首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structure, composition, and age of Vendian–Early Cambrian plagiogranitoid associations composing the Kshta and Taraskyr massifs of the Yenisei pluton in the Altai–North Sayan island-arc belt are considered. We have established that these associations formed within 550–520 Ma and differ in petrographic composition and sources. Two stages of island-arc plagiogranitoid magmatism are recognized: early (550–540 Ma, formation of plagiogranitoids of the Kshta (545 ± 8 Ma) and Taraskyr (545 ± 7 Ma) massifs) and late (525–520 Ma, formation of plagiogranitoids of the Maina complex of the Yenisei (524 ± 2 Ma) and Tabat plutons). By petrochemical composition and geochemical characteristics, the rocks of the Kshta massif are high-alumina plagiogranitoids similar to adakites. They might have been produced through the melting of metabasites compositionally similar to N-MORB in equilibrium with garnet-containing restite during the subduction of oceanic slab at ≥ 15 kbar. The rocks of the Taraskyr massif are low-alumina plagiogranites. They formed through the melting of metabasites located in the lower layers and(or) the basement of the island-arc system in equilibrium with plagioclase-containing restite at 3–8 kbar. The low-alumina plagiogranitoids of the Yenisei pluton melted out under the same conditions. Isotope-geochemical studies showed that the Vendian–Early Cambrian plagiogranitoids formed at the early stage are characterized by high positive ∑ Nd(T) values (7.5–4.9), Late Riphean model Nd-age (TNd(DM) = 0.64–0.98 Ga), and Sr isotope ratio varying from 0.7040 to 0.7053. These data point to the juvenile parental melts of the rocks and the varying content of ancient crustal material in the magma generation zone.  相似文献   

2.
The geologic position, age, petrologic composition, and petrogenesis of mesoabyssal plagiogranites in northern Rudny Altai, dated earlier at the Early–Middle Devonian, are considered. The Middle Carboniferous (322–318 Ma) age of granitoids has been substantiated by isotope-geochronological data (U–Pb zircon dating and Ar–Ar amphibole and biotite dating). Geologic-structural studies showed that the intrusion of granitoids took place at the time when compression was changed by sinistral faulting. This led to the conclusion that the granitoids formed at the peak of the collision between the Siberian and the Kazakhstan paleocontinents. Geochemical and isotope studies showed that most of the analyzed plagiogranites belong to high-alumina (continental) type and resulted from the deep melting (~ 15 kbar) of metabasic substrates compositionally similar to N-MORB (judging from results of geochemical modeling and the Nd isotope composition). The presence of plagiogranites of low-alumina (oceanic) type in the postgranite dike series testifies to the melting of the Rudny Altai heterogeneous crust at different depths during its collisional thickening.  相似文献   

3.
The Gaoligong belt is located in the southeastern margin of the Tibetan plateau, and is bound by the Tengchong and Baoshan blocks. This paper presents new data from zircon geochronology, geochemistry, and whole-rock Sr–Nd–Pb–Hf isotopes to evaluate the tectonic evolution of the Gaoligong belt. The major rock types analysed in the present study are granitic gneiss, granodiorite, and granite. They are metaluminous to peraluminous and belong to high-K, calc-alkaline series. Laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) analyses of zircons from nine granitic rocks yielded crystallization ages of 495–487 Ma, 121 Ma, 89 Ma, and 70–63 Ma. The granitoids can be subdivided into the following four groups. (1) Early Paleozoic granitic gneisses with high εNd(t) and εHf(t) values of − 1.06 to − 3.45 and − 1.16 to 2.09, and model ages of 1.16 Ga to 1.33 Ga and 1.47 Ga to 1.63 Ga, respectively. Their variable 87Sr/86Sr and Pb values resemble the characteristics of the Early Paleozoic Pinghe granite in the Baoshan block. Our data suggest that the rocks were derived from the break-off of the Proto-Tethyan oceanic slab between the outboard continent and the Baoshan block, which induced the partial melting of Mesoproterozoic pelitic sources mixed with depleted mantle materials. (2) Early Cretaceous granodiorites with low εNd(t) and εHf(t) values of − 8.92 and − 4.91 with Nd and Hf model ages of 1.41 Ga and 1.49 Ga, respectively. These rocks have high initial 87Sr/86Sr (0.711992) and lower crustal Pb values, suggesting that they were derived from Mesoproterozoic amphibolites with tholeiitic signature, leaving behind granulite residue at the lower crust. (3) Early Late Cretaceous granites with low εNd(t) and εHf(t) values of − 9.58 and − 4.61 with Nd and Hf model ages of 1.43 Ga and 1.57 Ga, respectively. These rocks have high initial 87Sr/86Sr (0.713045) and lower crustal Pb isotopic values. These rocks were generated from the partial melting of Mesoproterozoic metapelitic sources resulting from the delamination of thickened lithosphere, following the closure of the Bangong–Nujiang Ocean and collision of the Lhasa–Qiangtang blocks. (4) Late Cretaceous to Paleogene granitic gneisses with low εNd(t) and εHf(t) values of − 4.41 to − 10 and − 5.95 to − 8.71, Nd model ages ranging from 1.08 Ga to 1.43 Ga, and Hf model ages from 1.53 Ga to 1.67 Ga, respectively. These rocks show high initial 87Sr/86Sr (0.713201 and 714662) and lower crustal Pb values. The data suggest that these rocks are likely related to the eastward subduction of the Neo-Tethyan Oceanic slab, which induced partial melting of Mesoproterozoic lower crustal metagreywacke. The results presented in this study from the Gaoligong belt offer important insights on the evolution of the Proto-Tethyan, Bangong–Nujiang, and Neo-Tethyan oceans in the southeastern margin of the Tibetan Plateau.  相似文献   

4.
Detailed geochemical, isotope, and geochronological studies were carried out for the granitoids of the Chuya and Kutima complexes in the Baikal marginal salient of the Siberian craton basement. The obtained results indicate that the granitoids of both complexes are confined to the same tectonic structure (Akitkan fold belt) and are of similar absolute age. U–Pb zircon dating of the Kutima granites yielded an age of 2019±16 Ma, which nearly coincides with the age of 2020±12 Ma obtained earlier for the granitoids of the Chuya complex. Despite the close ages, the granitoids of these complexes differ considerably in geochemical characteristics. The granitoids of the Chuya complex correspond in composition to calcic and calc-alkalic peraluminous trondhjemites, and the granites of the Kutima complex, to calc-alkalic and alkali-calcic peraluminous granites. The granites of the Chuya complex are similar to rocks of the tonalite–trondhjemite–granodiorite (TTG) series and are close in CaO, Sr, and Ba contents to I-type granites. The granites of the Kutima complex are similar in contents of major oxides to oxidized A-type granites. Study of the Nd isotope composition of the Chuya and Kutima granitoids showed their close positive values of εNd(T) (+ 1.9 to + 3.5), which indicates that both rocks formed from sources with a short crustal history. Based on petrogeochemical data, it has been established that the Chuya granitoids might have been formed through the melting of a metabasitic source, whereas the Kutima granites, through the melting of a crustal source of quartz–feldspathic composition. Estimation of the PT-conditions of granitoid melt crystallization shows that the Chuya granitoids formed at 735–776 °C (zircon saturation temperature) and > 10 kbar and the Kutima granites, at 819–920 °C and > 10 kbar. It is assumed that the granitoids of both complexes formed in thickened continental crust within an accretionary orogen.  相似文献   

5.
The origin of high-Mg adakitic granitoids in collisional orogens can provide important information about the nature of the lower crust and upper mantle during the orogenic process. Late-Triassic high-Mg adakitic granite and its mafic enclaves from the Dongjiangkou area, the Qinling orogenic belt, central China, were derived by partial melting of subducted continental crust and underwent interaction with the overlying mantle wedge peridotite. Adakitic affinity of the different facies of the Dongjiangkou granite body are: high Sr, Ba, high La/Yb and Sr/Y, low Y,Yb, Yb/Lu and Dy/Yb, and no significant Eu anomalies, suggesting amphibole + garnet and plagioclase-free restite in their source region. Evolved Sr-Nd-Pb isotopic compositions [(87Sr/86Sr)i = 0.7050 to 0.7055,εNd(t) = –6.6 to –3.3; (206Pb/204Pb)i = 17.599 to 17.799, (207Pb/204Pb)i = 15.507 to 15.526, (208Pb/204Pb)i = 37.775 to 37.795] and high K2O, Rb, together with a large variation in zircon Hf isotopic composition (εHf(t) = ?9.8 to + 5.0), suggest that the granite was derived from reworking of the ancient lower continental crust. CaO, P2O5, K2O/Na2O, Cr, Ni, Nb/Ta, Rb/Sr and Y increase, and SiO2, Sr/Y and Eu/Eu* decrease with increasing MgO, consistent with interaction of primitive adakitic melt and overlying mantle peridotite. Zircons separated from the host granites have U-Pb concordia ages of 214 ± 2 Ma to 222 ± 2 Ma, compatible with exhumation ages of Triassic UHP metamorphic rocks in the Dabie orogenic belt. Mafic microgranular enclaves and mafic dykes associated with the granite have identical zircon U-Pb ages of 220 Ma, and are characterized by lower SiO2, high TiO2, Mg# and similar evolved Sr-Nd-Pb isotopic composition. Zircons from mafic microgranular enclaves (MMEs) and mafic dykes also show a large variation in Hf isotopic composition with εHf(t) between ?11.3 and + 11.3. It is inferred that they were formed by partial melting of enriched mantle lithosphere and contaminated by the host adakitic granite magma.In combination with the regional geology, high-Mg# adakitic granitoid rocks in the Dongjiangkou area are considered to have resulted from interaction between subducted Yangtze continental crust and the overlying mantle wedge. Triassic continental collision caused detachment of the Yangtze continental lithosphere subducted beneath the North China Craton, at ca. 220 Ma causing asthenosphere upwelling and exhumation of the continental crust. Triassic clockwise rotation of the Yangtze Craton caused extension in the Dabie area which led to rapid exhumation of the subducted continental lithosphere, while compression in the Qinling area and high-P partial melting (amphibole ± garnet stability field) of the subducted continental crust produced adakitic granitic magma that reacted with peridotite to form Mg-rich hybrid magma.  相似文献   

6.
The Naga Ophiolite Belt is a part of the Naga-Arakan-Yoma flysch trough that occurs along the Indo-Myanmar border. It is represented by peridotites, mafic-ultramafic cumulates, mafic volcanics, mafic dykes, plagiogranites, pelagic sediments and minor felsic to intermediate intrusives. Minor plagiogranites, gabbros and thin serpentinite bands occur juxtaposed near Luthur, with the slate-phyllite-metagreywacke sequence (Phokpur Formation) adjacent to the contact. The development of tonalites, trondhjemites and diorites in the oceanic crust, which is grouped as plagiogranites, offers an opportunity to study the process of formation of silicic melts from mafic crust. Plagiogranites from Naga Ophiolite Belt contains moderate SiO2 (51.81–56.71 wt.%), low K2O (0.08–1.65 wt.%) and high Na2O (4.3–5.03 wt.%). The Naga Ophiolite Belt plagiogranites like ocean-ridge granites contain low K2O, high Na2O and CaO. The rocks investigated from Naga Ophiolite Belt contain TiO2 concentrations above the lower limit for fractionated Mid Oceanic Ridge Basalt which is above 1 wt% of TiO2 and the ternary plots of A (Na2O + K2O) F(FeOT) M(MgO) and TiO2-K2O-SiO2/50 indicate that the plagiogranite are tholeiitic in character and gabbro samples are calc-alkaline in nature. The plagiogranites are enriched in Rb, Ba, Th, U, Nb and Sm against chondrite with negative anomalies on Sr and Zr whereas Y and Yb are depleted to Mid Oceanic Ridge Basalt. The chondrite normalized REE patterns of the plagiogranite display enrichments in LREE (LaN/SmN: 2.37–3.62) and flat HREE (Eu/Eu*: 0.90–1.06). The Mid Oceanic Ridge Basalt normalization of gabbro is characterized by strong enrichment of LILE like Ba and Th. The REE pattern is about 50–100 times chondrite with slight enrichment of LREE (LaN/SmN = 2.21–3.13) and flat HREE (Eu/Eu*: 0.94–1.19). The major-element and trace element data of the NOB plagiogranites and their intrusive nature with host gabbroic rock suggest that the plagiogranites were produced by fractional crystallization of basaltic parental magmas at Mid Oceanic Ridge.  相似文献   

7.
Ore-forming porphyries and barren granitoids from porphyry Cu deposits differ in many ways, particularly with respect to their adakitic affinity and calc-alkaline characteristics. In this study, zircon U–Pb and molybdenite Re–Os dating, whole rock geochemistry, whole rock Sr–Nd–Pb and zircon O–Hf isotopic analyses were carried out on the ore-forming granitoids from the Kounrad, Borly and Sayak deposits, and also on pre-ore and post-ore granitoids in adjacent regions of Central Kazakhstan. Geochronology results indicate that pre-ore magmatism occurred in the Late Devonian to Early Carboniferous (361.3–339.4 Ma), followed by large scale Cu mineralization (325.0–327.3 Ma at Kounrad, 311.4–315.2 Ma at Borly and 309.5–311.4 Ma at Sayak), and finally, emplacement of the Late Carboniferous post-ore barren granitoids (305.0 Ma). The geochemistry of these rocks is consistent with calc-alkaline arc magmatism characterized by strong depletions in Nb, Ta and Ti and enrichments in light rare earth elements and large ion lithophile elements, suggesting a supra-subduction zone setting. However, the ore-forming rocks at Kounrad and Sayak show adakitic characteristics with high Sr (517.5–785.3 ppm), Sr/Y (50.60–79.26), (La/Yb)N (9.37–19.62) but low Y (6.94–11.54 ppm) and Yb (0.57–1.07 ppm), whereas ore-forming rocks at Borly and barren rocks from northwest of Borly and Sayak have normal arc magma geochemical features. The Sr–Nd–Hf–O isotopic compositions show three different signatures: (1) Sayak granitoids have very young juvenile lower crust-derived compositions ((87Sr/86Sr)i = 0.70384 to 0.70451, ɛNd (t) = + 4.9 to + 6.0; TDM2 (Nd) = 580 to 670 Ma, ɛHf (t) = + 11.3 to + 15.5; TDMC (Hf) = 330 to 600 Ma, δ18O = 6.0 to 8.1‰), and were probably generated from depleted mantle-derived magma with 5–15% sediment melt addition in the magma source; (2) the Kt-1 granite from northwest of Sayak shows extremely enriched Sr–Nd isotopic compositions ((87Sr/86Sr)i = 0.71050, ɛNd (t) =  7.8, TDM2 (Nd) = 1700 Ma), likely derived from partial melting of ancient continental crust; (3) other granitoids have transitional Sr–Nd compositions between the Sayak and Kt-1 samples, indicating a juvenile lower crust source with the addition of 10–30% of ancient crustal material. The pre-ore magmatism was probably related to partial melting of juvenile lower crust due to northward subduction of the Junggar–Balkhash Ocean, whereas the ore-forming adakitic rocks at Aktogai, Kounrad and Sayak formed by partial melting of thickened lower crust which subsequently delaminated. The ore-forming rocks at Borly, and the later post-ore barren granites, formed by partial melting of juvenile lower crust with normal thickness. This tectonic setting supports the existence of an Andean-type magmatic arc in the Devonian to the Late Carboniferous, resulting from the subduction of the Junggar–Balkhash oceanic plate. The link between whole rock geochemistry and scale of mineralization suggests a higher metallogenic potential for adakitic rocks than for normal arc magmatism.  相似文献   

8.
The paper presents the results of paleomagnetic and geochronological studies of the Late Paleozoic granites of the Angara-Vitim batholith as well as Vendian-Early Cambrian sedimentary rocks and Late Devonian subvolcanic rocks of the Patom margin of the Siberian Platform. Primary and metachronous magnetization in the rocks of the study region was used to calculate an Early Permian (~ 290 Ma) paleomagnetic pole, which is proposed as a reference pole for the Siberian Platform in paleomagnetic reconstructions, plotting of the apparent polar-wander path curve, and other magnetotectonic studies. The published and obtained paleomagnetic data and analysis of the geological data confirm the Late Paleozoic age of the final folding in the Baikal-Patom area. Possible causes of Late Paleozoic deformations and large-scale granite formation in the Baikal-Patom area and Transbaikalia in the Late Paleozoic are discussed.  相似文献   

9.
The paper presents data on the structure, composition, and age of granitoid associations (Tokhtogeshil’skii Complex) composing the Kharanur and Sharatologoi polychronous plutons in the northern part of the Ozernala zone in western Mongolia. The Tokhtogeshil’skii Complex was determined to consist of a number of independent magmatic associations, which were formed at 540–450 Ma, within three age intervals (540–520, 510–485, and 475–450 Ma), have different composition, were derived from different sources, and were emplaced in different geodynamic environments. During the first, island-arc stage (540–520 Ma), high-Al plagiogranites were produced, which belong to tonalite-plagiogranite (531 ± 10 Ma) and diorite (529 ±6 Ma) associations in the Kharanur pluton, low-Al plagiogranites of the tonalite-plagiogranite association (519 ± 8 Ma) in the Sharatologoi pluton, and rocks of the Khirgisnur peridotite-pyroxenite-gabbronorite complex (Kharachulu and Dzabkhan massifs). The rocks of the diorite and plagiogranite associations of the Kharanur pluton have ɛNd(T) from +7.9 to +7.4, TNd(DM) = 0.65 Ga, and (87Sr/86Sr)0 = 0.7038–0.7039. The plagiogranites of the Sharatologoi pluton (tonalite-plagiogranite association) are characterized by ɛNd(T) from +6.5 to +6.6, TNd(DM) = 0.73–0.70 Ga, and (87Sr/86Sr)0 = 0.7038–0.7039, which suggest predominantly juvenile subduction sources of the parental melts at a subordinate role of ancient crustal material. During the second, accretionary stage (510–485 Ma), low-Al plagiogranites of the diorite-tonalite-plagiogranite association of the Sharatologoi pluton (494 ± 10 Ma, M type) were formed. The Sr-Nd isotopic characteristics of these rocks ɛNd(T) = +6.6, (87Sr/86Sr)0 = 0.7039 are analogous to those of the plagiogranitoids of the early type. This suggests that the melted sources were similar in composition. During the third, postcollisional stage (475–450 Ma), rocks of the diorite-granodiorite-granite association were formed (459 ± 10 Ma, type I) in the Kharanur pluton. These rocks have ɛNd(T) = +5.1, TNd(DM) = 0.74 Ga, and (87Sr/86Sr)0 = 0.7096. The parental melts were supposedly derived by means of partial melting of “the Caledonian” juvenile crust with the addition of more ancient crustal material.  相似文献   

10.
Early Paleozoic peraluminous granites are abundant in the eastern part of the Qilian orogen, northeastern margin of the Tibetan Plateau. A combined study involving geochronology, whole-rock geochemical and Sr–Nd–Hf isotopic compositions for three Early Paleozoic peraluminous granitic plutons (Jishishan, Ledu and Shichuan plutons) from the eastern Qilian orogen was carried out to evaluate the causes of chemical variations and generation mechanisms of peraluminous granitic magmas. These granitic plutons have magma crystallization ages of 455–427 Ma and are moderately to strongly peraluminous (A/CNK = 1.03–1.18). Geochemical and Sr–Nd–Hf isotopic data indicate that they consist substantially of crust-derived melts. The Jishishan and Ledu peraluminous granites were dominantly produced by partial melting of Precambrian orthogneisses. The Shichuan monzogranites, with low HREE contents (e.g., Yb = 0.80–1.83 ppm) and slightly negative εNd(t) (− 5.3 to − 2.3) and positive εHf(t) (+ 1.6 to + 3.4), could be derived from immature crustal materials. Relatively high average zircon saturation temperatures (> 750 °C for each pluton), obvious negative Eu anomalies (Eu/Eu* = 0.28–0.80) and low Pb/Ba ratios (0.03–0.16) for the Jishishan, Ledu and Shichuan granites are consistent with crustal melting involving biotite breakdown under fluid-absent conditions. Our results suggest that compositional variations of moderately to strongly peraluminous granitic magmas are mainly controlled by source compositions and melting conditions, while the processes such as mixing with mantle-derived magma, fractional crystallization, restite unmixing and peritectic assemblage entrainment were insignificant (or only play secondary roles) in their genesis. Late Ordovician to Middle Silurian crustal anatexis in the eastern Central Qilian was probably linked with slab break-off which may be an important mechanism in addition to lithospheric delamination for the generation of moderately to strongly peraluminous granites in a post-collisional setting.  相似文献   

11.
The Songshugou mylonitized peridotites within the Qinling Group metamorphic rocks in Central China are distributed in the northern part of the Shang-Dan Suture Zone (SDSZ) and contain abundant dunites and harzburgites. The dunites were intensely deformed and mylonitized converting the coarse-grained type to medium- and fine-grained types which contain prominent lenticular structure and relict olivine (Ol) porphyroclasts. Mineralogical and geochemical compositions suggest that the protoliths of the mylonitized peridotites were coarse-grained peridotites of lithospheric mantle origin. The harzburgites occur as enclaves within mylonitic peridotites in the form of lenses or veins. The orthopyroxenes in harzburgites were formed at the expense of Ol and have similar compositions to those of metasomatized harzburgites, characterized by low Al2O3, CaO and Cr2O3 contents. The harzburgites exhibit the gently U-type REE patterns with enriched incompatible elements (Rb, Ba, Sr, Zr and Hf), suggesting the metasomatic origin. The obvious ductile deformation of the large porphyroclastic orthopyroxene (Opx) suggests that the metasomatism occurred before the deformation. Ductile shearing deformation is indicated by the small fold structures and net-style ductile shearing zones within the Songshugou peridotite massif. The process is also result in the alignment of elongated Ol grains from initially coarse-granular via porphyroclastic to fine-granular texture. The relatively low Fo olivine, together with high Al2O3, and CaO contents and the abnormally low total PGE abundance in the fine-grained dunites suggest the ingress of melt/fluid during the mylonitization. The presences of significant amount of amphibole in the peridotites indicate the ingress of hydrous fluids. In general, the Songshugou peridotites have similar compositional characteristics with peridotites of Oman and Troodos ophiolites which are fragments of oceanic lithosphere mantle. One coarse-grained dunite has a TRD age of 875 Ma. Additionally two stages Paleozoic TRD ages are obtained from medium-grained and fine-grained dunites (491 Ma and 550 Ma; 446 Ma and 476 Ma). The broadly coeval nature of mylonitization with progressive metamorphism of surrounding amphibolites suggested that the Songshugou peridotites were generated before the early Paleozoic deformation. Our data, combined with the previous work on the surrounding HP/UHP metamorphic rocks, demonstrate that the Songshugou mylonitized peridotites represent fragments of the Neoproterozoic fossil oceanic lithospheric mantle that experienced extensive deformation during the Early Paleozoic subduction processes.  相似文献   

12.
Generally, arc-related or subduction-related mafic magmas are formed during or slightly postdate subduction, and characterized by depletion in high field strength elements (HFSEs) relative to the large ion lithophile elements (LILEs) and light rare-earth elements (LREEs). Combining with mineral chemistry and Sr–Nd isotopes, these geochemical characteristics were usually used to define an arc setting, especially for some ancient arcs that had been strongly modified by later tectonic activities. However, we report an exceptional case from the northern part of the Triassic Yidun Arc Belt, eastern Tibetan Plateau. The Ganluogou gabbro (∼152 Ma) occurs as several intrusive bodies. Its mineral assemblage is olivine (chrysolite), plagioclase (anorthite), clinopyroxene (diopside), amphibole (edenite and pargasite) and phlogopite. Whole rock geochemistry shows low SiO2 (42.87–46.99 wt.%), total rear earth elements (ΣREE = 22.8–28.4 ppm), Na2O + K2O (0.92–1.34 wt.%), and high Al2O3, MgO and FeO contents. It has small variations of initial 87Sr/86Sr ((87Sr/86Sr)i = 0.7053–0.7055) and εNd(t) values (−4.8 to −1.8). All the samples exhibit enrichment in LILEs including Th and U, but strongly depleted in HFSEs, including Nb, Ta, Zr and Hf. For the mineral chemistry, there are two type amphiboles. Amp(I) show higher V, Sc, Cr, Sr, Nb and Zr contents, but lower Th and U contents than those of Amp(II). Their REE patterns range from convex shape without Eu anomaly to LREE-enriched pattern with weak positive Eu anomaly. We suggest that Amp(I) was crystallized from a liquid that was mainly buffered by olivine, clinopyroxene and plagioclase, while Amp(II) crystallized from later melt that was mainly buffered by olivine. Based on clinopyroxene chemistry, compositions of coexisting olivine and plagioclase, and whole rock Sr–Nd isotopes, the parental magma of the Ganluogou gabbro is interpreted as a tholeiitic arc-affinity magma, which might be derived from an N-MORB mantle that had been metasomatised by slab-derived melts in the late Triassic (237–206 Ma). Thus, the Ganluogou gabbro provides an example that magmas exhibiting arc-affinity could in fact be formed in a post-orogenic extensional setting.  相似文献   

13.
LA–ICP–MS zircon U–Pb ages, geochemical and Sr–Nd–Pb isotope data are presented for mafic–ultramafic complexes from the southern Liaoning–southern Jilin area with the aim of determining the nature of the Mesozoic lithospheric mantle and to further constrain the spatial extent of destruction of the North China Craton (NCC). The complexes consist of olivine-websterite, gabbro, dolerite, and gabbro-diorite. Zircons from the complexes show typical zoning absorption, are euhedral–subhedral in shape, and yield high Th/U ratios (1.23–2.87), indicating a magmatic origin. Zircon U–Pb age data indicate that they formed in the Early Cretaceous (129–137 Ma). Geochemically, they have SiO2 = 44.3–49.8%, MgO = 6.8–26.5%, Cr = 102–3578 ppm, and Ni = 31–1308 ppm, and are characterized by enrichment in large ion lithophile elements (LILEs) and light rare earth elements (LREEs), and depletion in high field strength elements (HFSEs) and heavy rare earth elements (HREEs), as well as a wide range of Sr–Nd–Pb isotopic compositions [(87Sr/86Sr)i = 0.70557–0.71119; εNd (t) = ?5.4 to ?20.1; (206Pb/204Pb)i = 15.13–17.85; Δ7/4 = ?11.49 to 16.00; Δ8/4 = 102.64–203.48]. Compared with the southern Liaoning mafic–ultramafic rocks, the southern Jilin mafic–ultramafic rocks have high TiO2 and Al2O3 contents, high εNd (t) values, low (La/Yb)N values, low initial 87Sr/86Sr ratios, and low radiogenic Pb isotopic compositions. These findings indicate that the primary magmas of the southern Jilin complexes were derived from lithospheric mantle that was previously metasomatized by a melt derived from the delaminated ancient lower crust, whereas the primary magmas of the southern Liaoning complexes originated from partial melting of a lithospheric mantle source that was previously modified by melt derived from the broken-off Yangtze slab. Therefore, the lateral extent of the NCC destruction should include the southern Liaoning–southern Jilin area.  相似文献   

14.
Major, trace element and isotopic (Sr, Nd, Pb) data and unspiked K–Ar ages are presented for Quaternary (0.90–0.95 Ma old) basalts from the Hayyabley volcano, Djibouti. These basalts are LREE-depleted (Lan/Smn = 0.76–0.83), with 87Sr/86Sr ratios ranging from 0.70369 to 0.70376, and rather homogeneous 143Nd/144Nd (εNd = + 5.9–+ 7.3) and Pb isotopic compositions (206Pb/204Pb = 18.47–18.55, 207Pb/204Pb = 15.52–15.57, 208Pb/204Pb = 38.62–38.77). They are very different from the underlying enriched Tadjoura Gulf basalts, and from the N-MORB erupted from the nascent oceanic ridges of the Red Sea and Gulf of Aden. Their compositions closely resemble those of (1) depleted Quaternary Manda Hararo basalts from the Afar depression in Ethiopia and (2) one Oligocene basalt from the Ethiopian Plateau trap series. Their trace element and Sr, Nd, Pb isotope systematics suggest the involvement of a discrete but minor LREE-depleted component, which is probably an intrinsic part of the Afar plume.  相似文献   

15.
The Paleozoic granitoids of the Sierra de San Luis comprise the Ordovician tonalite suite (OTS; metaluminous to mildly peraluminous calcic tonalite–granodiorites) and granodiorite–granite suite (OGGS; peraluminous calcic to calc-alkaline granodiorite–monzogranites), as well as the Devonian granite suite (DGS; peraluminous alkali-calcic monzogranites) and monzonite–granite suite (DMGS; metaluminous alkali-calcic quartz monzonite–monzogranite ± granodiorite, mildly peraluminous alkalicalcic monzogranites). The OTS has relatively high K2O, CaO, and YbN and low Cr, Ni, Ba, Sr, Rb/Sr, Sr/Y, and (La/Yb)N, as well as negative Eu/Eu1, high 87Sr/86Sr (0.70850–0.71114), and unradiogenic εNd(470Ma) (−5.3 to −6.0), which preclude an origin of variably fractionated mantle melts and favour a mafic lower crustal source. The OGGS consists of two granitoids: (1) high-temperature characterized by low Al2O3/TiO2, Rb/Sr, and (La/Yb)N, a smooth negative Eu/Eu1, and relatively high CaO and (2) low-temperature with high Al2O3/TiO2 and Rb/Sr, low CaO, (La/Yb)N, and Sr/Y, and negative Eu/Eu1. Melting of metagreywackes at pressures below 10 kbar with a variable supply of water could account for the chemistry of the high-T OGGS, whereas dehydration melting of biotite-bearing metasedimentary sources at low pressures is proposed for the low temperature OGGS. Melting of crustal sources relates to a contemporaneous mafic magmatism.Devonian magmatism is characterized by high Ba, Sr, K2O, Na2O, Sr/Y, and (La/Yb)N. Sources for the DGS include metasedimentary or metatonalitic protoliths. Biotite dehydration melting triggered by the addition of heat, supplied by mantle-derived magmas, is proposed. High Ba, Sr, LREE, MgO, Cr, Ni, Zr, and V of the monzonites suggest an enriched lithospheric mantle source. Low Yb and Y and high Sr and (La/Yb)N indicate a garnet-rich residual assemblage (P  10 kbar). Melts for the peraluminous rocks may have derived from a metasedimentary or metaigneous source at lower pressures in a process dominated by biotite consumption and plagioclase in the residue.The Ordovician granitoids are synkinematic with compressive deformation related to the early stages of Famatinian convergence. The Devonian magmatism is synkinematic with a system of shear zones that were active during the Achalian cycle.  相似文献   

16.
The tectonic history of the Kyrgyz South Tianshan in the western Central Asian Orogenic Belt (CAOB) remains controversial, first of all, due to the limited amount of geochemical and isotope data. Our paper presents the first results of a detailed geochemical study (major and trace elements, Sr, Nd and Pb isotopes) of Middle Paleozoic mafic volcanic and subvolcanic rocks of the Ferghana and Atbashi–Kokshaal accretionary belts of the South Tianshan orogen in Kyrgyzstan, which formed during the evolution of the Turkestan Ocean. A special focus is given to the relation between magmatic rocks and sedimentary units of marine origin, chert, siliceous shale/mudstone, volcanogenic–carbonate clastics, seamount carbonates, and turbidites, which we consider as elements of Ocean Plate Stratigraphy (OPS). The age range of marine sediments is Late Silurian to Early Carboniferous, but the age of the most volcanic rocks associated with fossil-bearing OPS sediments is Devonian. The magmatic rocks have geochemical affinity to oceanic island basalts (OIB-type) and, to a lesser extent, mid-oceanic ridge (MORB-type) basalts associated with hemipelagic siliceous mudstone and pelagic chert. The rocks with OIB-type affinity are associated with chert, siliceous shale and carbonaceous clastics and carbonates. They are enriched in TiO2, LREE (La/Smn = 1.9), and Nb (Zr/Nbav. = 10), have differentiated HREE (Gd/Ybn = 2.0), medium to low εNd (~ 5.7) and are characterized by clear Nb positive anomalies in normalized multi-element plots (Nb/Thpm = 1.3, Nb/Lapm = 1.1). The OIBs formed by relatively low degrees of melting (< 5%) of mantle sources in the garnet stability field and erupted in an oceanic island setting. The MORB-type samples associated with siliceous mudstone and chert are less enriched in incompatible elements, possess flat REE and multi-element pattern, and show higher εNd values (~ 9.1); they were probably produced by high-degree melting of spinel lherzolite and/or harzburgite and erupted in a mid-oceanic ridge setting. The geological, lithological and geochronological data suggest that the OPS units with dominantly OIB-type basalts formed at one or several seamount chains of the Turkestan Ocean, which were accreted to the Kazakhstan continent, and thus contribute to our understanding of the Paleozoic tectonic evolution of the western CAOB during the Serpukhovian–Bashkirian.  相似文献   

17.
Garnet-bearing micaschists and paragneisses of the Yaounde Group in the Pan-African Central African Orogenic Belt in Cameroon underwent a polyphase structural evolution with the deformation stages D1–D2, D3 and D4. The garnet-bearing assemblages crystallized in course of the deformation stage D1–D2 which led to the formation of the regional main foliation S2. In XCaXMg coordinates one can distinguish several zonation trends in the garnet porphyroblasts. Zonation trends with increasing XMg and variably decreasing XCa signalize a garnet growth during prograde metamorphism. Intermineral microstructures provided criteria for local equilibria and a structurally controlled application of geothermobarometers based on cation exchange and net transfer reactions. The syndeformational PT path sections calculated from cores and rims of garnets in individual samples partly overlap and align along clockwise PT trends. The PT evolution started at ~450 °C/7 kbar, passed high-pressure conditions at 11–12 kbar at variable temperatures (600–700 °C) and involved a marked decompression toward 6–7 kbar at high temperatures (700–750 °C). Th–U–Pb dating of metamorphic monazite by electron microprobe (EMP-CHIME method) in eight samples revealed a single period of crystallization between 613 ± 33 Ma and 586 ± 15 Ma. The EMP-monazite age populations between 613 ± 33 Ma enclosed in garnet and 605 ± 12 Ma in the matrix apparently bracket the high temperature–intermediate pressure stage at the end of the prograde PT path. The younger monazites crystallized still at amphibolite-facies conditions during subsequent retrogression. The Pan-African overall clockwise PT evolution in the Yaounde Group with its syndeformational high pressure stages and marked pressure variations is typical of the parts of orogens which underwent contractional crustal thickening by stacking of nappe units during continental collision and/or during subduction-related accretionary processes.  相似文献   

18.
This paper reports new whole-rock geochemical, Sr–Nd–Pb isotopic, and zircon U–Pb and Hf isotopic data for Early Cretaceous intrusive rocks in the Sanmenxia–Houma area of central China, and uses these data to constrain the petrogenesis of low-Mg adakitic rocks (LMAR) and the spatial extent of the influence of the deeply subducted Yangtze slab during the Triassic evolution of this region. New zircon laser-ablation inductivity coupled plasma mass spectrometry (LA-ICP-MS) U–Pb data indicate that the early- and late-stage southern Quli, Qiligou, and Gaomiao porphyritic quartz diorites, the Canfang granodiorite, and the northern Wangmao porphyritic quartz monzodiorite were emplaced during the Early Cretaceous (~ 130 Ma) and the late Early Cretaceous (~ 116 Ma). These rocks are characterized by high Na2O/K2O, Sr/Y, and (La/Yb)n ratios as well as high Sr concentrations, low Mg# [molar 100 × Mg/(Mg + Fe2 +tot)] values, and low heavy rare earth element and Y concentrations, all of which indicate an LMAR affinity. The samples have relatively high initial 87Sr/86Sr ratios (0.7054–0.7095), and low εNd(t) (− 11.90 to − 22.20) and εHf(t) (− 16.7 to − 32.7) values, indicative of a lower continental crust origin. The presence of Neoproterozoic (754–542 Ma) and inherited Late Triassic (220 Ma) metamorphic zircons within the late Early Cretaceous LMAR and the relatively high 206Pb/204Pb ratios of these rocks suggest that they formed from primary magmas derived from partial melting of Yangtze Craton (YC) basement material that had undergone ultrahigh-pressure metamorphism. In contrast, the presence of Paleoproterozoic and Archean inherited zircons within early Early Cretaceous LMAR in this area and the relatively low 206Pb/204Pb ratios of these rocks are indicative of derivation from primary magmas generated by partial melting of the thickened lower continental crust of the North China Craton (NCC). These rocks may have formed in an extensional environment associated with the upwelling of asthenospheric mantle material. The presence of YC basement material within the NCC in the Sanmenxia–Houma area suggests that the deeply subducted Yangtze slab influenced an area of ~ 100 km in lateral extent within the southern margin of the central NCC during the Triassic.  相似文献   

19.
The newly discovered Fuxing porphyry Cu deposit is located in the Dananhu–Tousuquan arc, adjacent to the Tuwu–Yandong Cu deposits of Eastern Tianshan, in the southern Central Asian Orogenic Belt. The Fuxing deposit is hosted by volcanic rocks (basalt and dacite) in the Early Carboniferous Qi'eshan Group and Carboniferous felsic intrusions (plagiogranite porphyry, monzogranite, and quartz diorite). New SIMS zircon U–Pb dating indicates that the plagiogranite porphyry and monzogranite emplaced at 332.1 ± 2.2 Ma and 328.4 ± 3.4 Ma, respectively. The basalts are characterized by low SiO2 contents (47.47–54.90 wt.%), a lack of Eu anomalies, strong depletion of Na, Ta, and Ti elements but positive Sr, U, and Pb anomalies, high Y (20.8–28.2 ppm) and HREE concentrations (Yb = 2.23–3.06 ppm), and relatively low (La/Yb)N (2.20–3.92) values; the dacite samples have high SiO2 contents (66.13–76.93 wt.%), clearly negative Eu anomalies, high Mg# values (36–51), and high Y (41.8–54.9 ppm) and Yb (5.76–8.98 ppm) concentrations. The basalts and dacites exhibit similar signatures as normal arc rocks, and were considered to be derived from partial melting of mantle-wedge peridotite that was previously metasomatized by slab melts. In contrast, the plagiogranite porphyry, monzogranite, and quartz diorite show the same geochemical affinity with modern adakites, which are characterized by high SiO2 contents (67.55–79.00 wt.%), minor negative to positive Eu anomalies, strong depletion of heavy rare earth elements (Yb = 0.17–1.19 ppm) and Y (1.86–10.1 ppm), positive K, Rb, Sr, and Ba but negative Nb, Ta, Th, and Ti anomalies, and high (La/Yb)N ratios and Mg# values. Moreover, these adakitic felsic intrusions display relatively high positive zircon εHf(t) values (+ 11.4 to + 18.3), low 87Sr/86Sr (0.706080–0.711239), high 143Nd/144Nd (0.512692–0.512922) ratios, and consistent zircon δ18O values (4.41‰–5.48‰), suggesting that their parental magma were most likely derived from partial melting of the subducted oceanic crust followed by mantle peridotite interaction. Based on the whole-rock geochemical and Sr–Nd–Hf–O isotopic data, as well as detailed petrographic analyses, we further suggest that the Fuxing igneous rocks and associated porphyry Cu mineralization were generated by the northward subduction of the paleo-Tianshan oceanic plate beneath the Dananhu–Tousuquan island arc during the Early Carboniferous.  相似文献   

20.
《Chemical Geology》2007,236(1-2):112-133
The Cida A-type granitic stock (∼ 4 km2) and Ailanghe I-type granite batholith (∼ 100 km2) in the Pan-Xi (Panzhihua-Xichang) area, SW China, are two important examples of granites formed during an episode of magmatism associated with the Permian Emeishan mantle plume activity. This is a classic setting of plume-related, anorogenic magmatism exhibiting the typical association of mantle-derived mafic and alkaline rocks along with silicic units. SHRIMP zircon U–Pb data reveal that the Cida granitic pluton (261 ± 4 Ma) was emplaced shortly before the Ailanghe granites (251 ± 6 Ma). The Cida granitoids display mineralogical and geochemical characteristics of A-type granites including high FeO/MgO ratios, elevated high-field-strength elements (HFSE) contents and high Ga/Al ratios, which are much higher than those of the Ailanghe granites. All the granitic rocks show significant negative Eu anomalies and demonstrate the characteristic negative anomalies in Ba, Sr, and Ti in the spidergrams. It can be concluded that the Cida granitic rocks are highly fractionated A-type granitoids whereas the Ailanghe granitic rocks belong to highly evolved I-type granites.The Cida granitoids and enclaves have Nd and Sr isotopic initial ratios (εNd(t) =  0.25 to + 1.35 and (87Sr/86Sr)i = 0.7023 to 0.7053) close to those of the associated mafic intrusions and Emeishan basalts, indicating the involvement of a major mantle plume component. The Ailanghe granites exhibit prominent negative Nb and Ta anomalies and weakly positive Pb anomalies in the spidergram and have nonradiogenic εNd(t) ratios (− 6.34 to − 6.26) and high (87Sr/86Sr)i values (0.7102 to 0.7111), which indicate a significant contribution from crustal material. These observations combined with geochemical modeling suggest that the Cida A-type granitoids were produced by extensive fractional crystallization from basaltic parental magmas. In contrast, the Ailanghe I-type granites most probably originated by partial melting of the mid-upper crustal, metasedimentary–metavolcanic rocks from the Paleo-Mesoproterozoic Huili group and newly underplated basaltic rocks.In the present study, it is proposed that petrogenetic distinctions between A-type and I-type granites may not be as clear-cut as previously supposed, and that many compositional and genetically different granites of the A- and I-types can be produced in the plume-related setting. Their ultimate nature depends more importantly on the type and proportion of mantle and crustal material involved and melting conditions. Significant melt production and possible underplating and/or intrusion into the lower crust, may play an important role in generating the juvenile mafic lower crust (average 20 km) in the central part of the Emeishan mantle plume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号