首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
R. V. Conceio  D. H. Green 《Lithos》2004,72(3-4):209-229
A model metasomatized lherzolite composition contains phlogopite and pargasite, together with olivine, orthopyroxene, clinopyroxene and spinel or garnet as subsolidus phases to 3 GPa. Previous works established that at ≥1.5 GPa, phlogopite is stable above the dehydration solidus, determined by the melting behaviour of pargasite and coexisting phases. At 2.8 GPa, melts with residual phlogopite+garnet lherzolite mineralogy at 1195 °C and with garnet lherzolite mineralogy at 1250 °C are both olivine nephelinite with K/Na (atomic)=0.51 and K/Na=0.65, respectively. Recent work shows that melting along the dehydration (fluid-absent) solidus of the phlogopite+pargasite lherzolite at pressures <1.5 GPa is very different with the presence of phlogopite, decreasing the solidus below that of pargasite lherzolite. At 1.0 GPa, both phlogopite and pargasite disappear at temperatures at or slightly above the solidus. The compositions of two melts at 1.0 GPa, 1075 °C (with different water contents), in equilibrium with residual spinel lherzolite mineralogy are silica-saturated trachyandesite (5% melt fraction, 3% H2O) to silica-oversaturated basaltic andesite (8% melt fraction, 4.5% H2O). Both compositions may be classified as ‘shoshonites’ on the basis of normative compositions, silica-saturation, and K/Na ratio. Decompression melting of metasomatized lithospheric lherzolite with minor phlogopite and pargasite may produce primary ‘shoshonitic’ magmas by dehydration melting at 1 GPa, 1050–1150 °C. Such magmas may be parental to Proterozoic batholithic syenites occurring in Brazil.  相似文献   

2.
The near-solidus transition from garnet lherzolite to spinel lherzolite   总被引:19,自引:1,他引:19  
The position of the transition from spinel lherzolite to garnet lherzolite in the system CaO-MgO-Al2O3-SiO2 (CMAS) has been determined experimentally at near-solidus temperatures. In reversed experiments, the transition occurs between 18 and 20 kbar at 1200 °C and between 26 and 27 kbar at 1500 °C, corresponding to higher pressures than previously envisaged. A position for the transition deeper within the Earth further complicates the explanation of the so-called garnet signatures in the trace element and isotope patterns of mid-ocean ridge basalts. If melting during adiabatic upwelling beneath a mid-ocean ridge begins at the depth required for the stability of garnet in peridotitic compositions, simple melting models predict that the amount of melt produced should be much greater than the observed thickness of the oceanic crust. A partial solution to the apparent conflict might be that (1) the rather simplistic melting models are in error, (2) that melting begins in garnet pyroxenite veins that are believed to be stable at lower pressures than garnet lherzolite or (3) that melting does not involve garnet at all, but it is clinopyroxene causing the trace element patterns observed in basalts erupted at mid-ocean ridges. A second set of reversal experiments were conducted to investigate the solubility of alumina in both orthopyroxenes and clinopyroxenes at the high temperatures near the solidus in the system CMAS. The results are compatible with most previous studies, and may be used as a starting point to calibrate thermodynamic models for pyroxenes in chemical systems, approximating upper mantle chemistry. Received: 9 August 1999 / Accepted: 29 October 1999  相似文献   

3.
Phenocrysts of phlogopite from a micaceous kimberlite contain finely interlayered serpentine. These phenocrysts occur in the kimberlite groundmass and are altered along the mica layers and are slightly deformed. Lizardite is the predominant serpentine mineral, but chrysotile and mixed structures also occur. The lizardite occurs as lamellae within phlogopite, oriented such that (001) layers of the two minerals are parallel and the [100] direction of lizardite is parallel to the [100] or 110 directions of phlogopite. The serpentinized regions of phlogopite are localized and extensive along the (001) layers. Chrysotile fibers and chrysotile-like curled serpentine occur within regions of disrupted material, and polygonal structures occur in folded lizardite lamellae. Textural relations suggest three events: 1) replacement of phlogopite by lizardite, 2) deformation of the phenocrysts, and 3) partial transformation of the lizardite to chrysotile-like structures. Deformation features include openings along (001), folds, and regions of disrupted or broken material. The folded and broken material consists of lamellar lizardite and phlogopite, indicating that lamellar replacement preceded deformation. Intergrowths of lizardite and curled serpentine are associated with cleavage openings and voids in disrupted material, suggesting that a partial transformation of lizardite to chrysotile occurred within openings created by deformation. Clay minerals also occur within phlogopite as either a minor product of serpentinization or of late-stage alteration.  相似文献   

4.
A garnet lherzolite xenolith hosted in olivine nephelinite from Xilong,Zhejiang Province ,southeastern China, shows clear evidence of modal metasomatism involving a special sanidine-olivine-diopside(SOD) association which was produced by replacement of primary orthopyroxene.The fluid responsible for the measomatism was a silica-undersaturated vapour,rich in K,Ba,Sr and Ti.It is suggested that the SOD assemblage is the product of metasomatism of a depleted lherzolite precursor,and formed in the upper mantle prior to entrainment and eruption.  相似文献   

5.
The lherzolites have recrystallized to plagioclase lherzolites consisting of olvine, pyroxenes, chromian spinel, plagioclase and pargasite at a depth of 20 to 25 km in the uppermost part of the mantle. It is believed that the garnet lherzolites and spinel lherzolites were originally derived from depths of 50–75 km and 30–50 km respectively. The clinopyroxenes contained about 10 mol. % of jadeite and Tschermak's molecules, respectively and the orthopyroxenes also included about 5–10% of Tschermak's component. Transported upward, the garnet was transformed through pyroxene-spinel symplectite to olivine, plagioclase and spinel aggregates, and most of the jadeite amd some Tschermak's components in the pyroxenes formed secondary pyroxenes and pargasite, and finally plagioclase under isochemical conditions.  相似文献   

6.
Spinel, which constitutes from 0.7% to 3% of lherzolite inclusions, occurs as primary anhedral grains (chrome-rich variety) and as a secondary phase as breakdown products of garnet (alumina-rich variety). Although individual primary spinel grains are chemically homogeneous, spinels are characterized by a wide range of Cr/Al ratios and a relatively narrow range of Mg/Fe″ ratios, even in a single lherzolite sample. The chemical variations of spinels are considered to have the following origin: When garnet lherzolite enters the stability field of the spinel peridotite facies as a consequence of slow upward transport, both orthopyroxenes and clinopyroxenes are recrystallized with loss of jadeite and some Tschermak's component to reach equilibrium. A part of the Tschermak's component reacts with olivine to form pyroxene and spinel. This secondary spinel component is alloted to the primary chromian spinel. However, these reactions did not always reach equilibrium with the major constituent minerals in the lherzolites.  相似文献   

7.
In its only natural occurrence known thus far sodium phlogopite is found in a dolomite containing large porphyroblasts of albite, three other magnesium phyllosilicates, dravite-uvite tourmaline, quartz, rutile, and pyrite. Sodium phlogopites are close to the ideal formula NaMg3[AlSi3O10](OH)2, although they may possibly contain additional Li. They are invariably coated by thin rims of potassium phlogopite with octahedral and tetrahedral occupancies different from those of sodium phlogopite. These rims may have prevented the retrograde hydration of sodium phlogopite which seems to be the main reason for its general absence in natural rocks. For the low-grade metamorphic conditions undergone by the dolomite a solvus relationship is indicated between sodium and potassium phlogopite.Sodium phlogopite also coexists, at least prior to the appearance of K phlogopite, with a talc phase containing Na and Al[4] substituting for Si. This type of substitution leading from pure talc to sodium phlogopite was found to extend as far as 36 mole percent. However, the nature of this phase as a genuine solid solution or as a disordered mixed-layer between talc and sodium phlogopite could not be identified as yet. The final phyllosilicate appearing in millimeter-size porphyroblasts is an ordered 11 mixed layer between clinochlore and sodian aluminian talc representing a new mineral.Metamorphic temperatures at the supposedly low water and CO2 fugacities are estimated to have been below 400 °C.  相似文献   

8.
Phlogopite micas from nodules in South African kimberlites were analyzed for major elements with the electron microprobe and for volatile contents by high temperature mass spectrometry. The micas are from primary- (deformed) and secondary- (undeformed) textured grains in perodotite xenoliths, glimmerites, MARID (mica-amphibole-rutile-ilmenite-diopside) suite nodules and a mica megacryst. The major element and volatile contents of micas exhibiting these modes of occurrence overlap to a greater extent than indicated in previous studies. Concentrations of volatile species occupying structurally defined crystallographic sites (H2O, F, Cl) are greater for many of the micas than predicted on the basis of the mica formula, particularly for the glimmerite and MARID suite samples. A correlation exists between micas with tetrahedral and octahedral cation deficiencies and those with excess H2O, F and Cl. Substitution of H+ for tetrahedral and possibly octahedral cations may be responsible for the excess H2O in these micas. Except for one sample, the major element and volatile data for the peridotite, glimmerite and MARID suite micas indicate that they crystallized at oxygen fugacities below the quartz-fayalite-magnetite buffer. F and K2O are in the correct proportion in the micas to provide the source for these elements in alkali basalts, but not in mid-ocean ridge basalts. Kaersutite amphibole is a more likely source of potassium and fluorine in mid-ocean ridge basalts.  相似文献   

9.
The equilibrium between spinel lherzolite and garnet lherzolite has been experimentally determined in the CaO-MgO-Al2O3-SiO2 system between 800° and 1,100° C. In confirmation of earlier work and predictions from thermodynamic data, it was found that theP-T slope of the reaction was close to zero, the equilibrium ranging from 16.1 kb at 800° C to 18.7 kb at 1,100° C (±0.3 kb). The addition of Cr2O3 to the system raised the stability field of spinel to higher pressures. It was found that the pressure at which both garnet and spinel could exist with olivine+orthopyroxene+clinopyroxene in the system CMAS ?Cr2O3 could best be described by the empirical relationship: $$P = P^{\text{O}} + \alpha X_{{\text{Cr}}}^{s{\text{p}}} $$ whereP 0 is the equilibrium pressure for the univariant reaction in the Cr2O3-free system,α is a constant apparently independent of temperature with a value of 27.9 kilobars, andX Cr sp is the mole fraction of chromium in spinel. Use was made of the extensive literature on Mg-Fe2+ solid solutions to quantitatively derive the effect of Fe2+ on the equilibrium. The effect of other components (Fe3+, Na) was also considered. The equilibrium can be used as a sensitive geobarometer for rocks containing the five phases ol+opx+cpx+gt+sp, and thus provides the only independent check presently available for the more widely applicable geobarometer which uses the alumina content of orthopyroxene in equilibrium with garnet.  相似文献   

10.
This paper reports on the petrology and geochemistry of a diamondiferous peridotite xenolith from the Premier diamond mine in South Africa.

The xenolith is altered with pervasive serpentinisation of olivine and orthopyroxene. Garnets are in an advanced state of kelyphitisation but partly fresh. Electron microprobe analyses of the garnets are consistent with a lherzolitic paragenesis (8.5 wt.% Cr2O3 and 6.6 wt.% CaO). The garnets show limited variation in trace element composition, with generally low concentrations of most trace elements, e.g. Y (<11 ppm), Zr (<18 ppm) and Sr (<0.5 ppm). Garnet rare earth element concentrations, when normalised against the C1 chondrite of McDonough and Sun (Chem. Geol. 120 (1995) 223), are characterised by a rare earth element pattern similar to garnet from fertile lherzolite.

All diamonds recovered are colourless. Most crystals are sharp-edged octahedra, some with minor development of the dodecahedral form. A number of crystals are twinned octahedral macles, while aggregates of two or more octahedra are also common. Mineral inclusions are rare. Where present they are predominantly small black rosettes believed to consist of sulfide. In one instance a polymineralic (presumably lherzolitic) assemblage of reddish garnet, green clinopyroxene and a colourless mineral is recognised.

Infrared analysis of the xenolith diamonds show nitrogen contents generally lower than 500 ppm and variable nitrogen aggregation state, from 20% to 80% of the ‘B’ form. When plotted on a nitrogen aggregation diagram a well defined trend of increasing nitrogen aggregation state with increasing nitrogen content is observed. Carbon isotopic compositions range from −3.6 ‰ to −1.3 ‰. These are broadly correlated with diamond nitrogen content as determined by infrared spectroscopy, with the most negative C-isotopic compositions correlating with the lowest nitrogen contents.

Xenolith mantle equilibration temperatures, calculated from nitrogen aggregation systematics as well as the Ni in garnet thermometer are on the order of 1100 to 1200 °C.

It is concluded that the xenolith is a fertile lherzolite, and that the lherzolitic character may have resulted from the total metasomatic overprinting of pre-existing harzburgite. Metasomatism occurred prior to, or accompanied, diamond growth.  相似文献   


11.
Hornblende lherzolite nodules from the Kirsh volcano, near Ataq, South Arabian Federation, are likely to have been derived from the upper mantle. The hornblende is a pargasitic variety, rich in sodium and chromium.  相似文献   

12.
Geochemical characteristics of spinel lherzolite xenoliths, enclosed in Miocene alkali basalt from Boeun, Korea, provide important clues for understanding the lithosphere composition, equilibrium temperature and pressure conditions, and depletion and enrichment processes of subcontinental lithospheric mantle beneath Boeun. The spinel lherzolite xenoliths with protogranular to porpyroclastic textures were accidentally trapped by the ascending alkali basalt magma. The spinel lherzolite xenoliths originated at depths between 50 and 63 km with equilibrium temperatures ranging from 847 to 1030 °C. These xenoliths may have undergone small degrees (1–2%) of partial melting and cryptic metasomatism by an alkali basaltic melt. Based on Sr and Nd isotope compositions, the subcontinental lithospheric mantle beneath Boeun was heterogeneous and similar to that beneath East China and Central Mongolia rather than the Japanese Island Arc.  相似文献   

13.
Peridotite xenoliths containing primary phlogopite with or without potassic richterites as major constituent (up to 12 vol. %) are rarely found in kimberlite from the Bultfontein Floors. Chemically, these rocks are similar in compositions with those of the granular type garnet peridotite xenoliths from South Africa and Lesotho, except for an abnormally high content of K2O in the former. Phlogopite and potassic richterite are thought to have the following genesis: garnet peridotites at a depth from 170 to 100 km suffered local introduction of a potash-rich fluid, and garnet and enstatite reacted with this fluid to form phlogopite and diopside. Potassic richterite may have been produced by the reaction between diopside and fluid at the same time as crystallization of phlogopite at depths shallower than 120 km.  相似文献   

14.
Hydrothermal atomic force microscopy (HAFM) was used to investigate K+-Na+ ion exchange in phlogopite in-situ. The exchange of K+ for Na+ caused the interlayer distance to swell by approximately 5 Å. A distinct reaction front could be resolved between the K+-areas and the swollen (hydrated) Na+-areas, indicating a single reaction step mechanism. Although the fronts revealed kinematic variability due to inhomogeneities, the data indicate a diffusion mechanism within the interlayers. Diffusion coefficients ranged between 2 × 10−8 and 35 × 10−8 cm2/s, depending on the depth of the interlayer, the solution composition, and temperature. An activation energy of 15 kJ/mol was calculated from the temperature dependence of the diffusion coefficients. In addition to the regular 5 Å swelling, bulge-shaped irregular swelling of up to 200 nm could be observed. This irregular swelling might be an initial stage of delamination.Reducing the Na+-concentration in the solution at a constant K+-concentration was found to reduce the exchange rate. The exchange ceases completely when the equilibrium ratio r(K+/Na+) of the solution is reached. The measured r(K+/Na+) of 0.013 indicates a lower K+-selectivity for interlayers that are closer to the surface. This lower selectivity is most likely related to a lower strain energy associated with the expansion of interlayers close to the surface.Reversing the exchange reaction caused the interlayers to shrink to their original height. The kinematics of the front of the reverse reaction were significantly enhanced. In parts, swollen Na+-areas were engulfed and trapped by the shrunken K+-areas. No morphological indications of remnant alterations other than these trapped islands and the irregular swelling were observed.  相似文献   

15.
The critical issue in the study of kimberlites, known as principal host rocks of diamonds, is the reconstruction of their primary melt composition, which is poorly constrained due to contamination by xenogenic materials, significant loss of volatiles during eruption, and post-magmatic alteration. It is generally accepted that the last equilibration of primary kimberlite melt with surrounding mantle (garnet lherzolite) occurred beneath cratons at 5–7 GPa (150–230 km depths). However, the subliquidus mineral assemblages obtained in kimberlite melting experiments at mantle pressures differ from lherzolite, probably owing to unaccounted loss of CO2. Here we present experiments at 6.5 GPa and 1200–1600 °C on unaltered kimberlite with an addition of 2–22 mol% CO2 over its natural abundance in the rock (13 mol%), but keeping proportions of other components identical to those in an exceptionally fresh anhydrous kimberlite from Udachnaya-East pipe in Siberia. We found that the partial melt achieves equilibrium with garnet lherzolite at 1500 °C and 19–23 mol% CO2 in the system. Under these conditions this melt contains (mol%): SiO2 = 9, FeO = 6–7, MgO = 23–26, CaO = 16, Na2O = 4, K2O = 1, and CO2 = 30–35. We propose, therefore, the alkali-rich carbonatitic composition of primary kimberlite melt and loss of 34–45 mol% (34–46 wt%) CO2 during ascent of the kimberlite magma to the surface.  相似文献   

16.
The purpose of this study was to examine structural alterations of finely ground phlogopite, a trioctahedral mica, when exposed to acid, iron- and sulfate-rich solutions typical of bioleaching systems. Phlogopite suspensions were supplemented with ferrous sulfate and incubated with iron- and sulfur-oxidizing bacteria (Acidithiobacillus ferrooxidans) at 22 °C. As bacteria oxidized ferrous iron, ferric iron thus formed partially precipitated as K-jarosite. K-jarosite precipitation was contingent on the preceding ferrous iron oxidation by bacteria and the release of interlayer-K from phlogopite. This chemically and microbially induced weathering involved alteration of phlogopite to a mixed layer structure that included expansible vermiculite. The extent of phlogopite weathering and structure expansion varied with duration of the contact, concentration of ferrous iron and phlogopite, and the presence of monovalent cations (NH4+, K+, or Na+) in the culture solution. NH4+ and K+ ions (100 mM) added to culture suspensions precipitated as jarosite and thereby effectively prevented the loss of interlayer-K and structural alteration of phlogopite. Additional Na+ (100 mM) was insufficient to precipitate ferric iron as natrojarosite and therefore the precipitation was coupled with interlayer-K released from phlogopite. When ferrous iron was replaced with elemental sulfur as the substrate for A. ferrooxidans, the weathering of phlogopite was based on chemical dissolution without structural interstratification. The results demonstrate that iron oxidation and the concentration and composition of monovalent ions can have an effect on mineral weathering in leaching systems that involve contact of phlogopite and other mica minerals with acid leach solutions.  相似文献   

17.
Spinel lherzolite found in Damaping, northern Zhangjiakou, Hebei Province occurs as xenoliths in the Hannuoba basalts that consist of alkali basalt and tholeiite. Spinel lherzolites contain 50%–70% olivine (Fo: 90%), 10%–20% clinopyroxene (predominantly Di), 10%–30% orthopyroxene (predominantly En), and less than 5% spinel.3He/4He and40Ar/38Ar ratios in the olivine are 7.56×10−7 and 299.1, respectively.3He/4He and40Ar/38Ar ratios in the orthopyroxene (enstatite) are 9.1×10−7 and 307, respectively. Olivine grains are fractured irregularly, and pyroxene grains characterized by well developed cleavages, which would have resulted from explosion during the rapid eruption of lava from the deep interior to the surface. The lower isotope ratios of helium and argon may indicate that the spinel lherzolite xenoliths were derived from the strongly degassed and depleted upper mantle, and that the mantle is inhomogeneous.3He losses to some extent might affect the helium isotope ratios. The project was financially supported by the National Natural Science Foundation of China (No. 49273185).  相似文献   

18.
 Unit-cell dimensions of a natural phlogopite from Pargas, Finland, have been determined in the temperature interval of 27–1050 °C by X-ray powder diffraction technique. Expansion rates vary discontinuously with temperature with a break at 412 °C. Below this temperature, the linear expansions (α) for a, b and c axis lengths are 3.74 × 10−5 K−1, 1.09 × 10−5 K−1, and 1.19 × 10−5 K−1, respectively, and above that they are 0.86 × 10−5 K−1, 0.80 × 10−5 K−1, and 1.93 × 10−5 K−1. The volume thermal expansion coefficients are 6.26 × 10−5 K−1 and 3.71 × 10−5 K−1 for low-temperature and high-temperature intervals, respectively. The observed kink in the rate of thermal expansions with temperature could be due to the different mode of structural changes. Thermogravimetric analysis of the sample indicates the oxidation of iron in the temperature range of 500–600 °C and dehydroxylation as well as decomposition of phlogopite in the temperature range of 900–1200 °C. Received: 8 September 1998 / Accepted: 28 February 2000  相似文献   

19.
Porphyroclastic diopside in garnet lherzolite from Alpe Arami, Bellinzona, Switzerland includes optically-visible clinoamphibole lamellae with a composition intermediate between pargasite and edenite. X-ray and electron microscopic observations show that the diopside crystal contains sub-microscopic thin clinoamphibole lamellae parallel to (010), which have coherent interfaces to the host. A kind of planar defect parallel to (010) in clinopyroxene structure, as suggested by Chisholm (1973), is shown here to correspond to intercalation of a 9 Å lattice fringe of double-chain structure in the electron micrograph of the diopside. The thin clinoamphibole lamellae are observed to be segregated domains consisting of two and more 9 Å fringes.From the chemical characteristics and textural relations of the development of such clinoamphiboles, the chemical change required to form them is considered to have been caused principally by decreasing solubility of atoms such as Na, Al and Cr in clinopyroxene structure during the retrogressive reequilibration. Also, a possibility of finite solid solution of clinoamphibole in clinopyroxene is discussed.  相似文献   

20.
Spinel lherzolite xenoliths found in Boeun, Korea, have protogranular to porphyroclastic textures and are enclosed in a Miocene alkali basalt. The lithium concentration and isotopic compositions of olivine, clinopyroxene, and orthopyroxene separates from the spinel lherzolite, and whole rocks of the spinel lherzolites and alkali basalt were determined by inductively coupled plasma mass spectrometry (ICP-MS) and multi-collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The lithium concentrations of the olivines and orthopyroxenes range from 2.2 to 5.0 ppm and from 2.1 to 6.4 ppm, respectively. In contrast, the clinopyroxenes have larger lithium concentrations, from 2.0 to 8.4 ppm, which reflect their preferential lithium enrichment. The lithium isotopic compositions (δ7Li) of olivines (-5.4 to + 3.5‰), orthopyroxenes (-11.4 to -0.1‰), and clinopyroxenes (-14.4 to -4.7‰) range far beyond the average mantle composition of + 4 ± 2‰. The lithium isotopic composition of the host rock, alkali basalt (3.4‰), is within the range of the intraplate and oceanic island basalts. The spinel lherzolites from Boeun exhibits strong elemental and isotopic disequilibria due to the different lithium and lithium isotope diffusion velocities in the olivine, orthopyroxene, and clinopyroxene minerals after eruption and magma cooling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号