首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Levant Rift system is an elongated series of structural basins that extends for more than 1000 km from the northern Red Sea to southern Anatolia. The system consists of three major segments, the Jordan Rift in the south, El Gharb–Kara-Su Rift in the north, and the Lebanese Fault splay in between. The rifted parts of this structural system are accompanied by intensively uplifted margins that mirror-image the basinal pattern, namely, the deeper the basin—the higher its margins, and vice versa. Uplifts also occur along the fault splay section. The Jordan Rift comprises axial basins that diminish in size from the south northwards, and are separated from each other by shallow threshold zones along the axis of the rift, where the margins are also subdued. The Lebanese Fault splay consists of five faults that emerge from the northern edge of the Jordan Rift and trend like a fan between the north and the northeast. One of these faults connects the Jordan and El Gharb–Kara-Su rifts. The Levant Rift and its uplifted margins started to develop in the middle-late Miocene, and most of the structural development occurred in the Plio-Pleistocene.The Levant Rift system is characterized by its oblique displacement, and evidence for both dip-slip and strike-slip displacement was measured on its faults. Earthquakes also indicate that same mixed pattern, some of them show strike-slip offset, and others normal. It is generally conceded that the amount of normal offset along the boundary faults of the Rift system reaches 8–10 km, but the lateral displacement is disputed, and offsets ranging from 11 to 107 km were suggested. Assessment of the available data led us to suggest that the sinistral offset along the Levant Rift system is approximately 10–20 km. The similarity between the vertical and the lateral displacements, the basin and threshold structural pattern of the Rift, model experiments in oblique rifting, as well as the significant tectonic resemblance to the Red Sea and the East African rifts, indicate that the Levant Rift is the product of continental breakup, and it is probably an emerging oceanic spreading center.  相似文献   

2.
1∶25万区域地质调查、地质剖面测制及研究发现,阿拉善左旗乌力吉地区分布有基性岩,其侵入上石炭统阿木山组中,后又被晚期酸性岩浆侵入,与其接触关系为侵入接触。研究表明,该基性岩主要由角闪辉长岩和辉长闪长岩组成,其中角闪辉长岩为主体岩性。采用LA-ICP-MS技术对其中典型的具基性岩浆特征的锆石进行了U-Th-Pb同位素测定,获得的206Pb/238U年龄加权平均值为248.0±0.9Ma,为早三叠世。结合区域构造和岩性关系,该地区辉长岩的形成年龄明显晚于区域内古亚洲洋板块向华北板块俯冲作用结束的时间,因此其并非是古亚洲洋板块向华北板块于晚古生代俯冲引起的构造岩浆旋回早期阶段的产物,而更可能与大规模的陆内裂解有关,并产生于地幔物质上涌造成的区域性大陆拉张环境中。  相似文献   

3.
Basic to ultrabasic alkaline lamprophyres and diabases intruded within the Spanish Central System (SCS) during Upper Permian. Their high LREE, LILE and HFSE contents, together with positive Nb–Ta anomalies, link their origin with the infiltration of sublithospheric K-rich fluids. These alkaline dykes may be classified in two distinct groups according to the Sr–Nd isotope ratios: (1) a depleted PREMA-like asthenospheric component, and (2) a BSE-like lithospheric component. A slight enrichment in radiogenic 207Pb and 208Pb allows the contribution of a recycled crustal or lithospheric component in the mantle sources. The intrusion of this alkaline magmatism is likely to have occurred due to adiabatic decompression and mantle upwelling in the context of the widespread rifting developed from Carboniferous to Permian in western Europe. The clear differences in the geochemical affinity of Lower Permian basic magmas from north-western and south-western Europe might be interpreted in terms of a more extensive separation of both regions during that period, until they were assembled during Upper Permian. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Affected by thermal perturbation due to mantle uprising,the rheological structure of the lithosphere could be modified,which could lead to different rifting patterns from shelf to slope in a passive continental margin.From the observed deformation style on the northern South China Sea and analogue modeling experiments,we find that the rift zone located on the shelf is characterized by half grabens or simple grabens controlled mainly by long faults with large vertical offset,supposed to be formed with normal lithasphere extension.On the slope,where the lithosphere is very hot due to mantle upwelling and heating,composite grabens composed of symmetric grabens developed.The boundary and inner faults are all short with small vertical offset.Between the zones with very hot and normal lithosphere,composite half grnbens composed of half grabens or asymmetric grabens formed,whose boundary faults are long with large vertical offset,while the inner faults are relatively short.Along with the thickness decrease of the brittle upper crust due to high temperature,the deformation becomes more sensitive to the shape of a pre-existing weakness zone and shows orientation variation along strike.When there was a bend in the pre-existing weakness zone,and the basal plate was pulled by a clockwise rotating stress,the strongest deformation always occurs along the middle segment and at the transition area from the middle to the eastern segments,which contributes to a hotter lithosphere in the middle segment,where the Baiyun (白云) sag formed.  相似文献   

5.
莺歌海盆地成因及其大地构造意义   总被引:16,自引:3,他引:16       下载免费PDF全文
莺歌海盆地位于南海西北部 ,属 NW走向红河断裂带向南海海域的延伸。本文通过对盆地结构、沉降特征和构造 -沉积迁移过程的研究 ,提出莺歌海盆地在始新世—早渐新世期间属左旋扭张性断陷盆地 ,晚渐新世—早中新世的盆地演化阶段受到红河断裂带的左行剪切运动影响。莺歌海盆地的形成和演化历史反映了印藏板块碰撞过程对南海形成演化的影响历史  相似文献   

6.
中国东部及邻区早白垩世裂陷盆地构造演化阶段   总被引:60,自引:0,他引:60  
张岳桥  赵越  董树文  杨农 《地学前缘》2004,11(3):123-133
早白垩世是中国东部及邻区强烈的伸展裂陷和岩石圈减薄时期。根据裂陷盆地几何形态特征和展布型式 ,将早白垩世裂陷盆地分为泛裂陷型 (燕山—松辽断陷盆地群、蒙古断陷盆地群等 )、狭窄型 (沂沭裂谷系、伊兰—伊通裂谷带 )和菱形状型 (胶莱盆地、三江盆地、鸡西盆地等 ) 3种类型。通过综合分析和对比不同类型裂陷盆地沉积序列和构造演化历史 ,结合郯庐断裂带和秦岭—大别造山带白垩纪构造演化历史的研究成果 ,区分了中国东部早白垩世 2个显著不同的引张裂陷阶段和一个构造挤压反转阶段。早白垩世早期引张裂陷阶段 ( 1 4 0~ 1 2 0Ma)形成了宽广展布的燕山—松辽断陷盆地系和蒙古断陷盆地系 ,沿郯庐断裂带发生右旋走滑活动 ,控制了断裂带西侧南华北伸展走滑盆地和东侧胶莱、三江等和沿敦—密断裂带走滑拉分盆地的发育 ;早白垩世中期引张裂陷阶段 ( 1 2 0~ 1 0 0Ma) ,沿郯庐断裂带中、北段发生裂谷作用 ,形成沂沭裂谷系和伊兰—伊通裂谷带 ;早白垩世晚期 ( 1 0 0~ 90Ma)在区域NW SE向挤压应力场作用下 ,所有早白垩世裂陷盆地发生不同程度的构造反转 ,沿郯庐断裂发生强烈的左旋走滑运动。最后指出 ,太平洋古板块向东亚大陆边缘俯冲诱发的大陆岩石圈底侵作用、拆沉作用、地幔底辟和对流 ,以及来自西部块体  相似文献   

7.
A two-dimensional numerical modelling that simulate the kinematic and thermal response of the lithosphere to thinning was used for the quantitative reconstruction of the late Neogene to Recent times tectonic and stratigraphic evolution of the North Sicily continental margin (southern Tyrrhenian Sea). The numerical study of the evolution of the North Sicily margin builds on the crustal image and kinematic interpretation of the margin obtained by Pepe et al. [Tectonics 19 (2000) 241] on the basis of seismic data and gravity modelling. Tectonic modeling indicate that different segments of the margin were undergoing different vertical movements, which are mainly expression of the rifting and thinning of the lithosphere occurred during tectonic evolution of the southern Tyrrhenian Sea. A prediction of the pre-rift basement topography and the Moho along the margin converges to a value of 6.5 km for the depth of necking and a temperature-dependent EET (500° isotherm). The model fails to reproduce the morphology of the Solunto High confirming its non-extensional origin. A polyphase evolution is required to reproduce the observed syn- and post-rift stratigraphy. During the first rifting stage (between 9 and 5 Ma), crustal thinning factors reach maximum values of 1.27 in the Cefalù basin. A similar value is predicted for the subcrustal thinning around 60 km NNE of the profile margin. Crustal thinning factors increase during the second rifting stage (from 4 to 2 Ma) and reach values of 2 and up to 3.5 in the Cefalù basin and in the continent–oceanic transition zone, respectively. Similarly, subcrustal lithospheric thinning factors reach values up to 2.5 in the distal sector of the margin. An uplift of more than 100 m is predicted for the North Sicily shelf and surrounding onshore areas during the post-rift stage. The evolution of thermal structure with time is very sensitive to the partial thinning factors describing the evolution of the thinning itself during time. The lithosphere preserved part of its strength during extension. The effective elastic thickness (EET) along the margin through time is 24 km at the onset of rifting and reaches values less to 8 km during the second rifting stage in the northeastern end of the margin.  相似文献   

8.
胡培远  李才  翟庆国  王明  解超明  吴彦旺 《地质通报》2016,35(11):1845-1854
青藏高原处于冈瓦纳大陆与劳亚大陆的交汇部位,是研究冈瓦纳大陆裂解与聚合过程的关键地区。晚古生代伴随着特提斯洋的打开与扩张,冈瓦纳大陆北缘发生了广泛的裂解作用。大陆板内岩浆作用是超大陆裂解的重要证据。在青藏高原内部已有二叠纪大陆板内特征基性岩的报道,它们是该裂解事件的记录。然而,根据目前的相关报道,这些岩石主要出露在青藏高原的西部,以羌塘和潘伽地区为主,在其他地区尚无相关报道。首次报道的藏东类乌齐地区早二叠世辉长岩LA-ICP-MS锆石U-Pb定年结果显示,辉长岩的形成年龄为280±2Ma。全岩地球化学资料表明,辉长岩具有与典型大陆板内玄武岩类似的地球特征。辉长岩具有明显正的锆石εHf(t)值(5.1~11.5),暗示其岩浆起源于亏损的地幔源区。结合区域地质资料,认为类乌齐辉长岩是冈瓦纳大陆北缘早二叠世裂解的产物。因此,早二叠世大陆板内基性岩浆作用在青藏高原东部也有出露,它们是在羌塘-潘伽地幔柱活动的作用下,冈瓦纳大陆北缘裂解与班公湖-怒江洋打开和扩张的结果。  相似文献   

9.
To reveal the causes of differences in the hydrocarbon accumulation in continental marginal basins in the centralsouthern South China Sea,we used gravity-magnetic,seismic,drilling,and outcrop data to investigate the tectonic histories of the basins and explore how these tectonic events controlled the hydrocarbon accumulation conditions in these basins.During the subduction of the Cenozoic proto-South China Sea and the expansion of the new South China Sea,the continental margin basins in the central-southern South China Sea could be classified as one of three types of epicontinental basins:southern extensional-foreland basins,western extensional-strike slip basins,and central extensional-drift basins.Because these basins have different tectonic and sedimentary histories,they also differ in their accumulated hydrocarbon resources.During the Cenozoic,the basin groups in the southern South China Sea generally progressed through three stages:faulting and subsidence from the late Eocene to the early Miocene,inversion and uplift in the middle Miocene,and subsidence since the late Miocene.Hydrocarbon source rocks with marine-continental transitional facies dominated byⅡ-Ⅲkerogen largely developed in extremely thick Miocene sedimentary series with the filling characteristics being mainly deep-water deposits in the early stage and shallow water deposits in the late stage.With well-developed sandstone and carbonate reservoirs,this stratum has a strong hydrocarbon generation potential.During the Cenozoic,the basin groups in the western South China Sea also progressed through the three developmental stages discussed previously.Hydrocarbon source rocks with lacustrine facies,marine-continental transitional facies,and terrigenous marine facies dominated byⅡ2-Ⅲkerogen largely developed in the relatively thick stratum with the filling characteristics being mainly lacustrine deposits in the early stage and marine deposits in the late stage.As a reservoir comprised of self-generated and self-stored sandstone,this unit also has a high hydrocarbon generation potential.Throughout those same three developmental stages,the basin groups in the central South China Sea generated hydrocarbon source rocks with terrigenous marine facies dominated byⅢkerogen that have developed in a stratum with medium thicknesses with the filling characteristics being mainly sandstone in the early stage and carbonate in the late stage.This reservoir,which is dominated by lower-generation and upper-storage carbonate rocks,also has a high hydrocarbon generation potential.  相似文献   

10.
As part of the Yangtze plate, segments of the Dabie Shan terrane of Central China underwent ultra-high pressure metamorphism during Triassic subduction. We studied the geochemistry of the abundant eclogites to evaluate the nature of the protoliths and their geodynamic setting. Although some previous geochemical work exists, the analyses and interpretation herein are based on a new subdivision of the ultra-high pressure sequence into basement and cover units (Changpu and Ganghe Unit), revealing new and important results. In addition, eclogites of the so-called HP Unit south of the UHP units were studied. Whereas the large ion lithophile elements indicate postmagmatic, metasomatic changes of some samples, the high-field strength elements and the rare earth elements display original magmatic trends. The geochemical characteristics of the eclogites of the ultra-high pressure areas display a strong dependence on their “structural” and geographic position. The eclogites of the basement and the Changpu Unit indicate melt intrusion and extrusion in a continental rift system, i.e. during extensional tectonics. In contrast, the Ganghe Unit is characterized by a pronounced chemical homogeneity. The composition of the eclogites indicates generation from a mantle source highly influenced by slab-derived fluids. Those of the HP Unit show similar characteristics. Magmatism of the Ganghe and HP Unit probably occurred in a continental arc setting. A similar age for both units, geographically and/or tectonically separated, is possible. The geodynamic interpretation based on the geochemistry of the four units points to a Neoproterozoic scenario in which the protoliths of the HP and the cover units could have been of similar age and deposited in one evolving geological system. A rift-related larger-scale basin might have formed, e.g. a continental back-arc basin behind a magmatic arc after or simultaneous to sedimentation and magmatism in the magmatic arc. Alternatively, magmatism occurred in independent geodynamic settings, distinct in time and space. The units were juxtaposed during exhumation, after subduction to varying depths.  相似文献   

11.
12.
《International Geology Review》2012,54(12):1521-1540
The late Carboniferous Dongwanzi Complex in the northern North China Craton is composed of intrusive pyroxenite, hornblendite, gabbro, and syenite. The mafic-ultramafic rocks of the complex exhibit typical cumulate textures, curved-upward REE patterns, and variable contents of compatible elements, suggesting a cumulate origin. The syenite shows Sr-Nd isotopic ratios similar to the mafic-ultramafic complex and positive Eu anomalies in the chondrite-normalized REE patterns, suggesting that the syenite may represent residual melt after significant fractional crystallization of mafic melt. The mafic-ultramafic cumulates have low HREE abundance and high (Tb/Yb)N (2.5–4.2) and Dy/Yb ratios (>2), indicating that they may have originated from melting of garnet peridotite in the mantle. The Dongwanzi Complex is characterized by a large variation in Sr-Nd isotopic composition, with ISr = 0.7035 to 0.7052 and εNd(t) = ?4.0 to +5.2, which may be accounted for by mixing melts of depleted asthenospheric and enriched lithospheric sources. The radiogenic Os isotopic compositions of the complex ((187Os/188Os)i = 0.1344 to 0.3090) suggest slight contamination by mafic lower crust (≤2.5% based on Os isotopic modelling). The Dongwanzi Complex exhibits arc-related whole-rock and mineral geochemical affinities, such as enrichment in LILE (e.g. Sr, Ba, K) and depletion in HFSE (e.g. Nb, Ta, Ti). The abundance of hornblende and high CaO contents (22–24 wt.%) of clinopyroxene suggest that the source was rich in H2O, probably due to the formation above a subduction zone. We conclude that the Dongwanzi Complex and the related crust–mantle interactions probably reflect formation in a back-arc extensional environment related to the subduction of the Palaeo-Asian Ocean beneath the northern margin of the North China Craton in late Palaeozoic time.  相似文献   

13.
赣南燕山早期双峰式火山岩的厘定和意义   总被引:25,自引:2,他引:25  
研究表明分布在赣南寻邬县的白面石—菖蒲火山—沉积盆地和龙南县的东坑—临江火山-沉积盆地火山岩系下部的玄武岩与流纹岩具有紧密的时、空关系,是一套中侏罗世形成的双峰式火山岩组合。玄武岩和流纹岩的不相容元素地球化学特征与板内玄武岩一致,表明中国东南大陆存在燕山早期的裂谷作用或碰撞后伸展作用。  相似文献   

14.
Linear belts of Gondwana basins developed in the Indian continent since Late Palaeozoic along favoured sites of Precambrian weak zones like cratonic sutures and reactivated mobile belts. The Tibetan and Sibumasu - West Yunnan continental blocks, that were located adjacent to proto-Himalayan part of the Indian continent, rifted and drifted from the northern margin of the East Gondwanic Indo-Australian continent, during Late Palaeozoic, when the said northern margin was under glacial or cool climatic condition and rift-drift tectonic setting. The Indo-Burma-Andaman (IBA), Sikule, Lolotoi blocks were also rifted and drifted from the same northern margin during Late Jurassic. This was followed by the break-up of the Australia-India-Madagascar continental block during the Cretaceous. The activity was associated with hot spot related volcanism and opening up of the Indian Ocean. The Late Cretaceous and Tertiary phases of opening of the Arabian Sea succeeded the Early Cretaceous phase of opening of the Bay of Bengal, part of the Indian Ocean. The Palaeo- and Neo-Tethyan sutures in Tibet, Yunnan, Laos, Thailand and Vietnam reveal the complex opening and closing history of the Tethys. The IBA block rotated clockwise from its initial E-W orientation because of 90°E and adjacent dextral transcurrent fault movements caused due to faster northward movement of the Indian plate relative to that of Australia. The India-Tibet terminal collision during Early-Middle Eocene initiated Himalayan orogenesis and contemporaneously there was foreland basin development that was accompanied with sporadic but laterally extensive continental-flood-basalt (CFB) type and related volcanism. The Paleogene rocks of the Himalayan foreland basin are involved in tectonism and are mostly concealed under older rocks.

The Mesozoic-Early Eocene ophiolite terrane on IBA does not represent the eastern suture of the Indian plate but occurs as klippe on IBA, caused due to oblique collision between Sibumasu and IBA during Late Oligocene. Post-collisional indentation of Y-shaped Indian continent into the Asian collage produced Himalayan syntaxes, clockwise rotation of the Sibumasu block which was then sutured to the Tibetan and SE Asian blocks, and tectonic extrusion of the Indochina block along the Ailao Shan Red River (ASRR) shear zone. Highly potassic magmatic rocks were emplaced during Late Palaeogene at the oroclinally flexed marginal parts of the South China continental lithosphere. These magmatic bodies were dislocated by the ASRR left lateral shear zone soon afterwards. Petrogenetic and tectonic processes that generated the Eocene CFB volcanics at the Himalayan foreland basin may have also produced Late Palaeogene magmatism from outer parts of the Namche-Barwa Syntaxis. Their site-specific location and time sequence suggest them to be genetically related to the India-Asia collision process and Indian continent's indentation-induced syntaxial buckling. Deep mantle-reaching fractures were apparently produced during India-Asia terminal collision at the strongly flexed leading brittle edge of the Indian continental lithosphere, and possibly later in time at the outer oroclinally bent marginal parts of the rigid South China continental lithosphere, generating typical magma.

The subduction zone that developed along the western margin of IBA due to oblique convergence between the IBA and the Indian plate is still active. The northern end of IBA ultimately collided with the NE prolongation of the Indian continent and was accreted to it during Mio-Pliocene. The Shillong massif was uplifted and overthrust over the Bengal Basin located over its passive margin to the south, whereas, the Eocene distal shelf sediments of IBA were overthrust over the Tertiary shelf of the Indian continent.  相似文献   


15.
Fifty diamond crystals of different morphological types (octahedra, dodecahedroids, cubes and single tetrahexahedroid) with differing internal structures were examined using methods of cathodoluminescence (CL), anomalous birefringence and local infrared (IR) analysis. The main objective of the study was to examine the regularities of nitrogen impurity distribution in diamond with differing internal structures. Almost all the analyzed octahedra, as well as dodecahedroids with zonal structures and the blocky dodecahedroids, are characterized either by nearly isothermic growth conditions or by a decrease in formation temperature during the crystallization process. In contrast to zoned octahedra and dodecahedroids, dodecahedroids with zonal–sectorial and sectorial internal structures show a notably different distribution of nitrogen defects, with Ntot generally decreasing from crystal cores to marginal areas, and degree of nitrogen aggregation increasing in the same direction. From this, it would follow that in these crystals, the temperature of diamond formation of the outer crystal zones is approximately 40–50 °C higher than that of the inner zones. The same result (15 to 80 °C) was obtained for diamond crystals with cubic habit, which generally show a fibrous internal structure, reflecting normal mechanisms of growth. The anomalous distribution of nitrogen centres in diamond crystals that grew through the normal mechanism, with a high rate of growth and in an oversaturated medium, might point to non-equilibrium relationships between the concentrations of different nitrogen centres. It is likely that in crystals of this type, the rate of growth is higher than the rate of structural nitrogen aggregation. Thus, it appears that in these peculiar crystals of diamond we deal with non-equilibrium concentrations of nitrogen B centres and, consequently, with anomalous, non-actual diamond formation temperatures.  相似文献   

16.
The Tertiary Mineoka ophiolite occurs in a fault zone at the intersection of the Honshu and Izu forearcs in central Japan and displays structural evidence for three major phases of deformation: normal and oblique-slip faults and hydrothermal veins formed during the seafloor spreading evolution of the ophiolite at a ridge-transform fault intersection. These structures may represent repeated changes in differential stress and pore-fluid pressures during their formation. The second series of deformation is characterized by oblique thrust faults with Riedel shears and no significant mineral veining, and is interpreted to have resulted from transpressional dextral faulting during the obduction of the ophiolite through oblique convergence and tectonic accretion. This deformation occurred at the NW corner of a TTT-type (trench–trench–trench) triple junction in the NW Pacific rim before the middle Miocene. The third series of deformation of the ophiolite is marked by contractional and oblique shear zones, Riedel shears, and thrust faults that crosscut and offset earlier structures, and that give the Mineoka fault zone its lenticular (phacoidal) fabric at all scales. This deformation phase was associated with the establishment and the southward migration of the TTT Boso triple junction and with the kinematics of oblique subduction and forearc sliver fault development. The composite Mineoka ophiolite hence displays rocks and structures that evolved during its complex geodynamic history involving seafloor spreading, tectonic accretion, and triple junction evolution in the NW Pacific Rim.  相似文献   

17.
Petrogeochemical and isotopic-geochronological signatures in granitoids developed in structures with complex geological history represent an important feature for reconstructing paleogeodynamic settings. Granitoids are widespread in the western slope of the Urals, where the Uralian Orogen contacts via a collage of different-age blocks of the east European Platform. The Ufalei block located in the Central Urals megazone at the junction between the South and Middle Urals’ segments represents one such boundary structure with multistage geological evolution. The isotopic ages obtained by different methods for acid igneous rocks range from 1290 to 245 Ma. We determined close Rb-Sr and Sm-Nd ages (317 Ma) for granites of the Nizhnii Ufalei Massif. By their petrochemical parameters, granitoids and host granite-gneisses differ principally from each other: the former are close to subduction-related, while the latter, to continental-riftogenic varieties. The primary ratio (87Sr/86Sr)0 = 0.70428 and ?Nd ≈ +4 values indicate significant contribution of oceanic (island-arc?) material to the substrate, which served as a source for granites of the Nizhnii Ufalei Massif. Model Nd ages of granites vary from 641 to 550 Ma. Distinct oceanic rocks and varieties with such ages are missing from the surrounding structures. New isotopic dates obtained for ultramafic and mafic rocks from different zones of the Urals related to the Cadomian cycle imply development of unexposed Upper Riphean-Vendian “oceanic” rocks in the central part of the Ufalei block, which played a substantial role in the formation of the Nizhnii Ufalei granitoids. Such rocks could be represented, for example, by fragments of the Precambrian Timanide-type ophiolite association. The analysis of original materials combined with published data point to the heterogeneous composition and structure of the Ufalei block and a significant part of the western segment of the Central Uralian Uplift and extremely complex geological history of the region coupling the Uralian Orogen with the East European Platform in the present-day structure.  相似文献   

18.
渤海海域新近纪断层成因与动力学状态   总被引:3,自引:0,他引:3       下载免费PDF全文
新近纪是渤海海域新构造运动的重要阶段,具有不同于第四纪以来的构造活动特征和盆地格局。大量的盆地勘探资料显示,海域新近系内发育了大量张性、张扭性断层,主要为近东西向断层,其次为北北东向的郯庐断裂带和局部的大型北西向断层。这一断层格局与下伏古近系相似,但断层活动强度明显较弱,属于坳陷型盆地内的断层活动。断层的平、剖面特征表明,近东西向者为正断层,北北东与北西向断层分别为右行、左行平移正断层。各类断层的运动学特征指示,海域古近纪处于南北向的弱伸展环境。近东西向断层小型者多为新生正断层,大型者常是早期断层的复活,皆为区域拉张作用的直接结果。北北东向的郯庐断裂带与北西向断层皆为继承性活动,其走滑是斜向拉张的结果。郯庐断裂带较强的张扭性活动一方面使旁侧派生了一系列北东-北东东向的小型正断层,另一方面使其旁侧各类断层密度明显增大。海域新近纪的弱伸展环境结束于新近纪末一次区域性挤压事件。  相似文献   

19.
东南大陆边缘早侏罗世火成岩特征及其构造意义   总被引:36,自引:4,他引:36  
东南大陆边缘早侏罗世火成岩主要呈双峰式火山岩、基性超基性杂岩体及A型花岗岩等形态产出。本文运用岩石学探针技术,通过早侏罗世火成岩岩石学与地球化学研究,并与晚中生代火成岩作对比,提出早侏罗世火成岩的形成与南岭东段近EW向张性断裂活动有关,标志着印支挤压造山的结束;之后东南大陆进入晚中生代NE向活动大陆边缘俯冲造山阶段,经历了挤压造山—剪切拉张过程,并在晚白垩世末期进入又一轮后造山拉张裂解阶段,即中生代时东南大陆边缘经历了早中生代(三叠纪—早侏罗世)和晚中生代(中侏罗世—晚白垩世)两期造山事件,其中早侏罗世的区域拉张作用是特提斯构造域向滨太平洋构造域转换的前奏,构造域转换可能始于中侏罗世(165Ma)。  相似文献   

20.
于兴河  张志杰 《中国地质》2005,32(3):470-476
南海北部陆坡区新生界含有丰富的油气资源和各种矿产资源,对其沉积体系的分析可以指导资源勘探和开发。笔者在对南海北部陆坡区的西沙海槽和东沙海域的地震剖面解释与研究的基础上,依据“外部形态+内部属性”的分类原则,在中新世以来的沉积层中共识别出8种典型的地震相:席状平行相、席状波形相、席状空白相、席状杂乱相、席状前积相、帚状前积相、透镜状前积相和丘状杂乱相。结合地震相分析,在南海北部陆坡区识别出6种典型的沉积体系:三角洲体系、等深流、低位扇、滑塌块体、浊积扇和扇三角洲体系;其中等深流、滑塌块体和各种扇体的前缘与BSR分布的吻合率最高,是最有利于天然气水合物聚集成矿的相带。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号