首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This paper is concerned with the transient vibration analysis of railway-ground system under fast moving loads. A 3D finite element method in a convected coordinate system moving with the load is formulated, together with viscous-elastic transmitting boundary conditions in order to limit the finite element mesh. A method is proposed to introduce Rayleigh type material damping in the finite element formulation in the moving coordinate system, while measures have also been taken to improve the numerical stability of the solution procedure. The performance of the transmitting boundary and the entire solution procedure are assessed via comparison with the ordinary finite element solution of some relatively simple problems and through a comparison with field measurements. The reasonable agreement found from these comparisons demonstrates the validity of the proposed method.  相似文献   

2.
A boundary element approach for time harmonic axisymmetric problems using the complete space point load fundamental solution is presented. The fundamental solution is integrated numerically along the azimuthal co-ordinate of each axisymmetric element. To increase the accuracy of the numerical integration a simple co-ordinate transformation is proposed. The approach is applied to the computation of the dynamic stiffness functions of rigid circular foundations on layered viscoelastic soils. Three different sites are considered: a uniform half-space, a soil layer on a half-space, and a soil consisting of four horizontal layers and a compliant half-space. The numerical results obtained by the proposed approach for surface circular foundations are very close to corresponding published results obtained by different procedures.  相似文献   

3.
The scaled boundary finite element method (SBFEM) developed by Wolf and Song has shown certain parallels to the finite element method (FEM) and boundary element method (BEM). Because of its semi-analytical nature, SBFEM is particularly suitable for the analysis of wave propagation in unbounded domains. This paper makes a certain modification of the standard SBFEM. A new idea of scaling surface instead of a scaling center is introduced to formulate the governing SBFE equations for the analysis of wave propagation in multilayered half-space, which leads to simplifying the modeling and saving considerably the computational effort. In addition, by employing the proposed approach, some problems encountered in engineering practice, which are difficult to deal with by the conventional SBFEM, for example, 3D foundation impedance on half-space with irregular geographical features, can be effectively solved. The proposed approach also helps to simplify the solution of shell structures. Numerical examples are provided to validate the accuracy and efficiency of the proposed approach.  相似文献   

4.
A numerical method of analysis is proposed for computation of the elastic settlement of raft foundations using a FEM–BEM coupling technique. The structural model adopted for the raft is based on an isoparametric plate bending finite element and the raft–soil interface is idealized by boundary elements. Mindlin's half-space solution is used as a fundamental solution to find the soil flexibility matrix and consequently the soil stiffness matrix. Transformation of boundary element matrices are carried out to make it compatible for coupling with plate stiffness matrix obtained from the finite element method. This method is very efficient and attractive in the sense that it can be used for rafts of any geometry in terms of thickness as well as shape and loading. Depth of embedment of the raft can also be considered in the analysis. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
针对海上风电结构在有限元计算中水动附加质量的施加问题,提出了一种在ABAQUS软件中简便有效易于实现的方法,可以提高有限元分析的前处理效率;建立有限元模型,分析有、无考虑水动附加质量和不同边界条件对海上风电结构自振特性的影响,并从力学角度进行分析;利用有限元模拟地震动作用下的海上风电结构塔筒响应,并对水动附加质量和边界条件进行敏感性分析。通过数值计算并结合理论分析表明:提出的水动附加质量施加方法是合理实用的;水动附加质量的施加使得结构固有频率减小,且随着阶数增大,固有频率减小的绝对值增大;边界条件对体系的模态参数影响比水动附加质量更显著,黏弹性透射边界条件下计算得到结构体系的各阶频率较固定边界均有比较明显的减小;黏弹性透射边界模型在地震动作用下的位移响应比固定边界模型大。分析结果对此类海上风电工程具有借鉴意义。  相似文献   

6.
One major difficulty in seepage analyses is finding the position of phreatic surface which is unknown at the beginning of solution and must be determined in an iterative process. The objective of the present study is to develop a novel non‐boundary‐fitted mesh finite‐element method capable of solving the unconfined seepage problem in domains with arbitrary geometry and continuously varied permeability. A new non‐boundary‐fitted finite element method named as smoothed fixed grid finite element method (SFGFEM) is used to simplify the solution of variable domain problem of unconfined seepage. The gradient smoothing technique, in which the area integrals are transformed into the line integrals around edges of smoothing cells, is used to obtain the element matrices. The solution process starts with an initial guess for the unknown boundary and SFGFEM is used to approximate the field variable. The boundary shape is then modified to eventually satisfy nonlinear boundary condition in an iterative process. Some numerical examples are solved to evaluate the applicability of the proposed method and the results are compared with those available in the literature. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
A set of mapping functions in the form of convergent series for an infinite element, which is capable to include the infinitely distanced constant head boundary condition from the area of disturbance (e.g. pumping), is proposed based on the asymptotic far-field behaviour of typical seepage flow problems. The derived mapping functions have been successfully used in three-dimensional point symmetric, two-dimensional axi-symmetric and one-dimensional unidirectional flow for the fixed head boundary at infinite distance. The result shows excellent agreement with analytical solution. For the first time, the mapping function of an infinite element is presented in the form of a convergent series. The infinite elements are really capable of reducing the cost and efficiency of conventional finite element analysis. Finally, a figure is also proposed to indicate the required size of the near field to obtain accurate drawdown at specified locations based on some calculations for two-dimensional radial flow case.  相似文献   

8.
The scaled boundary finite‐element method (SBFEM), a novel semi‐analytical technique, is applied to the analysis of the confined and unconfined seepage flow. This method combines the advantages of the finite‐element method and the boundary element method. In this method, only the boundary of the domain is discretized; no fundamental solution is required, and singularity problems can be modeled rigorously. Anisotropic and nonhomogeneous materials satisfying similarity are modeled without additional efforts. In this paper, SBFE equations and solution procedures for the analysis of seepage flow are outlined. The accuracy of the proposed method in modeling singularity problems is demonstrated by analyzing seepage flow under a concrete dam with a cutoff at heel. As only the boundary is discretized, the variable mesh technique is advisable for modeling unconfined seepage analyses. The accuracy, effectiveness, and efficiency of the method are demonstrated by modeling several unconfined seepage flow problems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
This paper investigates the two‐dimensional flow problem through an anisotropic porous medium containing several intersecting curved fractures. First, the governing equations of steady‐state fluid flow in a fractured porous body are summarized. The flow follows Darcy's law in matrix and Poiseuille's law in fractures. An infinite transversal permeability is considered for the fractures. A multi‐region boundary element method is used to derive a general pressure solution as a function of discharge through the fractures and the pressure and the normal flux on the domain boundary. The obtained solution fully accounts for the interaction and the intersection between fractures. A numerical procedure based on collocation method is presented to compute the unknowns on the boundaries and on the fractures. The numerical solution is validated by comparing with finite element solution or the results obtained for an infinite matrix. Pressure fields in the matrix are illustrated for domains containing several interconnected fractures, and mass balance at the intersection points is also checked. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
In a field, piles are likely installed in a multi-layered soil. Analysis of axially loaded piles in a multi-layered soil is complicated and deserves more attention. A boundary element method is used in this study to analyze an axially loaded single pile in a multi-layered soil using the solution for vertical and horizontal axisymmetric ring loads in a multi-layered elastic medium. Good and reasonable agreement is obtained between the proposed and published solutions for a single pile in a homogenous soil, a finite soil, and a Gibson soil. The proposed solution is also used to evaluate an axially loaded single pile in a multi-layered (8 layers) soil.  相似文献   

11.
In this paper, a single-region boundary element method (BEM) is presented for the analysis of transversely isotropic bi-material halfspaces with arbitrarily inclined planes of isotropy and material interfaces. The proposed BEM uses the fundamental solution of a transversely isotropic bi-material fullspace and five boundary element techniques. Infinite boundary elements are introduced to consider the far-fields of a transversely isotropic bi-material halfspace. The effective integration methods are proposed for dealing with various integrals in the discretized boundary integral equation. The stresses at internal points are obtained using the coordinate transformation of kernel functions, and the stresses on the boundary surface are calculated using an improved traction recovered method. Numerical verifications of displacements and stresses for a benchmark problem are conducted, and excellent agreement with previously published results is obtained. Numerical examples are presented to illustrate the influence of non-horizontal or horizontal planes of isotropy in bi-material halfspaces on the displacements and stresses induced by the tractions on the horizontal boundary surface. Results reveal that the elastic fields vary clearly with the dip angle of the isotropic plane and the stresses across the bi-material interface are closely related to the ratios of the elastic parameters of the bi-material.  相似文献   

12.
A new finite element scheme is proposed, in this paper, for solving two-dimensional wave propagation problems in multilayered soils resting on a rigid base. The multilayered soils are treated as multiple horizontal layers of lateral infinite extension in geometry. Since these horizontal layers can be truncated by two artificially truncated vertical boundaries, two high-order artificial boundary conditions are applied for propagating the incoming waves from the interior domain into the far field of the system. Both the semi-analytical method and the truncated boundary migration procedure are used to derive the high-order artificial boundary conditions, which are comprised of a physically meaningful dashpot and a generalized energy absorber. The main advantage of using the proposed finite element scheme is that the derived artificial boundary condition can be straightforwardly implemented in the finite element analysis, without violating the band/sparse structure of the conventional finite element equation. The related numerical examples have demonstrated that the proposed finite element scheme is of high accuracy in dealing with wave propagation problems in multiple horizontal layers.  相似文献   

13.
Numerical analysis of transient seepage in unbounded domains with unsteady boundary conditions requires a more sophisticated artificial boundary approach to deal with the infinite character of the domain. To that end, a local artificial boundary is established by simplifying a global artificial boundary. The global artificial boundary conditions (ABCs) at the truncated boundary are derived from analytical solutions for one‐dimensional axisymmetric diffusion problems. By applying Laplace transforms and introducing some specially defined auxiliary variables, the global ABCs are simplified to local ABCs to significantly enhance the computational efficiency. The proposed local ABCs are implemented in a finite element computer program so that the solutions to various seepage problems can be calculated. The proposed approach is first verified by the computation of a one‐dimensional radial flow problem and then tentatively applied to more general two‐dimensional cylindrical problems and planar problems. The solutions obtained using the local ABCs are compared with those obtained using a large element mesh and using a previously proposed local boundary. This comparison demonstrates the satisfactory performance and obvious superiority of the newly established boundary to the other local boundary. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
陈灯红  杜成斌 《岩土力学》2014,35(4):1164-1172
结构-地基动力相互作用是结构地震响应分析及安全评估的一个非常重要课题。基于比例边界有限元法,提出了一种新颖的结构-地基动力相互作用的时域模型,即采用比例边界有限元子域模拟近场有限域部分,采用高阶透射边界模拟远场无限域部分。通过采用连分式展开和引入辅助变量,有限域的动力方程采用高阶的静力刚度矩阵和质量矩阵表示。高阶透射边界精确满足无限远处的辐射边界条件,具有全局精确、时间局部和收敛速度快等优点。它是基于改进的连分式法求解无限域动力刚度矩阵而建立的,在时域里表示为一阶常微分方程组。通过联立有限域和无限域的运动方程,建立了结构-地基相互作用的标准动力学方程,采用Newmark法可直接求解。3个算例结果表明,该算法在时域里比黏弹性边界更精确、有效。  相似文献   

15.
In modeling of many geomechanics problems such as underground openings, soil-foundation structure interaction problems, and in wave propagation problems through semi-infinite soil medium the soil is represented as a region of either infinite or semi-infinite extent. Numerical modeling of such problems using conventional finite elements involves a truncation of the far field in which the infinite boundary is terminated at a finite distance. In these problems, appropriate boundary conditions are introduced to approximate the solution of the infinite or semi-infinite boundaries as closely as possible. However, the task of positioning the finite boundary in conventional finite element discretization and the definition of the boundary and its conditions is very delicate and depends on the modeller's skill and intuition. Moreover, such a choice is influenced by the size of the domain to be discretized. Consequently, the dimensions of the global matrices and the time required for solution of the problem will increase considerably and also selection of the arbitrary location of truncated boundary may lead to erroneous result. In order to over come these problems, mapped infinite elements have been developed by earlier researchers (Simoni and Schrefier, 1987). In the present work the applicability of infinite element technique is examined for different geomechanics problems. A computer program INFEMEP is developed based on the conventional finite element and mapped infinite element technique. It is then validated using selected problems such as strip footing and circular footing. CPU time taken to obtain solutions using finite element approach and infinite element approach was estimated and presented to show the capability of coupled modeling in improving the computational efficiency. Mesh configurations of different sizes were used to explore the enhancement of both computational economy and solution accuracy achieved by incorporation of infinite elements to solve elastic and elasto-plastic problems in semi-infinite/finite domain as applied to geotechnical engineering. © Rapid Science Ltd. 1998  相似文献   

16.
熊浩  邱战洪  王小岗 《岩土力学》2018,39(12):4659-4664
无限元是一种有效的人工边界,可用于处理弹性波的传播问题。在传统动力无限元的基础上,提出了一种采用分向插值技术的新型动力无限元,详细地推导了这种无限元的形函数,建立了完全解析形式的刚度矩阵,以提高计算效率,采用该无限元边界,计算了弹性介质中的线源Lamb问题,通过对比解析解答的地基表面位移,验证了该无限元的有效性。算例分析表明,采用此类无限元时,有限元单元边长建议取不超过1/8剪切波波长,网格边界到激励源点的距离宜取5倍剪切波波长。无限单元中的幅值衰减系数对计算结果影响甚微,建议取较小值。  相似文献   

17.
A finite element procedure is developed to accurately locate the free surface of unconfined seepage flow through porous media. The free surface is taken as the boundary between wet and dry soils, with flow in the saturated region characterized by Darcy's law. The method involves equations and meshing which are fully consistent with a general formulation for geotechnical engineering problems involving simultaneous solution of pore fluid pressures and soil skeleton displacements. Accuracy and versatility of the proposed procedure are demonstrated by solving various unconfined seepage flow problems through earth structures. Free surfaces and flownets are presented for the calculated flow fields.  相似文献   

18.
This paper presents a boundary element method (BEM) procedure for a linear elastic fracture mechanics analysis in two‐dimensional anisotropic bimaterials. In this formulation, a displacement integral equation is only collocated on the uncracked boundary, and a traction integral equation is only collocated on one side of the crack surface. A fundamental solution (Green's function) for anisotropic bimaterials is also derived and implemented into the boundary integral formulation so that except for the interfacial crack part, the discretization along the interface can be avoided. A special crack‐tip element is introduced to capture the exact crack‐tip behavior. A computer program using FORTRAN has been developed to effectively calculate the stress intensity factors of an anisotropic bimaterial. This BEM program has been verified to have a good accuracy with previous studies. In addition, a central cracked bimaterial Brazilian specimen constituting cement and gypsum is prepared to conduct the Brazilian test under diametral loading. The result shows that the numerical analysis can predict relatively well the direction of crack initiation and the path of crack propagation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
Four classical geomechanics problems involving semi-infinite linear elastic media have been solved numerically using recently developed mapped infinite elements coupled to finite elements.The effect of the remoteness of the truncated boundary and the location of infinite element coupling on solution accuracy has been studied. The results of conventional analyses using finite elements over a relatively large but restricted region are compared to the coupled analyses. Comparison of the results shows that for the same number of degrees of freedom the performance of the coupled solutions is superior to the conventional approach with respect to accuracy of solution and computational efficiency. Finally, some general guidelines are proposed for the efficient numerical solution of these types of problems using the coupled finite/infinite element approach.  相似文献   

20.
Application of the edge function method to rock mechanics problems   总被引:1,自引:0,他引:1  
Summary The edge function method is considered as an alternative to conventional numerical schemes for the solution of plane problems in rock mechanics. The essence of the approach is the approximation of the solution by a linear combination of solutions of the field equations. The unknowns in the linear combination are obtained from a system of equations which follows from the approximation of the boundary conditions by a boundary Galerkin energy method. No mesh generation is required over the domain or boundary of the problem. Previous edge function work in anisotropic elasticity is enhanced by the incorporation of a special solution for the effect of gravity. Examples are presented to illustrate the applicability of the method in determining stresses in various rock mechanics problems. A high level of accuracy is achieved with a relatively small number of degrees of freedom. Convergence is rapid because of the inclusion of special analytic solutions to model stress concentrations. The inclusion of the gravity force does, however, lead to a small increase in the number of degrees of freedom needed to achieve acceptable results. The optimum use of the edge function method, at present, may be as a special element within more general finite element or discrete element codes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号