首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The internal architecture of raised beach ridge and associated swale deposits on Anholt records an ancient sea level. The Holocene beach ridges form part of a progradational beach ridge plain, which has been interpreted to have formed during an isostatic uplift and a relative fall in the sea level over the past 7700 years. The ridges are covered by pebbles and cobbles and commonly show evidence of deflation. Material presumably removed from the beach ridges and adjacent swales form the present dune forms on Anholt. Ground-penetrating radar (GPR) reflection lines have been collected with 250 MHz shielded antennae across the fossil ridge and swale structures. The signals penetrate the subsurface to a maximum depth of ~ 10 m below the fossil features. The GPR data resolve the internal architecture of the beach ridges and swales with a vertical resolution of about 0.1 m. GPR mapping indicates that the Holocene beach ridges are composed of seaward-dipping beachface deposits as well as minor amounts of inland dipping deposits of wash-over origin. The beachface deposits downlap on underlying shoreface deposits, and we use these surfaces as markers of a relative palaeo-sea level. The new data indicate that the highest relative sea level at about 8.5 m was reached 6500 years ago; 700 years later the relative sea level had dropped 0.7 m indicating a change in the relative sea level around 1 mm/year. This fall in the relative sea level most likely records the influence of an isostatic rebound causing younger beach ridge deposits to indicate lower sea levels.  相似文献   

2.
A relative sea‐level curve over the Holocene is constructed for the Young Sound region in northeastern Greenland. The reconstruction is derived by dating the heights of raised beach ridges in coastal plains using optically stimulated luminiscence (OSL), and by dating palaeoterrestrial surface levels now buried beneath the intertidal frame using the 14C technique. The relative sea‐level curve reveals a rapid fall of at least 10 mm a?1 from ca. 9500 to 7500 a ago, which slowed to 2 mm a?1 until it reached the present sea level ca. 3000 a ago. This part of the curve is based on the raised beach ridge data. Thereafter, relative sea level continued to fall, to reach a minimum level at about 0.5 m below the present sea level ca. 2300 a ago. Since then, relative sea level has experienced a slow rise of about 0.2 mm a?1. This part of the curve uses the data from the palaeoterrestrial surfaces. The study supplements other estimates of Holocene relative sea‐level changes and supports the observations of a decreasing trend in the timing of the cross point and in minimum relative sea level from South to North Greenland. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Flakket on the island of Anholt in Denmark is a cuspate foreland facing the microtidal Kattegat sea. It is composed of a number of beach ridges typically covered by dune sand and separated by swales and wetlands. OSL dating indicates that the evolution of Flakket began c. AD 1000. Foreland growth was punctuated by a major episode of coastal reorganization leading to coastal retreat c. AD 1800. Coastal retreat led to the formation of an erosion surface that separates older and higher‐lying beach‐ridge and swale deposits from younger and lower‐lying deposits. The palaeo‐sea level is deduced from the architecture of the deposits, and interpretation of ground‐penetrating radar data and geomophological observations indicates that relative sea level was about 1.90±0.25 m above present sea level c. AD 1000, but about 0.00±0.25 m relative to present sea level c. AD 1830 and c. AD 1870. Anholt is situated at the margin of the uplifted Fennoscandian area; assuming uplift to be about 1.2 mm a?1 it follows that absolute sea level was about +0.70±0.25 m at AD 1000, but around ?0.22±0.25 m at AD 1830 and around ?0.17±0.25 m at AD 1870. Within the uncertainties of the age control, the sea‐level indicators mapped by ground‐penetrating radar reflections and the variability of estimates of uplift found in the literature, the result obtained for AD 1000 is consistent with findings from the Stockholm area in Sweden and with a recently published global sea‐level curve.  相似文献   

4.
The history of sea‐level change and sediment accumulation since the last deglaciation along the German North Sea coast is still controversial because of a limitation in the quantity and quality of chronological data. In the current study, the chronology of a 16‐ka coastal sedimentary record from the Garding‐2 core, retrieved from the Eiderstedt Peninsula in Schleswig‐Holstein, northern Germany, was established using OSL and AMS 14C dating techniques. The robust chronology using 14 radiocarbon and 25 OSL dates from the Garding‐2 core is the first long‐term record that covers the Holocene as well as the last deglaciation period in one succession in the German North Sea area. It provides a new insight into understanding the Holocene transgression and coastal accumulation histories. The combined evidence from the sedimentology and chronology investigations indicates that an estuarine environment dominated in Eiderstedt Peninsula from 16 to 13 ka, followed by a depositional hiatus between 13 and 8.3 ka, attributed to erosion caused by the Holocene transgression; the onset of the Holocene transgression at the core site occurred at around 8.3 ka. The sea level continued to rise with a decelerated rate until around 3 ka. Since 3 ka, the shoreline has begun to prograde. Foreshore (tidal flat) sediments have been deposited at the drilling site with a very high sedimentation rate of about 10 m ka?1. At around 2 ka, a sandy beach deposit accumulated in the sedimentary succession, indicating that the coastline shifted landward, which may represent a small‐scale transgression in the late Holocene. At around 1.5 ka, terrestrial clastic sediment started to accumulate, indicating a retreat of the relative sea level in this area, which may be related to local diking activities undertaken since the 11th century.  相似文献   

5.
Sea‐level rise has been related to global warming. The modern system on the northern coast of Anholt, Denmark, may well be analogous to other beach ridge systems formed in microtidal regimes and our results should have impact on estimation of past sea‐level variation. Ground‐penetrating radar data collected across the modern (<30 years old) berm, beach ridge and swale deposits resolve downlapping reflections interpreted to mark sea level at the time of deposition. Existing time series of sea‐level data constrain actual sea‐level variation. Nineteen readings of sea‐level markers made along our profile fluctuate within ?0.42 and 0.57 m above present mean sea level, consistent with 95% of the sea‐level data. These fluctuations reflect tidal effects and meteorological conditions. Main data uncertainties are well‐known and the sea‐level markers may be identified with a high degree of confidence.  相似文献   

6.
Coastal lagoons and beach ridges are genetically independent, though non‐continuous, sedimentary archives. We here combine the results from two recently published studies in order to produce an 8000‐year‐long record of Holocene relative sea‐level changes on the island of Samsø, southern Kattegat, Denmark. The reconstruction of the initial mid‐Holocene sea‐level rise is based on the sedimentary infill from topography‐confined coastal lagoons (Sander et al., Boreas, 2015b). Sea‐level index points over the mid‐ to late Holocene period of sea‐level stability and fall are retrieved from the internal structures of a wide beach‐ridge system (Hede et al., The Holocene, 2015). Data from sediment coring, georadar and absolute dating are thus combined in an inter‐disciplinary approach that is highly reproducible in micro‐tidal environments characterised by high sediment supply. We show here that the commonly proximate occurrence of coastal lagoons and beach ridges allows us to produce seamless time series of relative sea‐level changes from field sites in SW Scandinavia and in similar coastal environments.  相似文献   

7.
Estuarine and beach deposits in the vicinity of the present coastline at Pakarae River record the infilling of an estuary and subsequent development of a sequence of seven marine terraces during Holocene time.

At the maximum of the last glaciation about 18,000 years ago the shoreline at the ancestral Pakarae River was approximately 20 km east of the present shoreline. By about 9000 years BP the sea had transgressed across most of that coastal plain to lie within a few hundred metres of the base of the present coastal hills. Seventeen radiocarbon ages from estuarine deposits record the overall rise in post-glacial sea level, but in the period c. 9500-7000 yrs BP there are reversals to the overall rising trend. Between 9500 and 8500 yrs BP there appears to have been a eustatic fall in sea level of at least 4 m. This observation is supported by data from several other localities around New Zealand. Maximum transgression occurred about 6500–7000 yrs BP when the sea reached the base of hillslopes and an extensive estuary existed behind a barrier bar.

Since that time the barrier bar disappeared, probably due to stranding in an uplift event, and the coastline advanced progressively outward toward its present position. Coastal progradation (sea level regression) and subsequent erosion have occurred in association with episodic large earthquakes at about 6700, 5400, 3910, 2450, 1570, 1000 and 600 yrs BP. The present distribution of terraces has been influenced by coastal erosion, which has removed all trace of some terraces from some areas, and river erosion has modified the marine terraces near the river.  相似文献   


8.
晚更新世以来中国海平面的变化   总被引:7,自引:0,他引:7       下载免费PDF全文
郭旭东 《地质科学》1979,14(4):330-341
在我国漫长的海岸和陆架海的岛围至今保存着许多形态完好的海蚀地形、海相沉积及各种海洋生物的遗迹、遗体。近年来在大陆架海底调查中,声学探测和海底取样结果也证实广阔的大陆架海底保留不少代表古海岸带的残余沉积、地形。  相似文献   

9.
Coastal lagoons are a typical feature of the landscape in central Denmark. The lagoons formed when basins within the inherited glacial topography were flooded by the mid‐Holocene sea‐level rise. The transgression initiated coastal geomorphological processes and prompted marine sedimentation in the inundated areas. Despite their common occurrence and wide distribution in the area, coastal lagoons and their deposits have rarely been studied as sedimentary archives. The absolute chronology established for the basal marine deposits in sediment cores retrieved from coastal lagoons on the island of Samsø, southern Kattegat Sea, central Denmark, is evidence of a nearly synchronous onset of marine sedimentation at different elevations. This is interpreted as a new indication of a period of very rapid relative sea‐level (RSL) rise between 7.6 and 7.2 ka BP. Following a period of RSL highstand, a marked facies change in the deposits from an inactive lagoon yields consistent ages of around 4.1 ka BP and may be an indication of a marked RSL fall. This study illustrates the potential of coastal lagoons as sedimentary archives for the reconstruction of RSL in SW Scandinavia and in similar coastal environments elsewhere.  相似文献   

10.
ABSTRACT Mixed‐sand‐and‐gravel beaches are a distinctive type of coarse‐clastic beach. Ground‐penetrating radar (GPR) and photographic records of previous excavations are used to investigate the stratigraphy and internal sedimentary structure of mixed‐beach deposits at Aldeburgh in Suffolk, south‐east England. The principles of radar stratigraphy are used to describe and interpret migrated radar reflection profiles obtained from the study site. The application of radar stratigraphy allows the delineation of both bounding surfaces (radar surfaces) and the intervening beds or bed sets (radar facies). The deposits of the main backshore berm ridge consist of seaward‐dipping bounding surfaces that are gently onlapped by seaward‐dipping bed sets. Good correspondence is observed between a sequence of beach profiles, which record development of the berm ridge on the backshore, and the berm ridge's internal structure. The beach‐profile data also indicate that backshore berm ridges at Aldeburgh owe their origin to discrete depositional episodes related to storm‐wave activity. Beach‐ridge plain deposits at the study site consist of a complex, progradational sequence of foreshore, berm‐ridge, overtop and overwash deposits. Relict berm‐ridge deposits, separated by seaward‐dipping bounding surfaces, form the main depositional element beneath the beach‐ridge plain. However, the beach ridges themselves are formed predominantly of vertically stacked overtop/overwash units, which lie above the berm‐ridge deposits. Consequently, beach‐ridge development in this progradational, mixed‐beach setting must have occurred when conditions favoured overtopping and overwashing of the upper beachface. Interannual to decadal variations in wave climate, antecedent beach morphology, shoreline progradation rate and sea level are identified as the likely controlling factors in the development of such suitable conditions.  相似文献   

11.
Shallow seismic profiling indicated the presence of a drowned lagoon-barrier system formed during the transgression of the southern Kattegat, and investigations of core material have confirmed this. Studies of plant and animal macrofossils show that the lagoonal sediments contain a mixture of marine, brackish, lacustrine, telmatic and terrestrial taxa, and analyses of foraminifers indicate brackish-water conditions. Low oxygen isotope values obtained on shells of marine molluscs also point to lowered salinity. The lagoonal sediments are situated at depths between 24 and 35 m below present sea level. They are dated to between c. 10.5 cal. ka BP and c. 9.5 cal. ka BP, and reflect a period characterized by a moderate relative sea level rise. The lagoonal sediments are underlain by lateglacial glaciomarine clay and silt, which are separated from the Holocene deposits by an unconformity. The earliest Holocene sediments consist of littoral sand with gravel, stones and shells; these sediments were formed during the transgression of the area before the barrier island-lagoon system was developed. The lagoonal sediments are overlain by mud, which contains animal remains that indicate increasing water depths.  相似文献   

12.
珠江三角洲晚第四纪沉积的OSL和14C年龄探讨   总被引:2,自引:0,他引:2       下载免费PDF全文
提要:珠江三角洲第四纪沉积的年代测定在三角洲的发育演化、古海平面变化以及断裂活动性研究等方面具有重要意义。对东江平原的7个钻孔岩心进行了14C和OSL测年以及孢粉和微体古生物分析。与前人主要根据14C年龄得到珠江三角洲沉积小于4万年的认识不同,OSL测年结果显示下部地层的年龄值为4.7~13.5万年。本文对年龄的信度以及晚第四纪两次海侵旋回的地层年代框架进行了初步分析,提出珠江三角洲地区第一次海侵旋回可能发生于距今4~10万年期间;在晚更新世与全新世两次海侵之间,三角洲地区长期暴露地表,出现较大跨度的地层缺失。  相似文献   

13.
《Sedimentology》2018,65(4):1170-1212
Barrier‐island system evolution is controlled by internal and external forcing mechanisms, and temporal changes in these mechanisms may be recorded in the sedimentary architecture. However, the precise role of individual forcing mechanisms is rarely well understood due to limited chronological control. This study investigates the relative role of forcing conditions, such as antecedent topography, sea‐level rise, sediment supply, storms and climate changes, on the evolution of a Holocene wave‐dominated barrier‐island system. This article presents temporal reconstruction of the depositional history of the barrier‐island system of Rømø in the Wadden Sea in unprecedented detail, based on ground‐penetrating radar profiles, sediment cores, high‐resolution dating and palynological investigations, and shows that ca 8000 years ago the barrier island formed on a Pleistocene topographic high. During the initial phase of barrier evolution, the long‐term sea‐level rise was relatively rapid (ca 9 mm year−1) and the barrier was narrow and frequently overwashed. Sediment supply kept pace with sea‐level rise, and the barrier‐island system mainly aggraded through the deposition of a ca 7 m thick stack of overwash fans. Aggradation continued for ca 1700 years until sea‐level rise had decreased to <2 mm year−1. In the last ca 6000 years, the barrier prograded 4 to 5 km through deposition of a 10 to 15 m thick beach and shoreface unit, despite a long‐term sea‐level rise of 1 to 2 mm year−1. The long‐term progradation was, however, interrupted by a transgression between 4000 years and 1700 years ago. These results demonstrate that the large‐scale morphology of the Danish Wadden Sea shoreline influences the longshore sediment transport flux and the millennial‐scale dispersal of sediment along the shoreline. On decadal to centennial timescales, major storms induced intense beach and shoreface erosion followed by rapid recovery and progradation which resulted in a highly punctuated beach and shoreface record. Major storms contributed towards a positive sediment budget, and the sustained surplus of sediment was, and still is, instrumental in maintaining the aggradational–progradational state of the barrier island.  相似文献   

14.
The early Stephanian Bonar Cyclothem of the Sydney Basin, Nova Scotia, contains an erosional surface cut through coastal plain strata with economic coals and distributary channel bodies. The erosion surface is interpreted as a palaeovalley 20 m deep and at least 7 km wide that marks a sequence boundary formed during relative fall in sea level. The palaeovalley is filled with stacked alluvial channel bodies which become more isolated as the valley fill passes upward into red, alluvial plain deposits, probably laid down in an anastomosed river system. In an adjacent, interfluve area, calcretes and red, vertic palaeosols cap coastal strata. Assemblage analysis of agglutinated foraminifera and thecamoebians indicates that the palaeovalley was filled with freshwater sediments before an initial marine transgression flooded the alluvial surface and adjacent interfluve. Valley incision probably reflects glacioeustatic sea level fall. However, the alluvial nature of the valley deposits suggests that valley filling reflects an abundant sediment supply during lowstand and/or transgressive stages and was not a direct consequence of sea level rise. During the subsequent transgression phase, aggradation was rapid as sediment supply apparently kept pace with rising sea level. Features of both channel and extra-channel facies suggest that seasonality intensified during the transition from coastal plain to palaeovalley and alluvial plain deposition.  相似文献   

15.
《Quaternary Science Reviews》2007,26(19-21):2544-2557
Ten beach deposits, mainly beachrock, on the Carmel coastal plain, northern Israel, are discussed. Six are reported for the first time. The deposits are situated within or close to the following seasonal stream (locally termed Nahal) channels: Nahal Ahuza, Amiram, Ovadia, Galim, Megadim, Bir Ibdawiya, Me’arot and Kebara. The morphology and lithology of most of the deposits are similar: their uppermost altitude varies from 0 to 9 m above the present sea level. Most of the deposits are composed mainly of fine quartz sand and marine mollusk shells carbonate cemented. The dominant mollusk families are Glycymerididae, Cardiidae and Donacidae. Most of the beach deposits are situated between cemented aeolian sandstones (locally termed kurkar) layers on the Carmel coast ridge. In the Nahal Ahuza deposit, a marine gastropod Lentigo latus, an index fossil for the MIS 5e high sea stand in the Mediterranean area was discovered.According to lithology and chronostratigraphy, the presence of Lentigo latus, Th/U, AAR and RTL dating and flint artifacts, the beach deposits were related to the Last Interglacial maximum about 125 ka BP, i.e. the MIS 5e high sea stand. These beach deposits are used to identify the palaeo sea levels and coastlines and to study the tectonics along the Carmel coastal plain. By comparing the elevations and characteristics of the beach deposits to known MIS 5e deposits elsewhere, and by analyzing archaeological data, it is concluded that during the last 125 ka, the maximum possible vertical displacement was less than 48 mm/ka, and the Carmel coastal plain was relatively tectonically stable.  相似文献   

16.
At Brisbane Airport, the construction of a diversion channel for Kedron Brook exposed a former beach, low cliff and sand spit, which, with their associated sediments and acid sulfate soils, demonstrate a postglacial high sea-level 1.3 – 1.4 m above present mean sea-level. The beach appears to date from 4000 to 5000 y BP. It varies in level where it lies above soft ground; these variations, and sag depressions that follow buried streamlines, indicate sediment consolidation since withdrawal of the sea from the former shore. Most of the area consists of former estuarine deposits, mangrove and saline marshes, and stranded tidal flats on which acid sulfate soils are widely developed. The modern landforms mostly reproduce subsurface features, to the extent that the surface relief replicates the landscape transgressed by the sea 7000 years ago. A small rise of sea-level possibly to +0.65 m occurred about 2000 – 3000 years ago. Foredunes near the present shore that are related to a slightly lower level 1000 – 500 years ago (?0.25 m) are currently subject to wave erosion.  相似文献   

17.
Many coastlines are retreating in response to sea level rise, compounded by glacial–isostatic subsidence in areas marginal to former ice sheets. The resulting barrier and estuarine deposits are dominated by transgressive stratigraphy. Where supplied primarily from relict glacial deposits, this “paraglacial” sediment input may rise and fall, increasing as a new source such as a drumlin headland is exposed to erosion but declining as the source becomes exhausted. Conrads Beach, on the Atlantic coast of Canada, has experienced a succession of barrier growth and reworking as sediment supply from several drumlin sources has varied over the past 3000 years. In the context of long-term regional transgression, there have been intervals of years to centuries characterized by local stability or progradation. Ground-penetrating radar profiles and refraction seismic data were used to image the facies architecture of Conrads Beach to depths of 6–8 and 10–24 m, respectively. Thirteen vibracores provided a record of lithofacies characteristics and geometry. Results show evidence of an estuarine basin at ~2800 years BP. As the outer coast retreated, erosion of drumlins provided multi-century sediment pulses to adjacent beaches and embayments. Locally increased sediment supply fed a prograding beach ridge complex from >600 to ~150 years BP and tidal channels feeding sediment to back-barrier flood delta deposits. This study documents the complexity of coastal adjustment to time- and source-varying sediment supply under long-term rising sea level. It expands and refines previous models, providing guidance required for effective management and hazard mitigation on transgressive paraglacial coasts.  相似文献   

18.
The contact between wave‐influenced foreshore and aeolian‐influenced backshore sediments (BA boundary) in raised spit deposits (Skagen Odde) is here used as a proxy for palaeo‐sea level over the past 7600 years. The elevation of the BA boundary was measured at 57 sample sites along the northwestern coast of the spit, and the age of these sites determined by optically stimulated luminescence (OSL) dating of quartz grains. The elevation of the BA boundary with age gives past variation in relative sea level; relative sea level rose between c. 7600 and c. 6250 years ago, when it reached a peak value around 12.5 m above present mean sea level (apmsl), followed by a slow sea‐level fall until c. 4600 years ago before it dropped rapidly to reach 2 m apmsl c. 2000 years ago. From the new data it is tentatively deduced that the land uplift rate declined from about 3 mm a−1 6000 years ago to about 1.5 mm a−1 2000 years ago (low estimate), or alternatively from 5 mm a−1 5000 years ago to 1.5 mm a−1 2000 years ago (extreme estimate). These data indicate that the long‐term average rate of vertical land movement during the past 5000 years was around 1.8 mm a−1 (low estimate) or around 2.5 mm a−1 (extreme estimate). These values seem reasonable compared with a modern value of about 1.6 to 1.7 mm a−1. The lack of an independent data set illustrating the isostatic uplift history with time, however, precludes the construction of a well‐constrained eustatic sea‐level curve.  相似文献   

19.
Clemmensen, L. B. & Murray, A. S. 2009: Luminescence dating of Holocene spit deposits: An example from Skagen Odde, Denmark. Boreas , 10.1111/j.1502-3885.2009.00110.x. ISSN 0300-9483.
Skagen Odde is a large, active spit system in northern Denmark that started to form about 7200 years ago. Models for spit growth have usually relied on radiocarbon-dating of swale peat (Martørv). In this study, we date the spit deposits at three sites directly using Optically Stimulated Luminescence (OSL) to obtain supplementary age control on spit development. The spit deposits consist of a lowermost succession of shoreface, beach and backshore aeolian deposits topped by a swale peat and followed by an uppermost succession of aeolian sand sheet and dune deposits. The ages of the shallow marine, beach and backshore aeolian deposits at the main study site are indistinguishable, implying good resetting of the shallow marine deposits; the average age of 4640±250 years compares well with earlier model predictions based on radiocarbon-dating of swale peat. Aeolian sand extracted from the uppermost part of the swale peat at this site provides OSL ages of between 1600 and 2500 years, in good agreement with a calibrated AMS age from the same level of 2330–2200 years. The uppermost aeolian succession consists of two units separated by a thin palaeosol, and the aeolian units have OSL ages of about 1500 years and younger than 130 years. Lowermost spit deposits at the two additional sites have average ages of 5010±240 and 3730±190, respectively, supporting the existing chronology for spit growth based on radiocarbon-dating.  相似文献   

20.
珠江口外海域与珠江三角洲晚更新世以来的地层层序对比   总被引:1,自引:0,他引:1  
韦成龙  张珂  余章馨  邱燕 《沉积学报》2015,33(4):713-723
本文综合运用珠江三角洲外南海北部陆架的地震测线和三角洲地区的钻孔资料进行联合解译,获得由浅海至陆地的层序地层剖面,辨识出三角洲地区4套地层层序和南海北部陆架6套地层层序及体系域,前者仅记录了2个沉积旋回和相应的2次海面变化,而后者记录了更多沉积旋回及相应的海平面波动.在海、陆层序对接和对比的基础上,文章重点把南海北部陆架6套地层层序与深海氧同位素阶段MIS6~MIS1进行了对比分析,认为珠江三角洲下旋回与南海北部陆架层序D相当,珠江三角洲下旋回对应着南海北部陆架MIS6~MIS5(距今15万年~8万年)时代的层序地层,MIS4~MIS2末次冰期低海面时期的三角洲沉积位于现今南海北部陆架之上,并未向北延伸到现代珠江三角洲地区.珠江三角洲和南海北部陆架的下沉都是南海陆缘扩张的表现.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号