首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Risk assessment of metals associated to airborne particulate matter (PM) has usually been based on the analysis of their total concentrations, which is a poor indicator of metal mobility. Chemical fractionation processes may provide an additional level of information, however, chemical complexity and small sample sizes do not allow to combine several extraction methods. Additionally, analysing the metal concentrations during the extractions exceptionally provides restricted information about metals’ speciation. To overcome these limitations we collected total suspended particulate matter (TSP) samples from the air filters placed in the air supply channel of methane-heated turbines of thermal power stations which allows collecting large amounts of TSP materials. Additionally, we combined single and sequential chemical extractions in which not only the concentrations of potentially toxic elements (PTE) (Cd, Cr, Cu, Ni, Pb, Zn) but also that of the major chemical components (Al, Ca, Fe, K, Mg, Mn, Na, P, S, Ti) were analysed. Our aims were to study these metals’ mobility and speciation through the study of their association to major chemical components.Accumulation of the studied PTEs in the TSP material suggests moderate contamination for Ni, Cd and Cr whereas a heavy one for Cu, Zn and Pb. Three groups of these PTEs could be distinguished based on their mobility. The highly mobile Zn and Cd (large ratios of water and weak acid soluble fractions) can be considered as especially harmful elements to environment. The moderately mobile Pb and Cu (large ratios of reducible and oxidizable fractions, respectively) may potentially have a negative effect on the environment, whereas the immobile Cr and Ni cannot be expected to pose a serious risk. Based on the statistical evaluation of extraction data, the potential phases for Zn and Cu are presented by metal-sulphates, -nitrates, -chlorides, -carbonates and -hydroxides, as well as sorbed forms. Lead primarily hosted by metal-carbonates and sorbed forms, as well as by -hydroxides, whereas Cu by organic matter. Finally, Cr and Ni are mostly incorporated into very resistant phases, most probably by magnetite or other resistant metal-oxides.Combination of single and sequential extractions, as well as that of the analysis of not only the target elements but also the major chemical components were found to be a very effective tool to study the host phases of PTEs in the TSP material. The necessity for relatively large sample amounts for such analyses could be fulfilled using special sampling methodology; however, obvious disadvantages of this kind of sampling must be taken into account when resulted data are evaluated.  相似文献   

2.
Various sludge samples from different domestic and industrial wastewater treatment plants were analyzed by Flame Atomic Absorption Spectrometry (FAAS) to evaluate their total and available contents of heavy metals (Pb, Hg, Cd and Zn). The EDTA, pyridine and acetic acid single extraction techniques were applied to these samples with the objective of studying the leaching behavior of the metals in different sludges and also to predict their possible mobility when these wastes are disposed on the environment and landfills. In EDTA, higher extraction efficiency was observed for major part of the elements studied in the industrial sludges except for Hg and Cd, which were also considerably released from domestic sludges. Acetic acid and pyridine gave a better extraction efficiency for Zn in industrial sludge than EDTA. Moreover, the results of total digestions were compared, for total metal contents, with those obtained using pseudototal digestion procedure and a good correlation (r2 = 0.95) was found between the two methods of digestion.  相似文献   

3.
 The mobility of 10 potentially toxic trace elements (PTTE), As, Cd, Cr, Cu, Hg, Ni, Pb, Se, Tl, and Zn from 32 coals of the Longtan Group formed in Permian Period in Guizhou Province, China was investigated using sequential extraction procedures. The results demonstrate that PTTEs such as Hg, As, Se, Cd, Cu, and Pb have the highest mobility at surface conditions, and the average extractable fractions of them are 86%, 95%, 79%, 76%, 69%, and 69% of the total amount in coal, respectively. The elements in coal with the lowest leachability include Tl, Cr, and Ni, and the average extractable fractions of them are 30%, 20%, and 29% of the total amount in coal respectively. Zinc has an intermediate behavior, and the average leachable fraction of it accounts for 46% of the total amount in coal. The results demonstrate that mobility of PTTE in coal depends on the speciation of these elements. The elements associated with sulfates, carbonates, sulfides and some organic matter in coal show the highest extraction rates during the weathering process, while elements with silicate affinities are inert at surface conditions. Received: 29 December 1998 · Accepted: 10 November 1998  相似文献   

4.
Various extraction procedures were employed for measuring extractable concentrations of potential toxic elements in soil. The extractability of Cd, Cu, Pb and Zn in four contaminated and four non-contaminated soils of Japan, was compared by single extraction (CaCl2, DTPA, NH4Cl, 0.1 M HCl and 1 M HCl ) and sequential extraction procedures [(six operationally defined chemical phases, viz. water soluble (Fl), exchangeable (F2), carbonate (F3), oxide (F4), organic (F5) and residual (F6) fractions)]. Extractability of metals from soils samples varied depending on metals and/or extradants used. Among the extradants, 1 M HCl extracted the largest proportion of Cd (79 to 96% of total), Cu (61 to 83%), Pb (51 to 99%) and Zn (23 to 52%) from soils followed by 0.1 M HCl, NH4Cl, DTPA and CaCl2. In all the extradants, the proportion of extractability of metals was higher in the contaminated soils than the non-contaminated soils. Regardless of soils and extradants, relative extractability was higher for Cd as compared to other three metals. The use of 1 M HCl may be recommended for first-level screening of soil contamination with heavy metals. The other four weak extradants are believed to provide a better assessment of bioavailable/mobile metals content in soils than 1 M HCl extradant. However, 0.1 M HCl mobilized all four metals irrespective of soil types, therefore, might be the best choice if only one extradant is to be used. The sequential extraction procedures showed 22 to 64% of total Cd was in the mobile fraction (sum of Fl to F3), while the corresponding values for Cu, Pb and Zn in this fractions were 2 to 23% suggesting higher mobility of Cd than other three metals. The single extraction procedures are simple and easy to perform and obtained results are comparable with sequential extraction procedure.  相似文献   

5.
Heavy metals in tailings and mining wastes from abandoned mines can be released into adjacent agricultural field and bioaccumulated in crops or vegetables. Therefore, prediction of metal bioavailability has become an important issue to prevent adverse effect of bioaccumulated metals on human health. In this study, single and sequential extraction methods were compared using multivariate analysis to predict the bioavailability of Cd and As in contaminated rhizosphere soils. Single extraction using 0.1 M HCl for Cd and 1.0 M HCl for As had an extraction efficiency of 8–12% for soil Cd and 14–17% for soil As compared to total concentration extracted with aqua regia. Using sequential extraction, Fe–Mn-bound Cd (FR3) and residual Cd (FR5) were the dominant fractions representing 43 and 41% of total Cd concentration. For As, the strongly absorbed form (FR2) was the most abundant chemical fraction showing 45–54% of the total As concentration in soil. Multivariate analyses showed that single extraction with HCl and total concentration of Cd and As in soil were significantly correlated to potato and green onion plant tissue metal concentration. Although little information was obtained with multiple regression analysis because of multicollinearity of variables, the result of principle component analysis (PCA) revealed that the highest positive loading was obtained using total concentration of Cd and As in soil in the first principle component (PC1). In addition, total concentration of Cd and As in soil was independently grouped with other chemical fractions by cluster analysis. Therefore, the overall result of this research indicated that total concentrations of Cd and As in rhizosphere soils were the best predictors of bioavailability of heavy metals in these contaminated soils.  相似文献   

6.
Total concentrations of chemical elements in soils may not be enough to understand the mobility and bioavailability of the elements. It is important to characterise the degree of association of chemical elements in different physical and chemical phases of soil. Another geochemical characterisation methodology is to apply sequential selective chemical extraction techniques. A seven-step sequential extraction procedure was used to investigate the mobility and retention behaviour of Al, Fe, Mn, Cu, Zn, Pb, Cr, Co, Ni, Mo, Cd, Bi, Sn, W, Ag, As and U in specific physical–chemical and mineral phases in mine tailings and soils in the surroundings of the abandoned Ervedosa mine. The soil geochemical data show anomalies associated with mineralised veins or influenced by mining. Beyond the tailings, the highest recorded concentrations for most elements are in soils situated in mineralised areas or under the influence of tailings. The application of principal components analysis allowed recognition of (a) element associations according to their geochemical behaviour and (b) distinction between samples representing local geochemical background and samples representing contamination. Some metal cations (Mn, Cd, Cu, Zn, Co, Cr, Ni) showed important enrichment in the most mobilisable and bioavailable (i.e., water-soluble and exchangeable) fractions due likely to the acidic conditions in the area. In contrast, oxy-anions such as Mo and As showed lower mobility because of adsorption to Fe oxy-hydroxides. The residual fraction comprised largest proportions of Sn and Al and to a lesser extent Zn, Pb, Ni, Cr, Bi, W, and Ag, which are also present at low concentrations in the bioavailable fractions. The elements in secondary mineral phases (mainly Fe, Mn, Cu, Zn, Cd, Pb, W, Bi, Mo, Cr, Ni, Co, As and U) as well as in organic matter and sulphides are temporarily withheld, suggesting that they may be released to the environment by changes in physico-chemical conditions.  相似文献   

7.
Analysis of the total heavy metal (Cr, Cd, Pb, As, Cu, Ni, Zn, Co) concentration was performed on 33 soil samples taken from different profiles and soil types in a highly urbanized and industrial sector of Addis Ababa, central Ethiopia. They were analyzed using aqua regia extraction coupled with a four-stage sequential extraction (SE) procedure. The objectives of the analysis were to investigate the degree of soil heavy metal contamination, its binding forms, mobility and the implications for the groundwater resource. The results show a relatively high content of the analyzed trace metals in the soil attributed to anthropogenic and geogenic sources. Although most of the trace metals are found in the upper few centimeters of the residual soils, because of churning processes within the black cotton soils, vertical distribution of the trace metals is complex. According to the heavy metal SE analysis, the major heavy metal contribution is from the residual followed by the hydroxide phases. Groundwater heavy metal contamination is present with more than 90 and 50% of the analyzed groundwater samples exceeding WHO guidelines for Cr and Cd, respectively. Since the degree of soil heavy metal contamination has apparently not surpassed the soil’s buffering capacity, it appears that the transport path of these toxic metals to the groundwater is through fractures, joints, and related preferential flow paths.  相似文献   

8.
Metals of natural and anthropogenic origin behave differently in soils mostly due to their different mobility. In this study, sequential extractions and batch sorption experiments were performed to relate the fractionation of native Ni, Cu, Zn and Pb to the sorption properties of added metals in four soils with contrasting physiochemical characteristics. A significant effect due to sample composition on both the mobility and sorption characteristics of these metals was found. The efficiency of soil components in metal immobilization was in the order of carbonate > organic matter > swelling clay minerals. The partitioning of native metals together with the information gained through the sorption isotherms allows a deeper insight on the fate and behavior of metals in soils with various compositions.  相似文献   

9.
INTRODUCTIONFresh water lakes are one of the planet’s mosti mportant freshwater resources.They support life invarious forms,develop tourism and provide uniquerecreational opportunities.It is also a good source ofthe provision of drinking-water for local communi-ties.Studies on trace elements in rivers,lakes,andsedi ments(Zhou et al.,2004;Gray et al.,2000;Grosheva et al.,2000;Klavins et al.,2000;Aucoinet al.,1999;Bortoli et al.,1998;Elbaz-Poulichet etal.,1996;Johansson et al.,1995;F r…  相似文献   

10.
The wall rocks of Sidi Driss mineralization contain continental molassic deposits: lacustrine limestones, ferruginous fragments, Ed Diss unit and Numidian unit fragments, rhyodacitic fragments, pyroclasts, and gneissic fragments. The ore is composed of pyrite, marcasite, sphalerite, galena, barite, celestite, siderite, calcite, and iron oxide-hydroxides. The abandoned wastes in Sidi Driss-Tamra district contain marcasite, galena, goethite, jarosite, anglesite, anhydrite, bassanite, and gypsum. It is very important to assess the hazards and risks that this material type poses to public health and the environment. However, evaluation of a part of toxic elements always poses problems since the associated matrix, the close relationships between some minerals, the grain sizes and their forms (oolites, compact collomorphes aggregate), the oxidation degree of metals, the chemical composition, and trace elements make it difficult to extract mobile metals from complex Sidi Driss tailings and minerals found in these acidic wastes. Nevertheless, there is no universal method that can systematically evaluate metal bioavailability. And the use of proposed sequential extraction procedures for sediments with simple mineralogical composition did not yield any reproducible results for this type of acid mine drainage sediments. Consequently, the methods of controlling and mitigating the risks of hazardous materials should be considered. Many extraction procedures have been applied to better evaluate the mobility of hazardous materials (metals), the characterization of their degree of toxicity, and their chemical behavior in these complex mine tailings. Reproducible results were obtained with lab-scale washing of sediments using distilled water, CaCl2 and Na2-EDTA solutions, and BCR sequential extraction. The results showed that the BCR extraction approach was the most efficient procedure for these types of wastes. The extraction with distilled water is recommended for identification of the total quantity of mobile Cr and Fe.  相似文献   

11.
桂北某矿区硫化物尾矿重金属复合污染评价预测   总被引:1,自引:0,他引:1  
对于硫化物尾矿重金属复合污染的评价采用以元素总量为主因子的单一方法(如Nemerom法)常难得到合理的结果.在桂北某矿区,运用地质累积指数、生态危害指数以及BCR酸提取等研究方法,并以近矿围岩风化壳的元素丰度作为参比值,对尾矿Pb、Zn、Cd及As复合污染进行综合评价预测.结果表明,(1)该区尾矿中Cd(生态危害性高、迁移性强)和As(污染程度高、生态危害性也较高)为主要污染因子,应重点预防和控制;而Zn(生态危害性较低)和Pb(污染程度、生态危害性及迁移性均较低)则相对次要;(2)尾矿中元素活性酸提取态分量(为产生环境效应的主因),与其元素总含量之间存在着不同程度或不一致的相关关系,这是元素总量因子评价法的问题之一.   相似文献   

12.
湖南水口山及周边是湖南省重金属污染较为严重的地区之一,龙王山金矿床是该区中部的一个重要金矿床.为调查该矿床废石堆污染状况、是否为周边环境的污染源、污染途径、重金属迁移能力和潜在的危害,对矿区FS17废石堆进行了自然淋滤水和24 m浅钻系统取样,开展重金属元素总量分析,利用单因子指数法和内梅罗综合污染指数法对其重金属污染程度进行污染评价,采用四步改良BCR提取法分析废石堆中8种重(类)金属元素(Pb、Zn、Cd、Cu、Cr、Ni、As和Fe)的赋存形态,并利用迁移指数量化废石堆重金属元素迁移能力;发现废石堆中Cd、Cu、Pb、As、Zn、Ni重金属元素严重超标,且在垂向上分布极不均匀;其自然淋滤水样中重金属元素Cd、Ni、Zn、Cu也严重超标;废石堆浅层重金属元素潜在迁移能力顺序为:Cd>Ni≈Zn>Cu>Pb>As>Cr>Fe,深层重金属元素迁移能力顺序为:Cd>Zn>Cu>Ni>Cr>Pb>As>Fe,浅层重金属元素的迁移性大于深层;说明该废石堆重金属元素含量高,是周围环境重要污染源,酸性废水排放为其释放污染元素的主要途径;Cd、Cu、Zn、Ni迁移能力强,是周围环境的主要污染元素;Pb、Ni、As的迁移性在深层明显降低,可以通过埋深来削弱其迁移性,而Cr不会对周边环境产生污染.   相似文献   

13.
Sixty-two soil samples collected from different functional zones of Guiyang were analyzed for total concentrations and sequential extraction of Cr, Cu, Pb, Zn and Cd by ICP spectrometry. The average total concentrations ofCr, Cu, Pb, Zn and Cd in the soils of Guiyang were 92.9, 51.6, 44.1,139.3 and 0.28 mg/kg, respectively. The soils have been polluted by Cr, Cu, Pb, Zn and Cd to some extent in comparison with the background values of Guiyang. Significant differences were recognized in the concentrations of Cr, Cu, Pb, Zn and Cd in different functional zones. As for the sequential extraction, Cr, Cu and Zn were present mainly in the residual fraction, and Pb was present mainly in the oxidizable fraction. The reducible fraction of Cd accounts for 47.5%, and the residual fraction is lowest. The mobility and bioavailability of heavy metals follow the order of Cd〉Pb〉Cu〉Cr〉Zn.  相似文献   

14.
Mobility of heavy metals from coal fly ash   总被引:7,自引:0,他引:7  
The mobility of Cd, Co, Cu, Ni, Pb, Sb, and Zn from six different coal-fired power plant fly ashes that show a wide compositional range was examined using a sequential extraction procedure in order to assess their mobility when these wastes are ponded or landfilled. The extraction sequence was as follows: (1) water extractable, (2) cation exchangeable (CH3COONH4 at pH 7), (3) surface oxide-bound cations (CH3COONH4 at pH 5), (4) Fe oxide-bound cations (HONH3Cl), and (5) residual (HF, HCl, HNO3, 211). The heavy metal contents in the extraction solutions were determined by anodic (Cd, Cu, Pb, Sb, and Zn) and cathodic (Ni and Co) stripping voltammetry. The results reveal differences in the total contents of the selected trace elements among the fly ash samples, which must be related to differences in coal composition and combustion technology. The extractable fraction under natural conditions ranges from 1.5 to 36.4 percent of the total element content. Cadmium, Co, Cu, and Zn show the highest extractable fraction (10.8–18.9 percent on average). Cadmium is the most easily water-extractable element, while Co, Cu, and Zn increase their mobility as the severity of the extraction increases. Cobalt, Ni, Pb, and Zn are mainly associated with the surface oxide-bound and Fe oxide-bound fractions. Nickel, Pb, and Sb have low mobility potentials (5.3–6.6 percent as extractable fraction), but Sb presents a relatively high water-extractable fraction.  相似文献   

15.
The fractionation of five heavy metals in a washing aggregate sludge, a sewage sludge, a clay-rich sediment, the mixtures of these materials and the lightweight aggregates manufactured with them has been determined by applying the optimized European Community Bureau of Reference sequential extraction procedure in order to evaluate the effects of the heating process on the extraction of these elements. Additionally, preparation of eluates by aggregate leaching has been performed in accordance with the UNE-EN-H44-3 standard. The availability of all the studied heavy metals has been reduced by the thermal treatment, since most of the heavy metals have become part of the undigested material in the lightweight aggregates. Nickel has been the heavy metal that has presented the highest concentration in the eluates obtained after completion of the single extraction procedure in the lightweight aggregates. The studied lightweight aggregates may be used in lightweight concrete manufacturing from the standpoint of heavy metal leaching.  相似文献   

16.
《Applied Geochemistry》2002,17(4):353-365
Surprisingly little is known about the relationship between the labile phases removed by sequential extraction procedures and those liberated by single leaches that minimally impact the alumino-silicate matrix of solids. This investigation examines the relationship between the summed concentrations of Al, Co, Cu, Fe, Mn, Ni, Pb and Zn released by an optimized 3-step standardized sequential extraction procedure and those released by a single 0.5 M HCl leach. Thirty-nine representative soil and road deposited sediment samples were examined from an urban watershed, in Honolulu, Hawaii, which has been shown to have a high degree of traffic-associated pollution. Properties of samples analyzed varied widely and exhibited a range in cation exchange capacities from 7 to 59 cmolc/kg, pH values from 3.5 to 7.9, and organic C contents from 1 to 29%. Results indicate that the dilute HCl leach was slightly more aggressive than the sequential procedure as it removed significantly more Al, Cu, Fe, Mn and Ni; though no significant differences were observed between Co, Pb and Zn concentrations liberated by the two approaches. Both approaches showed limited dissolution of the crystal lattice with ⩽9% of the total Al liberated. Regardless of approach, element mobility was the same with the order being: Pb>Mn>Zn>Co≈Cu>Ni>Fe ∼ Al. Regression analysis indicated highly significant (P<0.0001) logarithmic relationships between the two digestion procedures, with coefficients of determination (r2) ⩾92% for all elements except Fe (54%) and Ni (64%). Further support for the strong relationships between elements liberated by both digestions was gained from geochemical contrasts between anomalous and background levels and concentration enrichment ratios. This was particularly true for Pb and Zn, the most anthropogenically enhanced trace metals in the watershed. All data indicated that a dilute HCl leach was a valuable, rapid, and cost-effective analytical tool in contamination assessment.  相似文献   

17.
Additions of the low occurrence stable isotopes 61Ni, 65Cu, and 68Zn were used as tracers to determine the exchange kinetics of metals between dissolved and particulate forms in laboratory studies of natural water and suspended sediments from South San Francisco Bay, CA. Dissolved metal isotope additions were made so that the isotope ratios (rather than total metal partitioning) were significantly altered from initial ambient conditions. Dissolved metal concentrations were determined using an organic ligand sequential extraction technique followed by analysis with high-resolution inductively coupled plasma mass spectrometry (HR-ICPMS). Exchangeable particulate concentrations were extracted using a 20% acetic acid leach followed by determination using HR-ICPMS. Equilibrium and kinetic sorption parameters were quantified according to a general model for trace metal partitioning assuming pseudo-first-order kinetics. Partition coefficients (KD) were tracked as a function of time over the fortnight experiment. For Ni, Cu, and Zn the initial ambient KD values were found to be 103.65, 103.88, and 104.52 L kg−1, respectively. As a result of the dissolved metal isotope additions, the partition coefficients for all three metals dropped and then increased back to near ambient KD values after 14 days. Curve-fitting concentration versus time profiles from both dissolved and exchangeable particulate data sets allowed determination of kinetic rate constants. The best estimates of forward and backward kinetic rate constants for Ni, Cu, and Zn respectively are k′f = 0.03, 0.07, 0.12 d−1 and kb = 0.13, 0.12, 0.15 d−1. These results predict that sorption equilibria in South Bay should be reached on the order of a month for Ni, on the order of 3 weeks for Cu, and on the order of 2 weeks for Zn. Together, the dissolved and exchangeable particulate data indicate more sluggish sorption kinetics for Ni than for Cu and Zn and suggest that different chemical forms control the speciation of these three metals in South Bay. Order of magnitude metal sorption exchange rates were estimated using these kinetic results. These calculations indicate that sorption exchange between dissolved and suspended particulate phases can cause dynamic internal cycling of these metals in South San Francisco Bay.  相似文献   

18.
The Pliocene aquifer receives inflow of Miocene and Pleistocene aquifer waters in Wadi El Natrun depression. The aquifer also receives inflow from the agricultural activity and septic tanks. Nine sediment samples were collected from the Pliocene aquifer in Wadi E1 Natrun. Heavy metal (Cu, Sr, Zn, Mn, Fe, Al, Ba, Cr, Ni, V, Cd, Co, Mo, and Pb) concentrations of Pliocene aquifer sediments were investigated in bulk, sand, and mud fractions. The determination of extractable trace metals (Cu, Zn, Fe, Mn, and Pb) in Pliocene aquifer sediments using sequential extraction procedure (four steps) has been performed in order to study environmental pathways (e.g., mobility of metals, bounding states). These employ a series of successively stronger chemical leaching reagents which nominally target the different compositional fractions. By analyzing the liquid leachates and the residual solid components, it is possible to determine not only the type and concentration of metals retained in each phase but also their potential ecological significance. Cu, Sr, Zn, Mn, Fe, and Al concentrations are higher in finer sediments than in coarser sediments, while Ba, Cr, Ni, V, Cd, Co, Mo, and Pb are enriched in the coarser fraction. The differences in relative concentrations are attributed to intense anthropogenic inputs from different sources. Heavy metal concentrations are higher than global average concentrations in sandstone, USEPA guidelines, and other local and international aquifer sediments. The order of trace elements in the bulk Pliocene aquifer sediments, from high to low concentrations, is Fe?>?Al?>?Mn?>?Cr?>?Zn?>?Cu?>?Ni?>?V?>?Sr?>?Ba?>?Pb?>?Mo?>?Cd?>?Co. The Pliocene aquifer sediments are highly contaminated for most toxic metals, except Pb and Co which have moderate contamination. The active soluble (F0) and exchangeable (F1) phases are represented by high concentrations of Cu, Zn, Fe, and Mn and relatively higher concentrations of Pb and Cd. This may be due to the increase of silt and clay fractions (mud) in sediments, which act as an adsorbent, retaining metals through ion exchange and other processes. The order of mobility of heavy metals in this phase is found to be Pb?>?Cd?>?Zn?>?Cu?>?Fe?>?Mn. The values of the active phase of most heavy metals are relatively high, indicating that Pliocene sediments are potentially a major sink for heavy metals characterized by high mobility and bioavailability. Fe–Mn oxyhydroxide phase is the most important fraction among labile fractions and represents 22% for Cd, 20% for Fe, 11% for Zn, 8% for Cu, 5% for Pb, and 3% for Mn. The organic matter-bound fraction contains 80% of Mn, 72% of Cu, 68% of Zn, 60% of Fe, 35% of Pb, and 30% of Cd (as mean). Summarizing the sequential extraction, a very good immobilization of the heavy metals by the organic matter-bound fraction is followed by the carbonate-exchangeable-bound fraction. The mobility of the Cd metal in the active and Fe–Mn oxyhydroxide phases is the highest, while the Mn metal had the lowest mobility.  相似文献   

19.
The speciation of heavy metals such as thallium, cadmium and lead existing in pyrite and pyrite cinder was analyzed by ICP-MS with a sequential extraction procedure. The distribution patterns of these metals including exchangeable, reducible, oxidizable and residual fractions were obtained. Tl, Cd and Pb in pyrite and pyrite cinder samples from each extraction step were determined by inductively coupled plasma mass spectrometry (ICP-MS). Under the optimized instrumental conditions, detection limits of Tl, Cd and Pb in different matrices were within the range of 0.006–0.07 μg/L, and the relative standard deviations ranged from 0.8% to 1.2%. The accuracy of Tl, Cd and Pb determination was checked by analyzing two certified reference materials. The results demonstrate that trace Tl, Cd and Pb in the samples can be accurately determined. The sequential extraction results revealed that the percent contents of Tl, Cd and Pb in exchangeable, reducible and oxidizable fractions in pyrite cinder are different from those in pyrite and in pyrite cinder. Tl, Cd and Pb mostly are distributed in residual fraction. Therefore, the mobility of metals in pyrite is higher than that in pyrite cinder. Although distributions of Tl, Cd and Pb in the non-residual fraction are not dominant in pyrite cinder, the total concentrations of them could not be ignored. Consequently, attention must be paid to the risk of potential pollution by pyrite cinder.  相似文献   

20.
Heavy metal contamination was the main environmental problem around the Jinchang Ni–Cu mine area of Gansu, Northwest China. The concentration of heavy metals (Cr, Cu, Ni, Pb, and Zn) in various environmental mediums around the Jinchang Ni–Cu mine area were analyzed using atomic absorption spectrometry (AAS). The different chemical speciation of heavy metals was extracted using BCR (European Community Bureau of Reference) sequential extraction procedure, and the concentration of chemical speciation of each heavy metal was measured by inductively coupled plasma-atomic emission spectrometry. The results showed that Cu and Ni were the most important heavy metal pollutants in various mediums including cultivated soils, dust on slagheap surfaces, tailings, and sediments in waste water drains. In the tailings and sediments, the concentrations of Ni were obviously higher than those of Cu, whereas, in the soil and dust, the concentrations of Cu were higher than those of Ni. Analysis of chemical speciation indicated that Cr and Zn were mainly in residual fraction; Cu was mainly in oxidizable fraction; Ni was mainly in reducible fraction and acid soluble fraction; and Pb was mainly in reducible fraction and residual fraction. The extent of contamination of various environmental mediums was different because the heavy metals were derived from different sources. Furthermore, the mobility of various heavy metals was different because of the different distribution of chemical speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号