共查询到17条相似文献,搜索用时 78 毫秒
1.
收集了中国东北地区159个固定地震台2011年1月至2012年6月和27个流动地震台2011年1月至2011年6月间的垂向连续记录,根据噪声成像方法得到研究区(105°E-135°E, 39°N-52°N)较短周期(8~30 s)的瑞雷波群速度和相速度频散资料,再结合该区已有的天然地震长周期瑞雷波(36~145 s)的群速度频散资料,我们反演得到了中国东北地区200 km以浅深度范围内的三维壳幔S波速度结构,并得到了该区的岩石圈厚度分布图.结果表明:研究区中、下地壳S波速度结构的横向分布,在重力梯度带两侧有很大的不同,以东地区显示为大范围的高速,以西地区则呈现为大面积的低速;松辽盆地下方岩石圈地幔表现为显著的高速,岩石圈地幔底界面深度可能在90~100 km,薄的岩石圈盖层暗示东北地区的岩石圈可能发生了减薄;郯庐大断裂下方呈现出大范围的比较显著的低速特征,断裂下方上地幔顶部可能有热物质活动. 相似文献
2.
In this paper,an inversion has been made of 3D S-wave velocity structure of crust and upper mantle in the northern China and its adjacent areas from long and middle period Rapleigh wave data respectively.The results show that the lateral inhomogeneity is very evident in crust,the characteristics of the active tectonics areshown in many district,but the leteral change of uppe mantle velocity structure has been lessened relatively.The crustal thickness In the studied region increases gradually from eastto west.The crustal average veloclty distribution framework corresponds with the distribution of the crustal thickness.The abrupt variation belt of crustal thickness and average velocity are basically identical with the distribution tendency of gradient belts of Bouguergr avity anomaly.From the value variation,the identity of Bouguer gravity anomaly and crustal thickness distribution is much higher than that of gravity anomaly and average velocity.Therefore,we candetermine that the fluctuation of Moho discontinuity is the main factor controlling Bouguer gravity anomaly. 相似文献
3.
4.
中国西南及邻区上地幔P波三维速度结构/ 总被引:8,自引:0,他引:8
利用ISC报告以及中国和NEIC基本测震台网报告中的80974条P波初至到时资料(地震数为7053,台站数为165,且地震和台站都分布在研究区内),对中国西南及邻区(北纬10~36、东经70~110)的深至400km的上地幔三维速度结构进行了研究,分辨率达22.初步结果表明:①研究区速度的横向不均匀性,虽随深度增加而减弱,但至400km深度时仍很明显;②在北纬16和24的纵剖面上,可以看到与印度板块向东和欧亚板块相碰撞挤压相对应的速度结构,以及印度板块与欧亚板块速度结构的差异.在东经90的纵剖面上,与印度板块向北俯冲到欧亚板块(青藏高原)之下相对应的速度结构也比较明显;③在90km深度的横剖面上,由缅甸的密支那至越南的洞海的低速条带,可能与红河断裂带有关;④ 提出并使用了能够更为准确直观地描述分辨率好坏的图示方法. 相似文献
5.
利用2002~2003年中国地震局地质研究所台阵实验室以唐山大震区为中心布设的40个流动宽频带地震台站和首都圈数字台网的33个宽频带台站的远震数据,采用接收函数非线性反演方法得到其中72个宽频带台站下方60 km深度范围内的S波速度结构.根据得到的各台站下方地壳上地幔的S波速度结构,并综合刘启元等(1997)用接收函数非线性反演方法得到的延怀盆地15个宽频带流动台站下方的地壳上地幔S波速度结构模型,给出了39°N~41°N,114°E~119.5°E区域内沿不同走向、不同深度S波速度分布.由于综合了利用首都圈数字地震台网的宽频带台站以及流动地震台阵的观测数据,本文给出了较前人同类研究空间分辨率更好的结果.结果表明: (1)研究区的速度结构,特别是怀来以东的速度结构十分复杂.在10~20 km深度范围内,研究区地壳具有高速和低速异常块体的交错结构.研究区中上地壳速度结构主要被与张渤地震带大体重合的NW向高速条带和穿越唐山大震区的NE向高速条带所控制,而其中下地壳的速度结构主要为延怀—三河—唐山地区上地幔隆起所控制.(2)研究区内存在若干壳内S波低速体,它们主要分布在唐山,三河及延怀盆地等地区.在这些地区,壳内低速体伴随着壳幔界面的隆起和上地幔顶部速度结构的横向变化.(3)地表断层分布与地壳速度结构分区有较好的相关性,表明断层对不同块体有明显的控制作用.其中,宝坻断裂,香河断裂和唐山断裂均为超壳断裂.(4)首都圈内大地震的分布与壳内低速体及上地幔顶部的速度结构有密切关系.对于唐山大地震的成因,仅考虑板块作用引起的水平应力场是不够的,有必要充分重视由于上地幔变形引起的地壳垂直变形和上地幔物质侵入造成的热效应. 相似文献
6.
帕米尔及邻区地壳上地幔P波三维速度结构的研究 总被引:8,自引:6,他引:8
研究了帕米尔及邻区(65°E-80°E,30°N-45°N,深度0-2km)的P波三维速度结构. 所使用的59054条初至P波到时数据取自ISC的73个台站对5402个地震的记录报告,这些地震和台站都在研究区内. 以水平面上1°×1°和不等的深度间隔(随深度在20-90km之间变化)划分网格并设置初始三维速度模型,用近似弯曲快速射线追踪方法计算走时和射线路径,用LSQR方法进行反演. 反演结果的分辨率用检验板方法进行了讨论,并引入了定量描述还原程度质量的两个参数. 初步结果表明:(1)天山山脉的km深度处,在东部和西部各有一个明显高速区,而在74°E、41°N附近的低速区可能与天山地表大断层在该处被大幅错开相关. 在75°E附近的天山山脉下,波速在40-60km深度偏高,而在60-90km深度(或更深)又偏低,反映了天山下方构造和物性的复杂性. (2)在由帕米尔构造"结"南侧往北直至天山以北的速度纵剖面上,显示了印度-欧亚板块在帕米尔构造"结"地区的强烈碰撞挤压作用:在抬高地面形成高原的同时,也把浅部速度较低的地壳岩石层介质俯冲拖曳到了深部. 相似文献
7.
研究了帕米尔及邻区(65°E-80°E,30°N-45°N,深度0-2km)的P波三维速度结构. 所使用的59054条初至P波到时数据取自ISC的73个台站对5402个地震的记录报告,这些地震和台站都在研究区内. 以水平面上1°×1°和不等的深度间隔(随深度在20-90km之间变化)划分网格并设置初始三维速度模型,用近似弯曲快速射线追踪方法计算走时和射线路径,用LSQR方法进行反演. 反演结果的分辨率用检验板方法进行了讨论,并引入了定量描述还原程度质量的两个参数. 初步结果表明:(1)天山山脉的km深度处,在东部和西部各有一个明显高速区,而在74°E、41°N附近的低速区可能与天山地表大断层在该处被大幅错开相关. 在75°E附近的天山山脉下,波速在40-60km深度偏高,而在60-90km深度(或更深)又偏低,反映了天山下方构造和物性的复杂性. (2)在由帕米尔构造"结"南侧往北直至天山以北的速度纵剖面上,显示了印度-欧亚板块在帕米尔构造"结"地区的强烈碰撞挤压作用:在抬高地面形成高原的同时,也把浅部速度较低的地壳岩石层介质俯冲拖曳到了深部. 相似文献
8.
华北地区地壳上地幔S波三维速度结构 总被引:3,自引:0,他引:3
利用华北地区大型流动地震台阵的记录资料,采用近震和远震联合成像方法,得到了水平分辨率0.5°×0.5°、深至600km的S波速度结构.研究结果表明,上地壳S波速度结构与地表地质构造基本一致,燕山—太行山山脉均呈现高速异常,延庆—怀来盆地、大同盆地表现为低速异常,华北盆地内部的拗陷和隆起分别呈现低速和高速.唐山地区中地壳、山西裂陷盆地中下地壳存在明显的低速异常,可能分别与流体和热物质作用有关,有利于形成孕育强震的地质构造环境.90km的速度结构图像依然与地表的构造特征有较大的相关性,可能说明深部结构对地表构造有一定的控制作用.燕山隆起区岩石圈的厚度可达120~150km左右,华北盆地的岩石圈厚度可能在80km左右,太行山地区的岩石圈厚度介于两者之间.山西裂陷盆地上地幔低速层较厚,反映了该区不稳定的构造环境造成了地幔热物质的上涌.华北盆地下方220~320km出现的高速异常体,可能揭示了华北盆地上地幔仍然存在拆沉后残留的难熔、高密度的古老岩石圈地幔.研究区东部地幔转换带呈低速异常,推测可能与太平洋板块俯冲至该区下方地幔转换带前缘120°E左右的俯冲板块相变脱水有关. 相似文献
9.
天山造山带是现今世界上最活跃的陆内造山带之一,研究这一地区的壳幔深部结构对认识天山造山深部动力学过程具有重要意义。文中利用新疆测震台网52个固定地震台站和在天山地区新布设的11个流动地震台站为期1a的观测数据,采用背景噪声层析成像方法获得了中国境内天山及邻区(41°~48°N,79°~91°E) 10~50s周期范围内瑞利(Rayleigh)面波的相速度分布图像,通过面波和接收函数联合反演揭示了中国境内天山地区(41°~46°N,79°~91°E)的地壳上地幔S波速度结构和台站下方的地壳厚度。结果表明,在天山北部和天山南部盆山接触带附近的地壳内部存在多个明显的低速层,北部边缘和南部边缘的壳内低速区结构特征及分布范围存在明显差异。结合前人的相关研究结果,我们推测塔里木盆地和准噶尔盆地向天山造山带的俯冲主要发生在中国境内天山造山带的中部,其中天山南缘的俯冲比北缘的范围大,东部地壳的俯冲不明显或处于俯冲的早期阶段。天山造山带内部的地壳存在多个低速层分布的地区,它们大多与目前正在发生强烈隆升的区域相对应。文中得到的S波速度结构可为天山造山带的分段性及盆山耦合类型的差异性等研究提供新的深部依据。 相似文献
10.
云南地区地处青藏高原东南缘, 一直是地球科学研究的热点地区.目前, 一些热点问题, 如云南地区是否存在中下地壳低速流及其空间分布, 仍有一定的争议.通过建立云南地区精细的地壳上地幔速度与各向异性结构, 可为深入认识上述问题提供重要信息.本文利用天然地震波形记录, 采用双台法提取了12~60 s周期的Rayleigh和Love波相速度频散, 并进一步反演获得了云南地区10~100 km的三维地壳上地幔SV和SH波速度及径向各向异性结构.结果表明:S波速度与径向各向异性结构在横向和垂向均存在显著变化.在20~30 km深度, 存在两个低速条带, 且条带内呈现出正径向各向异性(VSH>VSV)特征, 暗示了中下地壳低速物质的水平向运动.在80~100 km深度, 云南西南和东南部显示为低速异常和正径向各向异性特征, 暗示了软流圈物质的水平流动.在云南北部的丽江、攀枝花和昭通地区, 岩石圈地幔中则存在明显的负径向各向异性(VSH<VSV), 可能反映了地幔物质的上涌痕迹.历史强震多发生在地壳低速区域或高低速过渡带, 且地震附近的径向各向异性为负或者较弱.一些地震震源下方存在低速层, 地壳低速层可能会促进强震发生.
相似文献11.
本文利用30个基准台所记录的238条长周期面波资料,经过适配滤波和分格频散反演,得到中国大陆及邻区147个分格10-105s的纯路径频散,进而反演出青藏高原及邻近地区深至170km的剪切波三维速度结构.研究表明,青藏高原中西部地区和东部地区的地壳平均厚度分别为70±7km和65±7km,地壳平均剪切波速度分别为3.55和3.62km/s,上地幔顶盖平均速度分别为4.63和4.61km/s; 岩石层厚度均为120±10km;东部地区下地壳内30-40km深度处普遍存在低速层;青藏高原及其东侧的上地幔低速层内有横贯东西且明显向上隆起的低速腔.滇西缅北地区的地壳厚45±5km,上地壳及下地壳内都有低速层;上地幔顶盖的速度为4.42km/s,比青藏高原本体及恒河平原都低.恒河平原地壳厚34±2km,速度平均为3.45km/s;上地幔顶盖厚86±10km,速度平均为4.63km/s,顶盖内55-83km深处有一个低速夹层. 相似文献
12.
本文利用30个基准台所记录的238条长周期面波资料,经过适配滤波和分格频散反演,得到中国大陆及邻区147个分格10—105s的纯路径频散,进而反演出青藏高原及邻近地区深至170km的剪切波三维速度结构.研究表明,青藏高原中西部地区和东部地区的地壳平均厚度分别为70±7km和65±7km,地壳平均剪切波速度分别为3.55和3.62km/s,上地幔顶盖平均速度分别为4.63和4.61km/s; 岩石层厚度均为120±10km;东部地区下地壳内30—40km深度处普遍存在低速层;青藏高原及其东侧的上地幔低速层内有横贯东西且明显向上隆起的低速腔.滇西缅北地区的地壳厚45±5km,上地壳及下地壳内都有低速层;上地幔顶盖的速度为4.42km/s,比青藏高原本体及恒河平原都低.恒河平原地壳厚34±2km,速度平均为3.45km/s;上地幔顶盖厚86±10km,速度平均为4.63km/s,顶盖内55—83km深处有一个低速夹层. 相似文献
13.
本文用长周期763地震仪面波群速度资料反演了中国南北带及邻区的三维速度结构.其中采集238条瑞利波和358条勒夫波混合频散曲线,使用均等显示滤波方法,并以4°×4°为一格将我国境内分为147格.用随机逆反演方法得到了研究区16格的纯路径频散.面波速度结构及演结果表明:1.莫霍界面深度一般在40—50km之间,最深达65km.总趋势是从东到西加深,且在南北带西侧南北两端向中部明显加深,东侧变化小.2.地幔顶部普遍出现很厚的低速层,上界面一般埋深60—80km.上地幔顶盖厚度一般为20—60km,速度为4.30—4.50km/s.3.研究区普遍存在各向异性,而且勒夫波和瑞利波速度的差值(VSV—VSH)的绝对值随深度有增大的特点,在南北带南部和西北部VSV—VSH各向异性现象更为明显. 相似文献
14.
本文用长周期763地震仪面波群速度资料反演了中国南北带及邻区的三维速度结构.其中采集238条瑞利波和358条勒夫波混合频散曲线,使用均等显示滤波方法,并以4°×4°为一格将我国境内分为147格.用随机逆反演方法得到了研究区16格的纯路径频散.面波速度结构及演结果表明:1.莫霍界面深度一般在40—50km之间,最深达65km.总趋势是从东到西加深,且在南北带西侧南北两端向中部明显加深,东侧变化小.2.地幔顶部普遍出现很厚的低速层,上界面一般埋深60—80km.上地幔顶盖厚度一般为20—60km,速度为4.30—4.50km/s.3.研究区普遍存在各向异性,而且勒夫波和瑞利波速度的差值(V_(SV)—V_(SH))的绝对值随深度有增大的特点,在南北带南部和西北部V_(SV)—V_(SH)各向异性现象更为明显. 相似文献
15.
本文用长周期763地震仪面波群速度资料反演了中国南北带及邻区的三维速度结构.其中采集238条瑞利波和358条勒夫波混合频散曲线,使用均等显示滤波方法,并以4°×4°为一格将我国境内分为147格.用随机逆反演方法得到了研究区16格的纯路径频散.面波速度结构及演结果表明:1.莫霍界面深度一般在40-50km之间,最深达65km.总趋势是从东到西加深,且在南北带西侧南北两端向中部明显加深,东侧变化小.2.地幔顶部普遍出现很厚的低速层,上界面一般埋深60-80km.上地幔顶盖厚度一般为20-60km,速度为4.30-4.50km/s.3.研究区普遍存在各向异性,而且勒夫波和瑞利波速度的差值(VSV-VSH)的绝对值随深度有增大的特点,在南北带南部和西北部VSV-VSH各向异性现象更为明显. 相似文献
16.
本文通过合成SH波理论地震图的方法,利用SS-S走时和SS波波形资料,研究了我国上地幔剪切波速度结构。初步结果表明,我国大陆上地幔可以分成两个独立不同的速度结构模型:一是青藏高原;另一是中国大陆东部。两部分均存在剪切波低速层,但埋藏深度不同,高原部分是100km,东部地区是60km,两部分的差异大约在350km以下趋于消失。在405km和660km深处存在剪切波的速度间断面。400km以下青藏高原和中国大陆东部地区剪切波的速度结构与北美洲、北大西洋西部、欧洲、阿尔卑斯带地区的结构一致,说明在这几个地区上地幔剪切波速度结构的横向变化在400km以下很小。 相似文献
17.
本文通过合成SH波理论地震图的方法,利用SS-S走时和SS波波形资料,研究了我国上地幔剪切波速度结构。初步结果表明,我国大陆上地幔可以分成两个独立不同的速度结构模型:一是青藏高原;另一是中国大陆东部。两部分均存在剪切波低速层,但埋藏深度不同,高原部分是100km,东部地区是60km,两部分的差异大约在350km以下趋于消失。在405km和660km深处存在剪切波的速度间断面。400km以下青藏高原和中国大陆东部地区剪切波的速度结构与北美洲、北大西洋西部、欧洲、阿尔卑斯带地区的结构一致,说明在这几个地区上地幔剪切波速度结构的横向变化在400km以下很小。 相似文献