall rocks, altered rocks and intrusions. The dating methods include Rb‐Sr isochron and Sm‐Nd isochron, and secondly 40Ar/39Ar age spectrum, U‐Pb and Pb‐Pb methods. Based on the mineral assemblage and crosscutting relationship of ore veins, five mineralization stages are identified. This result is confirmed by isotope geochronologic data. The first stage featuring formation of pyrite‐bearing phyllic rock, is mineralogically represented by pyrite, sericite and quartz with poor native gold. The Rb‐Sr isochron age of this stage is 2905 Ma. The second stage represents the main ore‐forming stage and is characterized by native gold–quartz–pyrite–magnetite–chlorite assemblage. Magnetite and pyrite of this stage are dated by Sm‐Nd isochron at 290.47.2 Ma and fluid inclusion in quartz is dated by Rb‐Sr isochron at 282.35 Ma. The third mineralization stage features native gold–quartz–pyrite vein. In the fourth stage, Au‐bearing polymetallic sulfide‐quartz veins formed. Fluid inclusions in quartz are dated by Rb‐Sr isochron method at 25821 Ma. The fifth stage is composed of sulfide‐free quartz–carbonate veins with Rb‐Sr age of 2547 Ma. The first and second stages are related to ductile‐brittle deformation of shear zones, and are named dynamo‐metamorphic hydrothermal period. The third to fifth stages related to intrusive processes of tonalite and brittle fracturing of the shear zones, are called magmato‐hydrothermal mineralization period. The Rb‐Sr isochron age of 2905 Ma of the altered andesite in the Kanggur mine area may reflect timing of regional ductile shear zone. The Rb‐Sr isochron age of 28216 Ma of the quartz‐syenite porphyry and the zircon U‐Pb age of 2757 Ma of tonalite in the north of Kanggur gold mine area are consistent with the age of gold mineralization (290‐254 Ma). This correspondence indicates that the tonalite and subvolcanic rocks may have been related to gold mineralization. The Rb–Sr, Sm‐Nd and U‐Pb ages and regional geology support the hypothesis that the Kanggur gold deposit was formed during collisional orogenesis process in Late Variscan.  相似文献   

7.
陈博  侯泉林  冯宏业  郭虎  许英霞 《岩石学报》2019,35(7):2086-2104
阿沙哇义金矿位于中国新疆南天山造山带,属于著名的中亚南天山锑-汞-金成矿带的东延部分。该矿床严格受断裂所控制,以浸染状黄铁矿化、毒砂化为特征。矿化可分为三个阶段:早期无矿或贫矿石英阶段,中期石英多金属硫化物阶段,晚期石英-碳酸盐阶段。其中,中期是主要成矿阶段。成矿流体气相成分以H_2O为主,摩尔含量为75%~93%,其次为CO_2,摩尔含量为6%~25%,其余为CH_4、C_2H_6、H_2S、N_2和Ar;液相成分阳离子以Na~+为主,含少量K~+、Ca~(2+)离子,阴离子以Cl~-为主,SO~(2-)次之;矿石的Au含量与其流体的CO_2含量呈反相关,与K~+含量呈正相关。硫化物成分分析结果表明:(1)围岩地层和矿石中的黄铁矿和毒砂是重要的载金矿物,黄铁矿Au含量为0~0. 09%,平均值0. 03%;毒砂Au含量为0~0. 28%,平均值0. 07%;(2)黄铁矿和毒砂Au含量与其自形程度没有明显的相关性;(3)环带状黄铁矿较均质结构黄铁矿具有更高的Au含量;(4)岩体中的黄铁矿几乎不含Au。在成矿构造环境、成矿流体特征及演化、金矿富集机制、成矿温压条件等方面,该矿床与世界上大多数造山型金矿显示出一致性,成矿类型应属于剥蚀程度较浅的造山型金矿。断层阀作用控制的断层愈合-破裂导致的流体不混溶作用是本区金富集、沉淀的最重要机制,但流体混合机制对金的富集沉淀也发挥了作用。黄铁矿、毒砂发育及较多的含炭物质三者共存是本区寻找富矿的关键标志。  相似文献   

8.
The Wangu gold deposit in northeastern Hunan, South China, is one of many structurally controlled gold deposits in the Jiangnan Orogen. The host rocks (slates of the Lengjiaxi Group) are of Neoproterozoic age, but the area is characterized by a number of Late Jurassic–Cretaceous granites and NE-trending faults. The timing of mineralization, tectonic setting and ore genesis of this deposit and many similar deposits in the Jiangnan Orogen are not well understood. The orebodies in the Wangu deposit include quartz veins and altered slates and breccias, and are controlled by WNW-trending faults. The principal ore minerals are arsenopyrite and pyrite, and the major gangue minerals are quartz and calcite. Alteration is developed around the auriferous veins, including silicification, pyritic, arsenopyritic and carbonate alterations. Field work and thin section observations indicate that the hydrothermal processes related to the Wangu gold mineralization can be divided into five stages: 1) quartz, 2) scheelite–quartz, 3) arsenopyrite–pyrite–quartz, 4) poly-sulfides–quartz, and, 5) quartz–calcite. The Lianyunshan S-type granite, which is in an emplacement contact with the NE-trending Changsha-Pingjiang fracture zone, has a zircon LA-ICPMS U–Pb age of 142 ± 2 Ma. The Dayan gold occurrence in the Changsha-Pingjiang fracture zone, which shares similar mineral assemblages with the Wangu deposit, is crosscut by a silicified rock that contains muscovite with a ca. 130 Ma 40Ar–39Ar age. The gold mineralization age of the Wangu deposit is thus confined between 142 Ma and 130 Ma. This age of mineralization suggests that the deposit was formed simultaneously with or subsequently to the development of NE-trending extensional faults, the emplacement of Late Jurassic–Cretaceous granites and the formation of Cretaceous basins filled with red-bed clastic rocks in northeastern Hunan, which forms part of the Basin and Range-like province in South China. EMPA analysis shows that the average As content in arsenopyrite is 28.7 atom %, and the mineralization temperature of the arsenopyrite–pyrite–quartz stage is estimated to be 245 ± 20 °C from arsenopyrite thermometry. The high but variable Au/As molar ratios (>0.02) of pyrite suggest that there are nanoparticles of native Au in the sulfides. An integration of S–Pb–H–O–He–Ar isotope systematics suggests that the ore fluids are mainly metamorphic fluids originated from host rocks, possibly driven by hydraulic potential gradient created by reactivation of the WNW-trending faults initially formed in Paleozoic, with possible involvement of magmatic and mantle components channeled through regional fault networks. The Wangu gold deposit shares many geological and geochemical similarities as well as differences with typical orogenic, epithermal and Carlin-type gold deposits, and may be better classified as an “intracontinental reactivation” type as proposed for many other gold deposits in the Jiangnan Orogen.  相似文献   

9.
罗家金矿为中低温热液黄铁绢英岩型金矿床。矿区NNE向断裂与其他方向断裂交会部位及其附近为金矿有利成矿部位,矿床具分带现象,花岗细晶岩脉与成矿关系密切。矿石类型以黄铁绢英岩型为主,含金石英脉型次之,矿石含金品位较高,并伴生较高的Ag,Cu等有益元素。通过对金矿床的地质特征、控矿因素及矿床成因的研究,在分析找矿标志的基础上,提出应进一步查证物化探异常,加大矿区深部及外围的找矿力度,以期发现新的金矿体。  相似文献   

10.
The Mupane gold deposit, which is one of the numerous gold occurrences in the Tati Greenstone Belt in the northeastern part of Botswana, consists of four orebodies, namely Tau, Tawana, Kwena, and Tholo deposits. The present research, which focuses on the genesis of the Tau deposit, was based on ore petrography, mineral chemistry of sulfides, and sulfur isotope data. Mineralogical characteristics of the host rocks indicate that banded iron formation at the Tau deposit includes iron oxides (magnetite), carbonates (siderite and ankerite), silicates (chlorite and amphibole), and sulfides (arsenopyrite and pyrrhotite). The deposit features arsenopyrite-rich zones associated with biotite-chlorite veins, which are indicative of the precipitation of arsenopyrite concomitant with potassic alteration. The replacement of magnetite by pyrrhotite in some samples suggests that sulfidation was likely the dominant gold precipitation mechanism because it is considered to have destabilized gold-thiocomplexes in the ore-forming fluids. Based on textural relationships and chemical composition, arsenopyrite is interpreted to reflect two generations. Arsenopyrite 1 is possibly early in origin, sieve textured with abundant inclusions of pyrrhotite. Arsenopyrite 1 was then overgrown by late arsenopyrite 2 with no porous textures and rare inclusions of pyrrhotite. Gold mineralization was initiated by focused fluid flow and sulfidation of the oxide facies banded iron formation, leading to an epigenetic gold mineralization. The mineralogical assemblages, textures, and mineral chemistry data at the Tau gold deposit revealed two-stage gold mineralizations commencing with the deposition of invisible gold in arsenopyrite 1 followed by the later formation of native gold during hydrothermal alteration and post-depositional recrystallization of arsenopyrite 1. Laser ablation inductively coupled plasma mass spectrometric analysis of arsenopyrite from the Tau deposit revealed that the hydrothermal event responsible for the formation of late native gold also affected the distribution of other trace elements within the grains as evidenced by varying trace elements contents in arsenopyrite 1 and arsenopyrite 2. The range of δ34S of gold-bearing assemblages from the Tau deposit is restricted from +1.6 to +3.9‰, which is typical of Archean orogenic gold deposits and indicates that overall reduced hydrothermal conditions prevailed during the gold mineralization process at the Tau deposit. The results from this study suggest that gold mineralization involved multi-processes such as sulfidation, metamorphism, deformation, hydrothermal alteration, and gold remobilization.  相似文献   

11.
Vostok-2—East Russia’s largest skarn deposit of high-grade sulfide-scheelite ore with substantial base-metal and gold mineralization—was formed during the Mesozoic orogenic epoch of evolution of the Far East marginal continental system as an element of the gold-tin-tungsten metallogenic belt. The deposit is related to the multistage monzodiorite-granodiorite-granite complex pertaining to the ilmenite series and spatially associated with a minor granodiorite porphyry (?) stock, which bears petrological features transi- tional to those of intrusive rocks occurring at Au-W and Au deposits. The hydrothermal metasomatic alteration of host rocks evolved from pyroxene skarn via retrograde postskarn and propylitic (hydrosilicate) metasomatic rocks to the late, low-temperature quartz-sericite metasomatic rocks often with albite, chlorite, carbonate, and apatite. The mineral assemblages of skarn and postskarn metasomatic rocks correspond to those at the reduced-type tungsten skarn deposits. Zoning of the postskarn metasomatic rocks is controlled by granodiorite stock. The hydrothermal metasomatic alteration was accompanied by development of mineralization from scheelite via sulfide-scheelite with pyrrhotite and chalcopyrite to the gold-base-metal-scheelite assemblage with arsenopyrite, Bi-Sb-Te-Pb-Zn sulfides and sulfosalts. Several scheelite generations are recognized. Scheelite of the late generations is enriched in Eu, as is typical of gold deposits. The associated gold mineralization comprises both native gold varying in fineness and Au-bearing arsenopyrite. The significant gold mineralization emphasizes genetic links of this deposit with intrusion-related Au-W and Au deposits of the reduced type.  相似文献   

12.
The Raigorodok stockwork gold-sulfide-quartz deposit is located in the contact zone of a monzogabbro-diorite intrusion belonging to the Stepnyak complex (442 Ma). Two main ore formation stages have been established: early, with disseminated gold-bearing pyrite-chalcopyrite mineralization related to skarn, propylite, and K-feldspar formation, and late, with productive mineralization. The late stage was accompanied by the formation of beresite, sericite, and quartz and comprised two substages: (1) quartz-gold-pyrite-chalcopyrite mineralization and (2) quartz-carbonate-gold-polysulfide mineralization. The 40Ar/39Ar ages of beresites and sericites are 422.9 ± 4.3 Ma and 416.7 ± 4.3 Ma, respectively, which is 19-22 Myr younger than the age of the host intrusion. The deposit ores formed stepwise, at temperatures of 112-335 °C and fluid salinity of 0.7-21.2 wt.% NaCl equiv. Sulfur for skarns, propylites, beresites, and ores might have been provided by a deep magma chamber, and the carbonaceous shales of the Vendian Sharyk Formation might have been the source of gold. The isotope and geochemical data and the results of fluid inclusion study suggest that Raigorodok is an intrusion-related deposit. At the same time, the deposit has a number of signs of porphyry-epithermal ore-magmatic systems.  相似文献   

13.
哲兰德金矿是额尔齐斯构造带上重要的造山型金矿,产出于韧性剪切带中,金矿化赋存于黄铁矿化闪长岩脉、含金石英脉和黄铁矿化千枚岩中,矿化与韧脆性剪切变形有关。沿剪切面理发育的白云母、绿泥石等新生矿物,为测定金矿形成时代提供了依据。本研究利用白云母~(40)Ar/~(39)Ar年代学手段,确定了韧性剪切带的形成时代和金成矿时代。结果表明白云母坪年龄为295. 4±1. 6 Ma,韧性剪切变形和金成矿作用发生在295 Ma,略早于多拉纳萨依金矿形成时间。结合前人资料认为,新疆额尔齐斯构造带造山型金矿形成于295~270 Ma。  相似文献   

14.
The Lapa gold deposit contains reserves of 2.4 Mt at 6.5 g/t Au and is one of the few deposits located directly within the Cadillac–Larder Lake Fault Zone (CLLFZ), a first-order crustal-scale fault that separates the Archean Abitibi Subprovince from the Pontiac Subprovince to the south. Gold mineralization is predominantly hosted in highly strained and altered, upper greenschist–lower amphibolite facies mafic to ultramafic rocks of the Piché Group. Auriferous ore zones consist of finely disseminated auriferous arsenopyrite–pyrrhotite?±?pyrite and native gold disseminated in biotite- and carbonate-altered wall rocks. Native gold, which is also present in quartz ± dolomite–calcite veinlets, is locally associated with Sb-bearing minerals, especially at depth ≤1 km from surface where the deposit is characterized by a Au–Sb–As association. At vertical depth greater than 1 km, gold is associated with arsenopyrite and pyrrhotite (Au–As association). The mineralogy and paragenesis of the Lapa deposit metamorphosed ore and alteration assemblages record the superposition of three metamorphic episodes (M1, M2, and M3) and three gold mineralizing events. Spatial association between biotitized wall rocks and auriferous arsenopyrite indicates that arsenopyrite precipitation is concomitant with potassic alteration. The predominant Au–As association recognized across the deposit is related to gold in solid solution in arsenopyrite as part of a pre-M2 low-grade auriferous hydrothermal event. However, the occurrence of hornblende?+?oligoclase porphyroblasts overprinting the biotite alteration, and the presence of porous clusters and porphyroblasts of arsenopyrite with native gold and pyrrhotite indicate an auriferous metasomatic event associated with peak M2 prograde metamorphism. Late retrograde metamorphism (M3) overprints the hornblende–oligoclase M2 assemblage within the host rocks proximal to ore by an actinolite–albite assemblage by precipitation of free gold and Sb–sulfosalts at lower PT. The complex relationships between ore, structural features, and metamorphic assemblages at Lapa are related to the tectonometamorphic evolution of the Cadillac–Larder Lake Fault Zone at different times and crustal levels, and varying heat and fluid flow regimes. The Lapa deposit demonstrates that early, low-grade gold mineralization within the Cadillac–Larder Lake Fault Zone has benefited from late gold enrichment(s) during prograde and retrograde metamorphism, suggesting that multi-stage processes may be important to form gold-rich orogenic deposits in first order crustal-scale structures.  相似文献   

15.
Mineral assemblages, chemical compositions of ore minerals, wall rock alteration and fluid inclusions of the Gatsuurt gold deposit in the North Khentei gold belt of Mongolia were investigated to characterize the gold mineralization, and to clarify the genetic processes of the ore minerals. The gold mineralization of the deposit occurs in separate Central and Main zones, and is characterized by three ore types: (i) low‐grade disseminated and stockwork ores; (ii) moderate‐grade quartz vein ores; and (iii) high‐grade silicified ores, with average Au contents of approximately 1, 3 and 5 g t?1 Au, respectively. The Au‐rich quartz vein and silicified ore mineralization is surrounded by, or is included within, the disseminated and stockwork Au‐mineralization region. The main ore minerals are pyrite (pyrite‐I and pyrite‐II) and arsenopyrite (arsenopyrite‐I and arsenopyrite‐II). Moderate amounts of galena, tetrahedrite‐tennantite, sphalerite and chalcopyrite, and minor jamesonite, bournonite, boulangerite, geocronite, scheelite, geerite, native gold and zircon are associated. Abundances and grain sizes of the ore minerals are variable in ores with different host rocks. Small grains of native gold occur as fillings or at grain boundaries of pyrite, arsenopyrite, sphalerite, galena and tetrahedrite in the disseminated and stockwork ores and silicified ores, whereas visible native gold of variable size occurs in the quartz vein ores. The ore mineralization is associated with sericitic and siliceous alteration. The disseminated and stockwork mineralization is composed of four distinct stages characterized by crystallization of (i) pyrite‐I + arsenopyrite‐I, (ii) pyrite‐II + arsenopyrite‐II, (iii) galena + tetrahedrite + sphalerite + chalcopyrite + jamesonite + bournonite + scheelite, and iv) boulangerite + native gold, respectively. In the quartz vein ores, four crystallization stages are also recognized: (i) pyrite‐I, (ii) pyrite‐II + arsenopyrite + galena + Ag‐rich tetrahedrite‐tennantite + sphalerite + chalcopyrite + bournonite, (iii) geocronite + geerite + native gold, and (iv) native gold. Two mineralization stages in the silicified ores are characterized by (i) pyrite + arsenopyrite + tetrahedrite + chalcopyrite, and (ii) galena + sphalerite + native gold. Quartz in the disseminated and stockwork ores of the Main zone contains CO2‐rich, halite‐bearing aqueous fluid inclusions with homogenization temperatures ranging from 194 to 327°C, whereas quartz in the disseminated and stockwork ores of the Central zone contains CO2‐rich and aqueous fluid inclusions with homogenization temperatures ranging from 254 to 355°C. The textures of the ores, the mineral assemblages present, the mineralization sequences and the fluid inclusion data are consistent with orogenic classification for the Gatsuurt deposit.  相似文献   

16.
位于右江盆地南部的滇东南底圩金矿床是近年来新发现的一处金矿床,为理清其成因,对不同类型矿石和赋矿围岩进行了主、微量元素及硫化物的硫同位素分析.结果表明,相较于赋矿围岩,矿石中明显富集Au、As、Sb、Hg、Tl、S、K、C元素,应为热液带入;而Si、Mg、Fe、Zr 和Th在矿石和围岩中变化不大,Fe主要来源于赋矿围岩...  相似文献   

17.
Petrochemical characteristics of igneous, sedimentary, and metasomatic rocks; chemical and isotopic compositions of minerals and fluids; and PT parameters of mineral formation at the Nezhdaninsky deposit are reported. A model of hydrothermal system formation is developed on this basis. In addition to decreasing Ba/Rb and Li/Mg ratios in the course of the hydrothermal process, resulting in the formation of ore-bearing metasomatic rocks, increasing K/Ba and diminishing K/Cs ratios indicate the probable participation of magmatic fluid in the ore deposition. The agreement of the K/Rb and K/Ba ratios with the values typical of the main trend of igneous rocks (MT) implies that the K, Rb, and Ba contents were distributed in the ore-forming hydrothermal fluid according to the ratios in the source magmatic chamber. The K/Rb ratios in metasomatic rocks correspond to the MT and approach the pegmatitic-hydrothermal trend and the composition of orthomagmatic fluid of Mo-W greisen. Similar REE patterns of igneous and terrigenous rocks do not allow the REE source to be constrained unequivocally. The lithological control of lithophile element distribution testifies to the supply of host rock components to the hydrothermal system. All studied rocks and minerals are enriched in LREE. The REE total and the contribution of HREE decrease from preore to synore metasomatic rocks, from preore to regenerated carbonates, and from older to younger scheelite. A similar tendency is noted in granitoids of the Kurum pluton. The δ18O values of quartz range from +10.3 to +12.6‰ in Au-Mo-W zones, from +15.9 to +16.4‰ in metasomatic rocks, from +14.8 to +16.6‰ in gold-ore veins, and from +13.5 to +16.9‰ in silver-base-metal ore mineralization. The estimates of \(\delta ^{18} O_{H_2 O} \) suggest that water was supplied from a magmatic source (δ18O = +(5.5?9.0‰)) and as a product of sedimentary rock dehydration. High-temperature (up to 390°C) and highly concentrated (up to 31 wt % NaCl equiv) fluids participated in the mineral formation. The phase separation of the fluid into H2O-CO2 liquid and predominantly carbon dioxide gas was combined with mixing of a high-temperature and relatively highly concentrated chloride solution with a low-temperature and poorly mineralized fluid. The redox conditions varied from equilibrium with CH4-bearing fluid at the gold-molybdenum-tungsten stage to equilibrium with CO2-bearing fluid during the gold-ore stage.  相似文献   

18.
The Ta Nang gold deposit is localized in Middle Jurassic black shales. The ore zone is a series of layer-by-layer crush zones and zones of hydrothermal rock alteration, < 10 m in thickness and > 2 km in length. It consists of quartz-sulfide veins, sulfidized black shales, and their hydrothermally altered varieties. Sulfide mineralization occurs as two assemblages: early pyrite-arsenopyrite and late chalcopyrite-sphalerite- galena. The pyrite-arsenopyrite assemblage is composed of different morphogenetic varieties. Coarse-crystalline arsenopyrite and pyrite aggregates and metacrystals of different orientations, 0.1 to 10 mm in size, are the most widespread. The chalcopyrite-sphalerite-galena assemblage is scarce. Along with the main ore minerals, it includes more rare minerals: pyrrhotite, lead sulfosalts (tsugaruite), and gold, which form a spatial assemblage with the main minerals or small inclusions in them. Gold occurs mainly as fine dissemination in cracks in pyrite, arsenopyrite, chalcopyrite, and quartz. Gold content in sulfidized carbonaceous shales is no more than tenths of ppm, averaging 0.38 ppm. This content in the quartz veins is considerably higher, averaging 3.92 ppm. Silver contents in the shales and quartz veins are similar and equal to 2.68 and 5.30 ppm, respectively. Also, the sulfidized rocks and veins have elevated contents of Fe, As, Pb, Zn, Cu, Cd, Ni, and Co; most of these elements (Fe, As, Pb, Zn, and Cu) make up their own sulfide minerals, and the others are trace elements. According to 39Ar/40Ar dating of sericite from the quartz-sulfide veins, their age is 129.3 ± 5.6 Ma, which is close to the age of the Cretaceous granite intrusions of the Deo Ca complex. These veins formed from moderately strong solutions (11.7-6.4 wt.% NaCl equiv) with the CH4 + N2 + CO2 gas phase at 340–130 °C. Judging from the S isotope composition (534S = 1.6-4.3%c), predominantly deep-seated endogenic sulfur participated in the formation of ore sulfide associations. Analysis of the distribution of gold shows that it was deposited together with sulfide minerals (galena, sphalerite, and chalcopyrite) at a later stage.  相似文献   

19.
Gold mineralization of the Tardan deposit is of different spatial occurrences and is related to different hydrothermal-metasomatic formations, the main ones being skarn-magnetite bodies, metasomatites of mineralized crush zones, and metasomatites of argillizitic-rock association. The formation of gold mineralization was a multistage process related to the repeated magmatism of the Tannu-Ola complex. It took place in a wide temperature range (400–150 °C), which determined the diversity of produced mineral assemblages. The gold mineralization associated with magnetite bodies shows a spatial correlation with magnesian and calcareous skarns and is localized in plagiogranites and gabbro-diorites of the Tannu-Ola complex intruded in the Late Ordovician. Gold mineralization that occurs in crush zones and along the fault sutures in moderate- and low-temperature hydrothermal-metasomatic rocks (propylites, beresites, serpentinites, and argillizites) formed somewhat later than skarns as a result of the intrusion of granite dike bodies. Comparative analysis of different types of gold mineralization showed both a change of mineral assemblages of the gold mineralization during the ore formation and some geochemical difference between gold and gold-bearing ores. In passing from early to late occurrences of native gold, its fineness decreases, the contents of admixtures correspondingly increase, and the gold composition changes. Gold of high-temperature rocks is rich in Cu (up to 17%), and gold of low-temperatures rocks has higher contents of Ag and Hg.  相似文献   

20.
The large tonnage Maoling gold deposit (25 t @ 3.2 g/t) is located in the southwest Liaodong Peninsula, North China Craton. The deposit is hosted in the Paleoproterozoic metamorphic rocks. Four stages of mineralization were identified in the deposit: (stage I) quartz-arsenopyrite ± pyrite, (stage II) quartz-gold- arsenopyrite-pyrrhotite, (stage III) quartz-gold- polymetallic sulfide, and (stage IV) quartz-calcite-pyrrhotite. In this paper, we present fluid inclusion, C-H-O-S-Pb-He-Ar isotope data, zircon U-Pb, and gold-bearing sulfide (i.e. arsenopyrite and pyrrhotite) Rb-Sr age of the Maoling gold deposit to constrain its genesis and ore-forming mechanism. Three types of fluid inclusions were distinguished in quartz-bearing veins, including liquid-rich two-phase (WL type), gas-rich two-phase (GL type), and daughter mineral-bearing fluid inclusions (S type). Fluid inclusions data show that the homogenization at temperatures 197 to 372 °C for stage I, 126 to 319 °C for stage II, 119 to 189 °C for stage III, and 115 to 183 °C for stage IV, with corresponding salinities of 3.7 to 22.6 wt.%, 4.7 to 23.2 wt.%, 5.3 to 23.2 wt.%, and 1.7 to 14.9 wt.% NaCl equiv., respectively. Fluid boiling was the critical factor controlling the gold and associated sulfide precipitation at Maoling. Hydrogen and oxygen stable isotopic analyses for quartz yielded δ18O = ?5.0‰ to 9.8‰ and δ D = ?133.5‰ to ?77.0‰. Carbon stable isotopic analyses for calcite and ankerite yielded δ13C = ?2.3‰ to ?1.2‰ and O = 7.9‰ to 14.1‰. The C-H-O isotope data show that the ore-forming fluids were originated from magmatic water with meteoric water input during mineralization. Hydrothermal inclusions in arsenopyrite have 3He/4He ratios of 0.002 Ra to 0.054 Ra, and 40Ar/36Ar rations of 1225 to 3930, indicating that the ore-forming fluids were dominantly derived from crustal sources almost no mantle input. Sulfur isotopic values of Maoling fine-grained granite range from 6.‰1 to 9.8‰, with a mean of 7.7‰, δ34S values of arsenopyrite from the mineralized phyllite (host rock) range from 8.9‰ to 10.6‰, with a mean of 10.0‰, by contrast, δ34S values of sulfides from ore vary between 4.3‰ and 10.6‰, with a mean of 6.8‰, suggesting that sulfur was mainly originated from both the host rock and magma. Lead radioactive isotopic analyses for sulfides yielded 206Pb/204Pb = 15.830–17.103, 207Pb/204Pb = 13.397–15.548, 208Pb/204Pb = 35.478–36.683, and for Maoling fine-grained granite yielded 206Pb/204Pb = 18.757–19.053, 207Pb/204Pb = 15.596–15.612, and 208Pb/204Pb = 38.184–39.309, also suggesting that the ore-forming materials were mainly originated from the host rocks and magma. Zircon U-Pb dating demonstrates that the Maoling fine-grained granite was emplaced at 192.7 ± 1.8 Ma, and the host rock (mineralized phyllite) was emplaced at some time after 2065.0 ± 27.0 Ma. Arsenopyrite and pyrrhotite give Rb–Sr isochron age of 188.7 ± 4.5 Ma, indicating that both magmatism and mineralization occurred during the Early Jurassic. Geochronological and geochemical data, together with the regional geological history, indicate that Early Jurassic magmatism and mineralization of the Maoling gold deposit occurred during the subducting Paleo-Pacific Plate beneath Eurasia, and the Maoling gold deposit is of the intrusion-related gold deposit type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号