首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phaeosphaeria spartinicola is known to be an important fungal (ascomycetous) secondary producer in the smooth-cordgrass (Spartina alterniflora) decomposition system of western Atlantic salt marshes, yet its degree of predominance among the ascomycete assemblages of salt marshes and the concentration of its sexual reproductive structures (ascomata) have been largely unknown. During May–June, we measured by direct microscopy the percent occupancy of leaf abaxial area and concentrations of ascomata in leaf blades of smooth cordgrass at three elevations in three drainage systems within the marshes of Sapelo Island, Georgia, United States. We also measured in water-saturation chambers the rates at which the ascomata expelled ascopoores (sexual propagules) out of decaying leaves from marsh sites containing or not containing shredder gastropods.P. spartinicola ascomata were found at averages of 36% to 93% of grid-circles (3-mm radius) on decaying leaf blades, with lower values at points directly adjacent to the leaf sheath, on leaves at earlier stages of decay, and at elevational subsites where shredder snails were more active. Marsh elevation had no effect of its own on percent occupation. No other species of ascomycetes were found at overall avarage frequencies greater than 3%. Average concentration of ascomata along the intervascular rows where they were located was 1 ascoma per 0.5 mm row (~1000 cm?2 abaxial leaf surface, translating to production of 1.6×107 ascomata m?2 intermediate-height marsh per standing crop of living stems). The fraction of total fungal production allocated to ascomata is speculatively and crudely estimated at about 9%, without taking into account potential loss to invertebrate shredders. At sites with abundances of snails >-50 m?2 peaks of ascospore expulsion (about 50–75 spores cm?2 leaf h?1, 3–5× the overall average rate) observed at snail-free sites were absent. Our measured rate of ascospore expulsion (averaged over snail-free and high-snail sites, and possibly an underestimate) translated to 6.5×104 spores m?2 marsh h?1 for times of freshwater saturation of leaves, and one-third that value for times of saltwater wetting.  相似文献   

2.
Annual acetylene reduction rates associated with interidal communities in a chronically oil polluted Virginia salt marsh were compared to rates measured in an undisturbed marsh. Chronic oil treatment resulted in visible damage to the higher plants of theSpartina alterniflora zones; however, vegetation-associated acetylene, reduction was not different from the untreated control. Sediment rates generally were affected little by oil application, except during the summer when rates in the median tidal elevation zones were considerably higher than those of the control. Acetylene reduction occurred in all transects, each of which extended from upper mudflat to theSpartina patens zone. Intertidal sediment acetylene reduction was patchy, both spatially and seasonally. Estimated rates were greatest near the surface; free-living bacterial N2 fixation activity averaged 2.23 mg N per m2 per d (range=undetectable to 365 mg N per m2 per d) in the untreated and 3.17 mg N per m2 per d (range=undetectable to 564 mg N per m2 per d) in the oil-treated marsh during the year. Vegetation-associated N2 fixation activity yielded highest overall mean rates (156 mg N per m2 per d). The seasonal pattern of sediment and vegetation-associated fixation may be controlled by temperature and availability of oxidizable substrates.  相似文献   

3.
Assessing nitrogen dynamics in the estuarine landscape is challenging given the unique effects of individual habitats on nitrogen dynamics. We measured net N2 fluxes, sediment oxygen demand, and fluxes of ammonium and nitrate seasonally from five major estuarine habitats: salt marshes, seagrass beds (SAV), oyster reefs, and intertidal and subtidal flats. Net N2 fluxes ranged from 332?±?116 μmol?N-N2?m?2?h?1 from oyster reef sediments in the summer to ?67?±?4 μmol?N-N2?m?2?h?1 from SAV in the winter. Oyster reef sediments had the highest rate of N2 production of all habitats. Dissimilatory nitrate reduction to ammonium (DNRA) was measured during the summer and winter. DNRA was low during the winter and ranged from 4.5?±?3.0 in subtidal flats to 104?±?34 μmol?15NH 4 + ?m?2?h?1 in oyster reefs during the summer. Annual denitrification, accounting for seasonal differences in inundation and light, ranged from 161.1?±?19.2 mmol?N-N2?m?2?year?1 for marsh sediments to 509.9?±?122.7 mmol?N-N2?m?2?year?1 for SAV sediments. Given the current habitat distribution in our study system, an estimated 28.3?×?106?mol of N are removed per year or 76 % of estimated watershed nitrogen load. These results indicate that changes in the area and distribution of habitats in the estuarine landscape will impact ecosystem function and services.  相似文献   

4.
Much uncertainty exists in spatial and temporal variations of nitrous oxide (N2O) emissions from coastal marshes in temperate regions. To investigate the spatial and temporal variations of N2O fluxes and determine the environmental factors influencing N2O fluxes across the coastal marsh dominated by Suaeda salsa in the Yellow River estuary, China, in situ measurements were conducted in high marsh (HM), middle marsh (MM), low marsh (LM), and mudflat (MF) in autumn and winter during 2011–2012. Results showed that mean N2O fluxes and cumulative N2O emission indicated intertidal zone of the examined marshes as N2O sources over all sampling seasons with range of 0.0051 to 0.0152 mg N2O m?2 h?1 and 7.58 to 22.02 mg N2O m?2, respectively. During all times of day and the seasons measured, N2O fluxes from the intertidal zone ranged from ?0.0004 to 0.0644 mg N2O m?2 h?1. The freeze/thaw cycles in sediments during early winter (frequent short-term cycle) and midwinter (long-term cycle) were one of main factors affecting the temporal variations of N2O emission. The spatial variations of N2O fluxes in autumn were mainly dependent on tidal fluctuation and plant composition. The ammonia-nitrogen (NH4 +–N) in sediments of MF significantly affected N2O emissions (p < 0.05), and the high concentrations of Fe in sediments might affect the spatial variation of N2O fluxes. This study highlighted the large spatial variation of N2O fluxes across the coastal marsh (coefficient of variation (CV) = 127.86 %) and the temporal variation of N2O fluxes during 2011–2012 (CV = 137.29 %). Presently, the exogenous C and N loadings of the Yellow River estuary are increasing due to human activities; thus, the potential effects of exogenous C and N loadings on N2O emissions during early winter should be paid more attention as the N2O inventory is assessed precisely.  相似文献   

5.
Rates of CO2 emission from bare salt-marsh sediments in areas of short and tall formSpartina alterniflora were measured monthly for 1 yr. Maximum emission rates, as high as 325 ml CO2m?2h?1, were observed during summer months, while minimum rates, 10.2 ml CO2 m?2h?1, were observed during the winter. An exponential function of inverse soil temperature explained most of the seasonal variability, but other factors are involved in regulating CO2 emissions as demonstrated by rates that were higher in spring than in late summer at equivalent temperatures. Annual CO2 emissions from bare sediments were 27.3 and 18.6 mol C m?2 yr?1 in communities of short and tallS. alterniflora, respectively. It was estimated that losses of dissolved inorganic carbon from the turnover of pore water, up to 14.6 mol C m?2 yr?1 at the creek bank (tall,S. alterniflora) site, and diffusion of CO2 from the root system ofS. alterniflora through the culms, 12.3 to 16.2 mol C m?2 yr?1, could also be important pathways of carbon loss from marsh sediments. If the internal flux of CO2 from the root system through the culm is refixed within the leaves, then the observed rate of 9.8 μI CO2 min?1 cm?2 of culm cross sectional area appears to make a small but significant contribution to total photosynthesis.  相似文献   

6.
Nitrous oxide evolution may contribute to partial destruction of the ozone layer in the stratosphere. A two year study of the release of N2O from adjoining salt, brackish, and fresh marsh sediment indicates that the annual emission was 31, 48, and 55 mg N m?2 respectively. Emission from open water area was less than the corresponding emission from the marsh sediment. In vitro experiments indicate that the N2O emission was increased when the sediment was drained for extended periods of time. The addition of NO3? significantly increased the rate of N2O evolution, indicating that a large potential for denitrification exists in the anoxic sediment. Appreciable losses of N2O would only be expected when the marshes receive an extraneous source of nitrate such as sewage and/or wastewater.The contribution of the Gulf Coast wetlands to the atmospheric N2O balance is estimated to be 3.3 × 109 g N2O. The maximum average daily emission was equivalent to 1.5 g N2O-N ha?1, which is less than the measured emission from uncultivated soils (Mosieret al., 1981) but greater than the estimates from noncropped land (CAST, 1976).  相似文献   

7.
Methane release from soils of a Georgia salt marsh   总被引:1,自引:0,他引:1  
A seasonal study of methane release from marsh soils to the atmosphere indicates that ebullition is a significant process varying both seasonally and spatially. Release rates are higher during summer months than winter months and ebullition is greatest in the short Spartina alterniflora marshes and least in the tall S. alterniflora marshes. The annual amounts of methane released in the short and tall marshes are 53.1 and 0.4 gm?3 which represents a loss of 8.8 and 0.002% of the net carbon fixation in the two respective marsh types.In vitro experimentation shows that methane production is sensitive to changes in temperature and addition of H2 and CO2.  相似文献   

8.
The metabolic rate of individual habitats can differ significantly in their contribution to the total system productivity of estuaries. Changing environmental conditions such as those created by tidal exchange can frequently alter these rates. In an effort to quantify these rate responses, metabolic rates were measured for macroalgal and sediment habitats at different salinities. Microcosms representing the two habitats were incubated at three salinity ranges (high: 25 to 31‰; moderate: 12 to 18‰; and low: 0 to 4‰) and production and respiration rates were estimated. The production rates for both habitats were proportional to the salinity of the water in the incubation, with the lowest metabolic rates associated with the lowest salinity. Average macroalgal habitat net production rates were 879 mg O2 m?2 h?1, 609 mg O2 m?2 h?1, and 451 mg O2 m?2 h?1 at high, moderate, and low salinity treatments, respectively, and the dark respiration rates were ?401 mg O2 m?2 h?1, ?341 mg O2 m?2 h?1, and ?333 mg O2 m?2 h?1. Average sediment habitat net production rates were 60 mg O2 m?2 h?1, 13 mg O2 m?2 h?1 and 10 mg O2 m?2 h?1 and the respiration rates were ?114 mg O2 m?2 h?1, ?55 mg O2 m?2 h?1, and ?31 mg O2 m?2 h?1 at high, moderate, and low salinity treatments. The larger contribution of macroalgal habitats to system metabolism may account for observed diurnal changes in water column oxygen levels in some estuaries. Macroalgal production rates explained 83% of the increase in water column oxygen levels during daylight hours and macroalgal respiration rates explained 65% of the decline in oxygen levels during the night. The contribution of macroalgal metabolism to the system can be influenced by even short-term changes in water column salinity. Environmental processes that alter salinity levels on hourly time scales may moderate the effect of macroalgal metabolism on oxygen levels.  相似文献   

9.
Recent (6–12 month) marsh sediment accretion and accumulation rates were measured with feldspar marker horizons in the vicinity of natural waterways and man-made canals with spoil banks in the rapidly subsiding environment of coastal Louisiana. Annual accretion rates in aSpartina alterniflora salt marsh in the Mississippi deltaic plain averaged 6 mm in marsh adjacent to canals compared to 10 mm in marsh adjacent to natural waterways. The rates, however, were not statistically significantly different. The average rate of sediment accretion in the same salt marsh region for a transect perpendicular to a canal (13 mm yr?1) was significantly greater than the rate measured for a transect perpendicular to a natural waterway (7 mm yr?1). Measurements of soil bulk density and organic matter content from the two transects were also different. This spatial variability in accretion rates is probably related to (1) spoil bank influences on local hydrology; and (2) a locally high rate of sediment input from lateral erosion associated with pond enlargement. In a brackishSpartina patens marsh on Louisiana’s Chenier plain, vertical accretion rates were the same along natural and canal waterways (3–4 mm yr?1) in a hydrologically restricted marsh region. However, the accretion rates for both waterways were significantly lower than the rates along a nonhydrologically restricted natural waterway nearby (11 mm yr?1). The vertical accretion of matter displayed semi-annual differences in the brackish marsh environment.  相似文献   

10.
An in situ measurement method for simultaneous determination of carbon and nitrogen isotope ratios in organic matter was developed by secondary ion mass spectrometry with a spatial resolution of ~ 12 μm. Secondary ion intensities of 12C?2, 12C13C?, 12C14N? and 12C15N? were simultaneously measured by three Faraday cups and one electron multiplier. Ions of 12C2H? were measured to monitor hydride interferences and to correct for mass bias. The analytical precisions of δ13C and δ15N values of a reference material (UWLA‐1 anthracite) were 0.16‰ and 0.56‰, respectively (2s). A negative correlation was observed between the mass bias of carbon and 12C2H?/12C?2 ratios of examined reference materials. In contrast, there was no correlation between mass bias and hydrogen concentration for nitrogen. The δ13CVPDB and δ15NAir values of twenty‐two individual globules of organic matter, found in carbonate rock of the 1878 Ma Gunflint Formation, were determined by the new procedure, ranging from ?33.8‰ to ?33.3‰ and +4.2‰ to 5.8‰, respectively. Means of δ13CVPDB and δ15NAir values, ?33.5 ± 0.25‰ and +5.2 ± 0.81‰, are consistent with reported values from bulk sample analysis within analytical precision.  相似文献   

11.
Fluxes of methane (CH4) and carbon dioxide (CO2) to the atmosphere at 52 sites within a salt marsh were measured by a dark static chamber technique from mid July to mid September. Mean CH4 fluxes ranged from 0.2 mg m?2 d?1 to 11.0 mg m?2 d?1, with an overall average of 1.6 mg m?2 d?1. Flux of CH4 was inversely correlated (r2=0.23, p = 0.001) with salinity of the upper porewater at the site, suggesting the dominant role of SO4 2? in inhibiting methanogenesis in salt-marsh sediments. The combination of salinity and water table position was able to explain only 29% of the variance in CH4 emission. Mean soil flux of CO2 ranged from 0.3 g m?2 d?1 to 3.7 g m?2 d?1, with an overall average of 2.5 g m?2 d?1; it was correlated with aboveground biomass (positive, r2=0.38, p = 0.001) and position of the water table (negative, r2 = 0.55, p = 0.001). The combination of biomass and water table position accounted for 63% of the variance in CO2 flux. There were high variations in gas flux within the six plant communities. The sequences were CH4: upland edge > panne > pool > middle marsh > low marsh > high marsh, and CO2: middle marsh > low marsh > upland edge > high marsh > panne > pool. Compared to other salt-marsh systems, this Bay of Fundy marsh emits small amounts of CH4 and CO2.  相似文献   

12.
The infectious emission rate is a fundamental input parameter for airborne transmission risk assessment, but data are limited due to reliance on estimates from chance superspreading events. This study assesses the strength of a predictive estimation approach developed by the authors for SARS-CoV-2 and uses novel estimates to compare the contagiousness of respiratory pathogens. We applied the approach to SARS-CoV-1, SARS-CoV-2, MERS, measles virus, adenovirus, rhinovirus, coxsackievirus, seasonal influenza virus and Mycobacterium tuberculosis (TB) and compared quanta emission rate (ERq) estimates to literature values. We calculated infection risk in a prototypical classroom and barracks to assess the relative ability of ventilation to mitigate airborne transmission. Our median standing and speaking ERq estimate for SARS-CoV-2 (2.7 quanta h?1) is similar to active, untreated TB (3.1 quanta h?1), higher than seasonal influenza (0.17 quanta h?1), and lower than measles virus (15 quanta h?1). We calculated event reproduction numbers above 1 for SARS-CoV-2, measles virus, and untreated TB in both the classroom and barracks for an activity level of standing and speaking at low, medium and high ventilation rates of 2.3, 6.6 and 14 L per second per person (L s–1 p–1), respectively. Our predictive ERq estimates are consistent with the range of values reported over decades of research. In congregate settings, current ventilation standards are unlikely to control the spread of viruses with upper quartile ERq values above 10 quanta h?1, such as SARS-CoV-2, indicating the need for additional control measures.  相似文献   

13.
Throughflow marsh flumes were used to measure total sediment exchanges (TSS) between the marshes and water column of two Louisiana estuaries. One, the Barataria Basin estuary, is isolated from significant riverine sediment input. There were significant (p<0.05) imports of 33.9 to 443 mg TSS m?2 h?1 at the Barataria Basin brackish marsh (BM) site. The Barataria Basin saltmarsh (SM) site exported TSS in two summer samplings, but significant uptake was measured in April (166 mg m?2 h?1) and November (45 mg m?2 h?1) during a winter frontal passage event. The other estuary, Fourleague Bay, receives large sediment inputs from the Atchafalaya River, and TSS imports of 22.5 to 118.5 mg m?2 h?1 were measured at the BM site here. We calculated sediment accumulation from fluxes quantified in marsh flumes using site-specific sedimentological data and flooding regimes at each site. Water level records from May 1987 to April 1989 showed an extended period of unusually low flooding frequencies. As a result, calculated accretion rates were low, with monthly rates of 0.02 to 0.11 mm and ?0.06 to 0.06 mm at the Barataria BM and SM sites, respectively, and ?0.18 to 0.08 mm at the Fourleague Bay marsh flume site. Actual net sediment deposition, determined by feldspar marker horizon analysis, was 0.7–1.6 mm mo?1 at the Barataria SM and 0.2–1.3 mm mo?1 at the Fourleague Bay BM. Even the highest calculated accretion rates, based on flume measurements, were half to one order of magnitude lower than actual measured sediment deposition. This discrepancy was probably because: 1) most sedimentation occurs during episodic events, such as Hurricane Gilbert in September 1988, which deposited 3.5–15.5 mm of sediment on the Barataria Basin saltmarsh, or 2) most vertical accretion in Louisiana marshes occurs via deposition of in situ organic matter rather than by influx of allochthonous sediment. Our results affirm the variability of short-term sediment transport and depositional processes, the close coupling of meteorologic forcing and flooding regime to sediment dynamics, and the importance of understanding these interrelated mechanisms in the context of longer term measurements.  相似文献   

14.
Soil nutrient dynamics, potential biological nitrogen fixation (BNF) changes, and their relations were studied using four land use types. Further, we investigated BNF changes in the presence of biochar in soils. Soil samples were collected from arable, vineyard, grassland, and forest soils during four seasons, and analyzed for abiotic contents of total nitrogen, NH4+-N, NO3?-N, ammonium lactate (AL)-soluble K2O, P2O5, and soil organic carbon (SOC) concentrations. Potential N2 fixation was measured as ethylene (C2H4) production from acetylene (C2H2) reduction (ARA). The study focused on the changes in ARA when different types of biochars (T600, T650, and T700) were applied to soil samples in different amounts (0, 0.5, 2.5, and 5.0% wt wt?1) under laboratory conditions. We found strong correlations between soil chemical parameters and ARA values, especially in the case of soil pH, total N, SOC, and P2O5 contents. In the case of arable soil, the ARA measurements were up to 227 times higher compared to grassland and forest samples. Biochar application affected N2-fixing microbial responses among land use types, most notably decreases in arable lands and forest soils. We found that a high amount of biochar added to the soils can greatly suppress N2-fixing activities. Our results highlight the strong relationship between soil nutrient changes and the intensity of anthropogenic influence.  相似文献   

15.
Primary production by algal epiphytes of dead Spartina alterniflora shoots in a Georgia salt marsh was measured using the 14C technique. A 23 factorial design was used to quantify the effects of light intensity and inundation frequency (stem height) on carbon fixation at two sites along a salt marsh creek. Algae inundated daily fixed carbon more rapidly than those which had dried for several days, but this may have been the results of greater biomass on more frequently immersed stems. This result corroborates studies showing desiccation is not always a severe stress for intertidal algae. Similarity of epiphyte algal productivity to that of salt marsh benthic diatoms suggests that, given adequate substrate, the epiphytes may be an important source of primary production during some seasons of the year.  相似文献   

16.
Experiments were performed seasonally to estimate grass shrimp,Palaemonetes pugio, grazing on the epiphytic microalgae of cordgrass,Spartina alterniflora, and to determine if grass shrimp have the potential to regulate epiphyte abundance. Grass shrimp were given access to live culms with low and high epiphytic abundance and standing dead culms collected from the streamside levee of a Louisiana salt marsh. Plexiglas frames were used to hold culms upright in aquaria and to restrict grass shrimp access to one half of each culm. We compared epiphyte biomass on the sides of culms exposed to shrimp with the corresponding unexposed sides. Epiphytes were removed from the lowest 10 cm of culms on days 0, 3, and 10, and chlorophylla (chla) measurements on each culm half were made by fluorometry. Chla biomass on culm halves not exposed to grass shrimp significantly increased over time. Percent reductions in chla on culm halves exposed to grass shrimp (calculated by subtraction from the corresponding half not exposed to shrimp) significantly increased over time for at least one culm type in all seasons. Grass shrimp caused an average 30% reduction of epiphyte biomass over 3 d and a 40% reduction over 10 d, suggesting that grass shrimp have the capability of consuming a substantial proportion of the daily production of epiphytes. Epiphytes from standing-dead culms may be more important than those from live culms at the marsh edge to the diet of grass shrimp because chla biomass was, on average, high, and standing-dead culms were seasonally abundant. Diagnostic photosynthetic pigments from selected culms, grass shrimp gut contents, and fecal pellets were identified by high performance liquid chromatography and were used to quantify the taxonomic groups of epiphytic microalgae. Results suggested that diatoms, brown algae, green algae, red algae, and cyanobacteria were present on all culms. Similarities in the pigment content of grass shrimp gut contents and fecal pellets suggested that all algal groups were ingested. Pigment data analysis could not detect a change in the composition of the microalgal assemblage associated with grass shrimp grazing. Assuming that the reduction in chla was due exclusively to grazing, grass shrimp consumed an average of 0.5–1.5 g epiphyte carbon shrimp?1 d?1, suggesting that grass shrimp benefit significantly from the consumption ofS. alterniflora epiphytic algae.  相似文献   

17.
In this study rates of oxygen, ammonium (NH4 +), nitrate (NO3 ), nitrite (NO2 ), and nitrous oxide (N2O) fluxes, nitrogen (N) fixation, nitrification, and denitrification were compared between two intertidal sites for which there is an abundant global literature, muddy and sandy sediments, and two sites representing the rocky intertidal zone where biogeochemical processes have scarcely been investigated. In almost all sites oxygen production rates greatly exceeded oxygen consumption rates. During daylight, NH4 + and NO3 uptake rates together with ammonification could supply the different N requirements of the primary producer communities at all four sites; N assimilation by benthic or epilithic primary producers was the major process of dissolved inorganic nitrogen (DIN) removal; N fixation, nitrification, and denitrification were minor processes in the overall light DIN cycle. At night, distinct DIN cycling processes took place in the four environments, denitrification rates ranged from 9 ± 2 to 360 ± 30 μmol N2 m−2 h−1, accounting for 10–48% of the water column NO3 uptake; nitrification rates varied from 0 to 1712 ± 666 μmol NH4 + m−2 h−1. A conceptual model of N cycle dynamics showed major differences between intertidal sediment and rocky sites in terms of the mean rates of DIN net fluxes and the processes involved, with rocky biofilm showing generally higher fluxes. Of particular significance, the intertidal rocky biofilms released 10 times the amount of N2O produced in intertidal sediments (up to 17 ± 6 μmol N2O m−2 h−1), representing the highest N2O release rates ever recorded for marine systems. The biogeochemical contributions of intertidal rocky substrata to estuarine and coastal processes warrant future detailed investigation.  相似文献   

18.
In order to better understand the spatiotemporal variations and interrelationships of greenhouse gases (GHG), monthly surface fluxes and profile concentrations of GHG (CO2, N2O and CH4) in karst areas in the Guizhou Province, southwest China, were measured from June 2006 to May 2007. GHG fluxes showed high variability, with a range of 460.9?C1,281.2?mg?m?2?h?1 for CO2, ?25.4 to 81.5???g?m?2?h?1 for N2O and ?28.7 to ?274.9???g?m?2?h?1 for CH4, but no obvious seasonal change trends of the fluxes existed. Profile concentrations of CO2, N2O and CH4 varied between 0.5 and 31.5?mL?L?1, 0.273 and 0.734, and 0.1 and 3.5???L?L?1, respectively. In general, concentrations of CO2 and N2O increased with depth, while CH4 had an inverse trend. However, in October, November and January, the reversal of depth patterns of GHG concentrations took place below 15?cm, close to the soil?Crock interface. The spatiotemporal distribution of CO2 in soil profile was significantly positively correlated with that of N2O (p?<?0.05?C0.01) and negatively correlated with that of CH4 (p?<?0.01). The correlation analysis showed that soil temperature and moisture may be responsible for GHG dynamics in the soils, rather than the exchange of GHG between land and atmosphere.  相似文献   

19.
Benthic macroinvertebrate biomass and ammonium excretion rates were measured at four stations in the Gulf of Mexico near the Mississippi River mouth. Calculated areal excretion rates were then compared to sediment-water nitrogen fluxes measured in benthic bottom lander chambers at similar stations to estimate the potential importance of macroinvertebrate excretion to sediment nitrogen mineralization. Excretion rates for individual crustaceans (amphipods and decapods) was 2–21 nmoles NH4 + (mg dry weight)?1 h?1. The mean excretion rates for the polychaetes, Paraprionaspio pinnata [6–12 nmoles NH4 + (mg dry weight)?1h?1] and Magelona sp. [27–53 nmoles NH4 + (mg dry weight)?1h?1], were comparable or higher than previous measurements for similar size benthic or pelagic invertebrates incubated at the same temperature (22±1°C). Although the relatively high rates of excretion by these selective feeders may have been partially caused by experimental handling effects (e.g., removal from sediment substrates), they probably reflected the availability of nitrogen-rich food supplies in the Mississippi River plume. When the measured weight-specific rates were extrapolated to total areal biomass, areal macroinvertebrate excretion estimates ranged from 7 μmole NH4 + m?2h?1 at a 40-m deep station near the river mouth to 18 μmole NH4 + m?2h?1 at a shallower (28-m deep) station further from the river mouth. The net flux of ammonium and nitrate from the sediments to the water measured in bottom lander chambers in the same region were 15–53 μmole NH4 + m?2h?1 and ?25–21 μmole NO3 ? m?2h?1. These results suggest that excretion of NH4 + by macroinvertebrates could be a potentially important component of benthic nitrogen regeneration in the Mississippi River plume-Gulf shelf region.  相似文献   

20.
The energy levels of MnO 6 9? clusters, with D 4h approximated and C 2v actual symmetry of the M 1 site of Mn3+-bearing andalusite, are calculated using the multiple scattering method. The energies of the electronic d-d transition of Mn3+ in the clusters with D 4h symmetry are calculated to be 6,000–7,000 cm?1 (5 B 1g 5 A 1g ), ~18,000 cm?1 (5 B 1g 5 B 2g ) and ~19,000 cm?1 (5 B 1g 5 E g ). Apart from a splitting of the 5 E g -level into two levels separated by 300–350 cm?1, no significant changes of these transition energies are noted for the corresponding cluster with C 2v symmetry. The calculated transition energies give a good fit to the structure of the optical absorption spectra of Mn3+-bearing andalusites and support recent assignments of the major absorption bands observed in these spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号