首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Shakhtama Mo–Cu porphyry deposit is located within the eastern segment of the Central Asian Orogenic Belt, bordering the southern margin of the Mongol–Okhotsk suture zone. The deposit includes rocks of two magmatic complexes: the precursor plutonic (J2) and ore-bearing porphyry (J3) complexes. The plutonic complex was emplaced at the final stages of the collisional regime in the region; the formation of the porphyry complex may have overlapped with a transition to extension. The Shakhtama rocks are predominantly metaluminous, I-type high K calc-alkaline to shoshonitic in composition, with relatively high Mg#, Ni, Cr and V. They are characterized by crustal-like ISr (0.70741–0.70782), relatively radiogenic Pb isotopic compositions, εNd(T) values close to CHUR (−2.7 to +2.1) and Nd model ages from 0.8 to 1.2 Ga. Both complexes are composed of rocks with K-adakitic features and rocks without adakite trace element signatures. The regional geological setting together with geochemical and isotopic data indicate that both juvenile and old continental crust contributed to their origin. High-Mg# K-adakitic Shakhtama magmas were most likely generated by partial melting of thickened lower crust during delamination and interaction with mantle material, while magmas lacking adakite-like signatures were probably generated at shallower levels of lower crust. The derivation of melts, related to the formation of plutonic and porphyry complexes involved variable amounts of old Precambrian lower crust and juvenile Phanerozoic crust. Isotopic data imply stronger contribution of juvenile mantle-derived material to the fertile magmas of the porphyry complex. Juvenile crust is proposed as an important source of fluids and metals for the Shakhtama ore-magmatic system.  相似文献   

2.
Late Mesozoic dioritic and quartz dioritic plutons are widespread in the Daye region, eastern Yangtze craton, eastern China. Detailed geochronological, geochemical, and Sr–Nd isotopic studies have been undertaken for most of these plutons, in an attempt to provide a comprehensive understanding in the age, genesis and geodynamical control of the extensive magmatism. SHRIMP and LA-ICP-MS zircon U–Pb dating indicate that the plutons were emplaced in the range of latest Jurassic (ca. 152 Ma) to early Cretaceous (ca. 132 Ma), which was followed by dyke emplacement between 127 and 121 Ma and volcanism during the 130–113 Ma interval. Both diorites and quartz diorites are sodic, metaluminous, high-K calc-alkaline, and characterized by strongly fractionated, sub-parallel REE patterns without obvious Eu anomalies. The rocks are enriched in highly incompatible elements and large ion lithophile elements, but depleted in high field strength elements. Samples of diorite and quartz diorite have similar Sr–Nd isotopic compositions that are consistent with the early Cretaceous basalts and mafic intrusions throughout the eastern Yangtze craton. The geochemical and isotopic data, together with results of geochemical modeling, indicate an enriched mantle source for the plutonic rocks. The quartz diorites have geochemical signatures resembling adakites, such as high Al2O3 (15–19 wt.%), Sr (630–2,080 ppm), Na2O (>3.5 wt.%), negative Nb–Ta anomalies, low Y (7–19 ppm), Yb (0.5–1.8 ppm), Sc (5–15 ppm), and resultant high Sr/Y (45–200) and La/Yb (31–63) ratios. Genesis of the adakitic quartz diorites is best explained in terms of low-pressure intracrustal fractional crystallization of cumulates consisting of hornblende, plagioclase, K-feldspar, magnetite, and apatite from mantle-derived dioritic magmas. Mantle-derived magmatism broadly coeval with that of the Daye region also is widespread in other regions of the eastern Yangtze craton, reflecting large-scale melting of the lithospheric mantle during the Late Mesozoic. The large-scale magmatism was most likely driven by lithospheric extension associated with thinning of lithospheric mantle beneath the eastern China continent.  相似文献   

3.
Before our studies, it was considered that the Bagrusha rhyolite–porphyry complex (BC) including veins and thin dykes occurring in the Kusa region among deposits presumably of the Satka and Avzyan Formations of the Lower and Middle Riphean, respectively. Based on the U–Pb SHRIMP and IDTIMS studies of zircons from rhyodacite—porphyry, we established the age of the BC formation of T0 = 1348.6 ± 3.2 Ma for the first time. The age obtained is inconsistent with the idea on the Paleozoic age of the BC and the geological situation shown on geological maps of the region. The age (T0 = 1348.6 ± 3.2 Ma) of rhyodacite–porphyry from the BC provides evidence for acid volcanism controlled by the Mashak (Middle Riphean) magmatic event in the region, and deposits hosting volcanic rocks of the BC cannot be younger than the base of the Middle Riphean, i.e., the Mashak Formation, which was not previously distinguished by researchers in the western part of the Kusa and Bakal–Satka regions. At the same time, it is possible that deposits hosting dykes and veins of the granite–rhyolite formation may have a Bakal (Lower Riphean) age.  相似文献   

4.
The large-scale Duobaoshan porphyry Cu–Mo–(Au) deposit is located at the north segment of the Da Hinggan Mountains, northeast China. Six molybdenite samples from the Duobaoshan deposit were selected for Re–Os isotope measurement to define the mineralization age of the deposit, yieldings a Re–Os isochron age of 475.9 ± 7.9 Ma (2σ), which is accordant with the Re–Os model ages of 476.6 ± 6.9–480.2 ± 6.9 Ma. This age is consistent with the age of the related granodiorite porphyry, which was dated as 477.2 ± 4 Ma by zircon U–Pb analysis using LA-ICP-MS. These ages disagree with the previous K–Ar age determinations that suggest a correlation of intrusive rocks of the Duobaoshan area with the Hercynian intrusive rocks of Carboniferous–Permian age. These ages demonstrate that the Duobaoshan granodiorite porphyry and related Cu–Mo deposit occurred in the Early Ordovician. The rhenium content of molybdenite varies from 290.9 to 728.2 μg/g, with an average content of 634.8 μg/g. The high rhenium content in molybdenite of the Duobaoshan deposit suggests that the ore-forming materials may be mainly of mantle source.  相似文献   

5.
6.
The Kenticha rare-element pegmatite, a globally important tantalite source in the Neoproterozoic Adola Belt of southern Ethiopia, is a highly fractionated, huge (2,000 m long and up to 100 m thick), subhorizontal, sheet-like body, discordantly emplaced in ultramafic host rock. It corresponds to the spodumene subtype of the rare-element pegmatite class and belongs to the lithium–cesium–tantalum petrogenetic family. The Kenticha pegmatite is asymmetrically zoned from bottom to top into granitic lower zone, spodumene-free intermediate zone, and spodumene-bearing upper zone. A monomineralic quartz unit is discontinuously developed within the upper zone. Whole-rock data indicate an internal geochemical differentiation of the pegmatite sheet proceeding from the lower zone (K/Rb ~36, K/Cs ~440, Al/Ga ~2,060, Nb/Ta ~2.6) to the upper zone (K/Rb ~19, K/Cs ~96, Al/Ga ~1,600, Nb/Ta ~0.7). The latter one is strongly enriched in Li2O (up to 3.21%), Rb (up to 4,570 ppm), Cs (up to 730 ppm), Ga (up to 71 ppm), and Ta (up to 554 ppm). Similar trends of increasing fractionation from lower zone to upper zone were obtained in muscovite (K/Rb 23–14, K/Cs 580–290, K/Tl 6,790–3,730, Fe/Mn 19–10, Nb/Ta 6.5–3.8) and columbite–tantalite (Mn/Mn + Fe 0.4–1, Ta/Ta + Nb 0.1–0.9). The bottom-to-top differentiation of the Kenticha pegmatite and the Ta mineralization in its upper part are principally attributed to upward in situ fractionation of a residual leucogranitic to pegmatitic melt, largely under closed system conditions. High MgO contents (up to 5.05%) in parts of the upper zone are the result of postmagmatic hydrothermal alteration and contamination by hanging wall serpentinite. U–Pb dating of Mn-tantalite from two zones of the Kenticha pegmatite gave ages of 530.2 ± 1.3 and 530.0 ± 2.3 Ma. Mn-tantalite from the Bupo pegmatite, situated 9 km north of Kenticha, gave an age of 529.2 ± 4.1 Ma, indicating coeval emplacement of the two pegmatites. The emplacement of the pegmatites is temporally related to postorogenic granite magmatism, producing slightly peraluminous, I-type plutons in the area surrounding the Kenticha pegmatite field. Fractionated members of this suite might be envisaged as potential parental magmas.  相似文献   

7.
The Tomino–Bereznyaki ore field lies in the western part of the East Urals volcanic megazone (20–30 km southwest of Chelyabinsk). The commercial Tomino porphyry (Mo, Au)–Cu deposit is localized in the east of the field, within a small mesoabyssal intrusion of quartz–diorite composition. The epithermal Au–Ag Bereznyaki deposit is confined to subvolcanic dioritic porphyrites in the west of the field. The western and eastern parts of the ore field have a tectonic boundary. Granitoids belong to a single volcanoplutonic complex of K–Na-quartz–diorite composition. The U–Pb concordant age of zircons from the ore-bearing dioritic porphyrite of the Tomino and Bereznyaki deposits is 428 ± 3 Ma (MSWD = 0.9) and 427 ± 6 Ma (MSWD = 1.1), respectively. A Silurian absolute age has been established for the Urals porphyry Cu ore-magmatic system for the first time. The diorites and acid metasomatites of both deposits contain a unique three-mica assemblage (Mu, Pa, and Mu0.36Pa0.64). The metasomatized diorites are of similar isotope-petrogeochemical compositions; they have close total REE contents (24–52 ppm) and REE patterns. Their Zr–Hf, Nb–Ta, and La–Ce diagrams show similar trends. The obtained data indicate the close time of formation of the porphyry and epithermal deposits and their probable genetic unity. The vertical evolution of the porphyry Cu column from meso- and hypabyssal to subvolcanic level includes the isotope (Sr, S, and O) crust–mantle interaction. The deposits formed at different depths expose on the modern surface as a result of the block tectonic processes in the ore field.  相似文献   

8.
The Zelenodol porphyry Cu-(Au, Mo) deposit located about 65 km SSW of the city of Chelyabinsk is confined to the western part of the West Uralian Volcanogenic Megazone. The concordant U-Pb age of zircons from ore-bearing island-arc diorite porphyryis 418.3 Â ± 2.9 Ma.  相似文献   

9.
The Xiaobaishitou W (–Mo) deposit is located in the eastern segment of the Central Tianshan, northwestern China. The deposit represents a skarn system distributed in the contact zones of biotite granite and crystalline limestone of the Mesoproterozoic Kawabulag Group. The Xiaobaishitou deposit is characterized by a typical calc-silicate mineralogy dominated by garnet, diopside and wollastonite, with minor epidote, tremolite, actinolite, chlorite, quartz, fluorite and calcite. The prograde and retrograde skarns are characterized by garnet–clinopyroxene–wollastonite and epidote–tremolite–actinolite–chlorite, respectively, intruded and replaced by mineral assemblages of scheelite–cassiterite–magnetite, quartz–sulfides and calcite–quartz–fluorite in younger order.Six molybdenite samples from the deposit yielded Re  Os isotope model ages ranging from 239.7 ± 3.6 Ma to 251.4 ± 3.6 Ma. The zircon crystals from biotite granite and Mo-mineralized granite yield weighted 206Pb/238U age of 242 ± 1.7 and 240.5 ± 2.1 Ma, respectively. Both the zircon U  Pb and the molybdenite Re  Os ages obtained in this study fall in a narrow span of 242–240 Ma, which suggest that the Xiaobaishitou W (–Mo) system was formed in the Triassic. The Re contents of the molybdenites range from 40.33 to 64.67 ppm, suggesting that the ore-forming materials were derived mainly from continental crust together with the involvement of minor mantle components. Combined with the 87Sr/86Sr ratios of tungsten-bearing quartz veins from other studies, which scatter between 0.707153 and 0.709877, demonstrating mixing between two end-member isotopic compositions of crust and mantle. It can be concluded that the Indosinian Xiaobaishitou deposit was formed in a tectonic transition from collisional crust shortening and thickening to post-collisional extension and thinning.  相似文献   

10.
The Dehsalm Cu–Mo-bearing porphyritic granitoids belong to the Lut Block volcanic–plutonic belt (central eastern Iran). These rocks range in composition from gabbro-diorite to granite, with dominance of monzonites and quartz monzonites, and have geochemical features of high-K calc-alkaline to shoshonitic volcanic arc suites. Primitive mantle-normalized trace element spider diagrams display strong enrichment in large-ion lithophile elements such as Rb, Ba and Cs and depletions in some high-field strength elements, e.g., Nb, Ti, Y and HREE. Chondrite-normalized plots display significant LREE enrichments, high LaN/YbN and a lack of Eu anomaly. High Sr/Y and La/Yb ratios of Dehsalm intrusives reveal that, despite their K-rich composition, these granitoids show some resemblances with adakitic rocks. A Rb–Sr whole rock–feldspar–biotite age of 33 ± 1 Ma was obtained in a quartz monzonite sample and coincides, within error, with a previous geochronological result in Chah-Shaljami granitoids, further northwest within the Lut Block. (87Sr/86Sr)i and εNdi isotopic ratios range from 0.70481 to 0.70508 and from +1.5 to +2.5, respectively, which fits into a supra-subduction mantle wedge source for the parental melts and indicates that crustal contribution for magma diversification was of limited importance. Sr and Nd isotopic compositions together with major and trace element geochemistry point to an origin of the parental magmas by melting of a metasomatized mantle source, with phlogopite breakdown playing a significant role in the geochemical fingerprints of the parental magmas; small amounts of residual garnet in the mantle source also help to explain some trace element patterns. Geochemical features of Dehsalm porphyries and its association with Cu–Mo mineralization agree with a mature continental arc setting related to the convergence of Afghan and Lut plates during Oligocene.  相似文献   

11.
《International Geology Review》2012,54(14):1763-1785
Central Jilin Province lies along the eastern edge of the Xing–Meng orogenic belt of northeast China. At least 10 Mo deposits have been discovered in this area, making it the second-richest concentration of Mo resources in China. To better understand the formation and distribution of porphyry Mo deposits in the area, we investigated the geological characteristics of the deposits and applied zircon UPb and molybdenite Re–Os isotope dating to constrain the age of mineralization. Our new geochronological data show the following: the Jidetun Mo deposit yields molybdenite Re–Os model ages of 164.6–167.1 Ma, an isochron age of 168 ± 2.5 Ma, and a weighted mean model age of 165.9 ± 1.2 Ma; the Houdaomu Mo deposit yields molybdenite Re–Os model ages of 167.4–167.7 Ma, an isochron age of 168 ± 13 Ma, and a weighted mean model age of 167.5 ± 1.2 Ma; and the Chang’anpu Mo deposit yields a zircon U–Pb age for granodiorite porphyry of 166.9 ± 1.5 Ma (N = 16). These new age data, combined with existing molybdenite Re–Os dates, show that intense porphyry Mo mineralization was coeval with magmatism during the Middle Jurassic (167.8 ± 0.4 Ma, r > 0.999). The geotectonic mechanisms responsible for Mo mineralization were probably related to subduction of the Palaeo-Pacific plate beneath the Eurasian continent. Combining published molybdenite Re–Os and zircon U–Pb ages for northeast China, the Mo deposits are shown to have been formed during multiple events coinciding with periods of magmatic activity. We identified three phases of mineralization, two of which had several stages: the Caledonian (485–480 Ma); the Indosinian comprising the Early–Middle Triassic (248–236 Ma) and Late Triassic (226–208 Ma) stages; and the Yanshanian phase comprising the Early–Middle Jurassic (202–165 Ma), Late Jurassic–early Early Cretaceous (154–129 Ma), and Early Cretaceous (114–111 Ma) stages. Although Mo deposits formed during each phase/stage, most of the mineralization occurred during the Early–Middle Jurassic.  相似文献   

12.
Porphyry copper deposits (PCDs) in Iran are dominantly distributed in Arasbaran (NW Iran), the middle segment of the Urumieh–Dokhtar Magmatic Arc (UDMA), and Kerman (central SE Iran), with minor occurrences in eastern Iran and the Makran arc. This paper provides a temporal–spatial and geodynamic framework of the Iranian porphyry Cu (Mo–Au) systems, based on geochronologic data obtained from zircon U–Pb and molybdenite Re–Os dating of host porphyritic rocks and molybdenites in 15 major PCDs. The dating results define a long metallogenic duration (39–6 Ma), and suggest a long history of tectonic evolution from the accretionary orogeny related to early Cenozoic closure of the Neo-Tethys Ocean to subsequent collisional orogeny for the Iranian porphyry copper systems.The oldest porphyry mineralization occurred in the eastern part of Iran after the closure of a branch of the Neo-Tethyan (Sistan) Ocean between the Lut and Afghan blocks in the late Eocene (39–37 Ma). This was followed by mineralization in the Kerman porphyry copper belt over a time interval of about 20 m.y., where two metallogenic epochs have been recognized, including late Oligocene (29–27 Ma) and Miocene (18–6 Ma). The Bondar-e-Hanza deposit formed in the late Oligocene, while and the remaining dated deposits belong to Miocene epoch. According to the deposits' characteristics and their ages, the Miocene epoch can be divided into early, middle, and late stages. The Darreh Zar, Bakh Khoshk, Chah Firouzeh and Sar Kuh deposits formed during the early–middle Miocene. The largest porphyry deposits occur in the middle stage during the middle Miocene (14–11 Ma) and include the Sar Cheshmeh, Meiduk, Dar Alu and Now Chun deposits. These deposits were formed during crustal thickening, uplift, and rapid exhumation of the belt. The final stage of porphyry mineralization occurred during the late Miocene (9–6 Ma), and formed the Iju, Kerver, Kuh Panj and Abdar deposits.There were two porphyry mineralization stages in the Arasbaran porphyry copper belt in NW Iran, including an older late Oligocene (29–27 Ma) and a younger early Miocene (22–20 Ma) events. The Haft Cheshmeh deposit belongs to the older stage, and the world-class Sungun and Masjed Daghi deposits formed during the early Miocene.In the middle segment of the UDMA (Saveh–Yazd porphyry copper belt), PCDs formed during middle Miocene time (17–15 Ma). The geochronological results reveal that the porphyry mineralization moved from the northwest to southeast of UDMA over the time.Our dating results, combined with the possible late Eocene–Oligocene timing for collision between the Arabian and Iranian plates, support a model for Iranian PCD formation by partial melting of previously subduction-modified lithosphere in a post-subduction and post-collisional tectonic setting.  相似文献   

13.
This work presents the results of U–Pb isotope dating of zircons from granodiorites and plagiogranites of the Tallainskii gabbro–granodiorite–plagiogranite complex of the Karalon–Mamakan zone of the Baikal–Muya belt, ascribed to the Tallainskii pluton. The age datings obtained for granodiorite of the Eleninskii massif (605 ± 6 Ma) and plagiogranite of the Ust-Berezovo massif (609 ± 6 Ma) are in close agreement within the limits of error. Taking into account previously published data, the emplacement of the Tallainskii complex occurred within the age interval of 615–603 Ma in connection with postcollision extension. The “island arc” geochemical characteristics of granodiorites and plagiogranites can be explained by magmatic differentiation and (or) participation in the formation of a melt source enriched in the suprasubduction component involved in petrogenesis during the preceding Neoproterozoic period.  相似文献   

14.
The Donggebi Mo deposit located in NW China is a newly discovered, large, stockwork-type Mo deposit with ore reserves of 441 Mt @ 0.115% Mo. Ore bodies occur along faults and fractures at the external contact zone of a concealed porphyritic granite and volcaniclastic rocks of Gandun Formation, spatially associated with a fine-grained granite. Mo-bearing veins are mainly assemblages of volatile-rich K-feldspar-quartz-oxide, K-feldspar-quartz, polymetallic sulfides and calcite-quartz. Zircon LA-ICP-MS U–Pb dating yielded concordant ages of 234.6 ± 2.7 Ma and 231.8 ± 2.4 Ma for the porphyritic granite and the fine-grained granite, respectively; molybdenite Re–Os dating gave an isochron age of 234.0 ± 2.0 Ma. These ages further confirm an important and extensive magmatic-metallogenic event in Eastern Tianshan during the Triassic Indosinian orogeny. Whole-rock major and trace element analyses indicate that the granitic rocks associated with Mo mineralization are high in Si, K, Rb, Th, Nb, Ta, Ga and LREE, but low in P, Ti, Sr and Ba, belonging to high-K calc-alkaline granites with A-type features. Magma was likely derived from the re-melting of thickened lower crust in a post-collision compression environment in the Late Permian, experienced strong crystal fractionation and formed the large Donggebi Mo deposit under an intra-plate extension setting in the Early to Middle Triassic.  相似文献   

15.
The Fujiawu porphyry Cu–Mo deposit is one of several porphyry Cu–Mo deposits in the Dexing district, Jiangxi Province, Southeast China. New zircon SHRIMP U–Pb data yield a weighted mean 206Pb/238U age of 172.0 ± 2.1 and 168.5 ± 1.4 Ma from weakly altered granodiorite porphyry and quartz diorite porphyry, respectively. Two hydrothermal biotites from granodiorite porphyry give an Ar–Ar step-heating plateau age of 169.9 ± 1.8 and 168.7 ± 1.8 Ma. Hydrothermal apatite exsolved from altered biotite yields an isotope dilution thermal ionization mass spectrometry isochron age of 164.4 ± 0.9 Ma. The apatite age is similar to the ages obtained from hydrothermal rutile (165.0 ± 1.1 and 164.8 ± 1.6 Ma) and indicates that the magmatism and hydrothermal activity in the Fujiawu deposit occurred in the Middle Jurassic. Hydrothermal fluid circulation related to multiple stages of magma emplacement resulted in Cu–Mo mineralization in the Fujiawu porphyry deposit. The zircon SHRIMP U–Pb ages and the published molybdenite Re–Os age (170.9 ± 1.5 Ma) represent the timing of magma crystallization and Mo mineralization, whereas the rutile and apatite U–Pb ages reflect the timing of Cu mineralization following quartz diorite emplacement. The data suggest slow cooling after emplacement of the quartz diorite porphyry.  相似文献   

16.
During late Palaeozoic time, extensive magmatism and associated ore deposits were developed in the eastern Tianshan orogenic belt (ETOB), Northwest China, which is part of the Central Asian Orogenic Belt. To understand the petrogenesis of the intrusions in this area, we performed in situ zircon U–Pb and Hf isotopic analyses on the Tuwu–Yandong (TW–YD) stocks and the Xianshan, Hulu, Luodong, and Poshi batholiths. Two major suites of intrusive rocks have been recognized in the ETOB: (1) 338–339 Ma plagiogranite porphyries and 265–300 Ma ultramafic and mafic rocks, of which the former are associated with 323 Ma porphyry Cu–Mo deposits and have enriched radiogenic Hf isotopic compositions (?Hf(t) = +11.5 to +15.6), which were derived from a depleted mantle source, whereas the latter are associated with 265–300 Ma magmatic Ni–Cu deposits and have variable Hf isotopic compositions (?Hf(t) = ?10.3 to +14.3), indicating an origin via the hybridization of depleted mantle magma and variable amounts of ancient lower-crustal components. The proposed magma sources, combined with the geochemical differences between these two suites of intrusive rocks, indicate that in the lower to middle Carboniferous, a N-dipping subduction zone beneath the Dananhu arc triggered the emplacement of granitic porphyries in the Tousuquan and Dananhu island arc belt in the east Tianshan, leading to the formation of the TW and YD porphyry Cu–Mo deposits. In the Upper Carboniferous to Lower Permian, large mafic–ultramafic complexes were emplaced during the closure of the ancient Tianshan Ocean, resulting in the formation of several magmatic Cu–Ni sulphide deposits.  相似文献   

17.
Relict omphacite inclusions have been discovered in mafic granulite at Dinggye of China, confirming the existence of eclogite in central Himalayan orogenic belt. Detailed petrological studies show that relict omphacite occur as inclusions in both garnets and zircons, and the peak mineral assemblage of eclogite-facies should be garnet, omphacite, rutile, muscovite and quartz which was strongly overprinted by granulite-facies minerals during the exhumation. Phase equilibria modeling and associated geothermometer predict that the minimum P–T conditions for peak eclogite-facies stage are 720–760 °C and 20–21 kbar, and those of overprinted granulite-facies are 750 °C and 7–9 kbar in water-undersaturated condition. Thus, a near isothermal decompression P–T path for central Himalayan eclogite has been obtained. Zircon SHRIMP U–Pb dating of two studied eclogite samples at Dinggye yields the peak metamorphic ages of 13.9 ± 1.2 Ma and 14.9 ± 0.7 Ma, respectively, which indicates that the Dinggye eclogite should be the youngest eclogite in Himalayan orogenic belt. Geochemical characteristics and zircon analyses show that the protoliths of eclogite in Dinggye are predicted to be continental rift-related basaltic rocks. The eclogite at Dinggye in central Himalaya should be formed by the crustal thickening during the long-lasting continental overthrusting by Indian plate beneath Euro-Asian continent, and its exhumation process may be related with channel flow and orogen-parallel extension. In the middle Miocene (~ 14 Ma), Indian continental crust had reached at least ~ 65 km depth in southern Tibet.  相似文献   

18.
Uranium–Pb (zircon) ages are linked with geochemical data for porphyry intrusions associated with giant porphyry Cu–Au systems at Oyu Tolgoi to place those rocks within the petrochemical framework of Devonian and Carboniferous rocks of southern Mongolia. In this part of the Gurvansayhan terrane within the Central Asian Orogenic Belt, the transition from Devonian tholeiitic marine rocks to unconformably overlying Carboniferous calc-alkaline subaerial to shallow marine volcanic rocks reflects volcanic arc thickening and maturation. Radiogenic Nd and Pb isotopic compositions (εNd(t) range from + 3.1 to + 7.5 and 206Pb/204Pb values for feldspars range from 17.97 to 18.72), as well as low high-field strength element (HFSE) contents of most rocks (mafic rocks typically have < 1.5% TiO2) are consistent with magma derivation from depleted mantle in an intra-oceanic volcanic arc. The Late Devonian and Carboniferous felsic rocks are dominantly medium- to high-K calc-alkaline and characterized by a decrease in Sr/Y ratios through time, with the Carboniferous rocks being more felsic than those of Devonian age. Porphyry Cu–Au related intrusions were emplaced in the Late Devonian during the transition from tholeiitic to calc-alkaline arc magmatism. Uranium–Pb (zircon) geochronology indicates that the Late Devonian pre- to syn-mineral quartz monzodiorite intrusions associated with the porphyry Cu–Au deposits are ~ 372 Ma, whereas granodiorite intrusions that post-date major shortening and are associated with less well-developed porphyry Cu–Au mineralization are ~ 366 Ma. Trace element geochemistry of zircons in the Late Devonian intrusions associated with the porphyry Cu–Au systems contain distinct Th/U and Yb/Gd ratios, as well as Hf and Y concentrations that reflect mixing of magma of distinct compositions. These characteristics are missing in the unmineralized Carboniferous intrusions. High Sr/Y and evidence for magma mixing in syn- to late-mineral intrusions distinguish the Late Devonian rocks associated with giant Cu–Au deposits from younger magmatic suites in the district.  相似文献   

19.
The Yidun Arc was formed in response to the westward subduction of Garze–Litang Ocean (a branch of Paleotethys) in the Late Triassic, where abundant porphyry Cu–Mo deposits (221–213 Ma) developed along the regional NW–SE sinistral faults and emplaced in the southern portion of the arc. The ore-related porphyries are mostly metaluminous or slightly peraluminous, belonging to shoshonitic high-potassium calc-alkaline I-type granites, with εHf(t) values of −6.64 to +4.12. The ore-bearing magmas were probably derived from the partial melting of subduction-metasomatic-enriched mantle, with the contamination of underplated mafic materials. The Late Cretaceous (88–80 Ma) highly fractionated I-type granite belt and related porphyry Cu–Mo deposits and magmatic-hydrothermal Cu–Mo–W deposits occur along approximately N–S-trending faults in the Yidun Arc. This belt extended across the Yidun Arc and Garze–Litang suture zone to the north and across the Yangtze Craton to the south, intruding the Late Triassic porphyry belt. The ore-related porphyries are characterized by high silica and high total alkalis, with enrichment in large ion lithophile elements (LILEs; Rb, U and K) and depletion in high field strength elements (HFSE; Nb, Ta, P and Ti) and Ba. They have lower εHf(t) values varying from −9.55 to −2.75, and significant negative Eu anomalies, indicating that the ore-bearing porphyritic magmas originated from ancient middle-upper crust. Two-stage magmatism and mineralization were superimposed in the Xiangcheng-Shangri-La district. Some ore deposits comprise two episodes of magmatism and associated mineralization such as both 207 ± 3.0 Ma granodiorite and 82.1 ± 1.2 Ma monzogranite intruded in the Xiuwacu deposit, causing Cu–Mo–W polymetallic mineralization. To date, 11 Late Triassic porphyry Cu deposits (e.g. the Pulang giant deposit with 5.1 Mt Cu), and five Late Cretaceous porphyry Cu–Mo (W) deposits (e.g. Tongchanggou Mo deposit with 0.59 Mt Mo) have been evaluated in the Xiangcheng-Shangri-La district. The continuity and inheritance of multiphase magmatism and the new understanding of superimposed mineralization will help to guide future exploration.  相似文献   

20.
Precise U–Pb geochronology, Hf isotope compositions and trace element distributions in zircons are combined in the present study to define the timing and sources of the magmatism forming the Medet porphyry copper deposit, Bulgaria. ID-TIMS U–Pb-zircon dating demonstrates that ore-bearing magmatism extended for less than 1.12 Ma. As inferred from the field relationships, it started with the intrusion of a quartz-monzodiorite at 90.59?±?0.29 Ma followed by granodiorite porphyries at 90.47?±?0.30 and 90.27?±?0.60 Ma and by crosscutting aplite dykes at 90.12?±?0.36 Ma. These units were overprinted by potassic alteration and host economic copper-(Mo–Au) mineralization. The main magmatic–hydrothermal activity ceased after that, and a later quartz-granodiorite porphyry dyke, dated at 89.26?±?0.32 Ma, only contains an uneconomic quartz–pyrite mineralization. Assimilation of Lower Paleozoic rocks with a mantle to mantle–crust signature is characteristic of the fertile magma in the Medet deposit, as defined by positive ?-Hf values of the inherited zircons. The positive Ce-anomalies and the higher Eu/Eu* ratios of the zircons in the mineralized Cretaceous rocks of Medet deposit argue for crystallization from a generally more oxidized magma compared to the later quartz-granodiorite porphyry dyke. A change in paleostress conditions occurred during the intrusion of the Medet pluton and its dykes. The initial stage reveals E–W extension associated with N–S compression, whereas the younger granodiorite dyke was emplaced during subsequent N–S extension. The large-scale switch of the extensional stress regime during the mineralization was favourable for ore deposition by channelling the fluids and increasing the effective permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号