首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Support Vector Machine (SVM) is one of the important stellar spectral classification methods, and it is widely used in practice. But its classification efficiencies cannot be greatly improved because it does not take the class distribution into consideration. In view of this, a modified SVM named Minimum within-class and Maximum between-class scatter Support Vector Machine (MMSVM) is constructed to deal with the above problem. MMSVM merges the advantages of Fisher’s Discriminant Analysis (FDA) and SVM, and the comparative experiments on the Sloan Digital Sky Survey (SDSS) show that MMSVM performs better than SVM.  相似文献   

2.
Classification is one of the important tasks in astronomy, especially in spectra analysis. Support Vector Machine (SVM) is a typical classification method, which is widely used in spectra classification. Although it performs well in practice, its classification accuracies can not be greatly improved because of two limitations. One is it does not take the distribution of the classes into consideration. The other is it is sensitive to noise. In order to solve the above problems, inspired by the maximization of the Fisher’s Discriminant Analysis (FDA) and the SVM separability constraints, fuzzy minimum within-class support vector machine (FMWSVM) is proposed in this paper. In FMWSVM, the distribution of the classes is reflected by the within-class scatter in FDA and the fuzzy membership function is introduced to decrease the influence of the noise. The comparative experiments with SVM on the SDSS datasets verify the effectiveness of the proposed classifier FMWSVM.  相似文献   

3.
大型巡天项目的快速发展,产生大量的恒星光谱数据,也使得实现恒星光谱数据的自动分类成为一项具有挑战性的工作.提出一种新的基于胶囊网络的恒星光谱分类方法,首先利用1维卷积网络和短时傅里叶变换将来源于LAMOST(Large Sky Area Multi-Object Fiber Spectroscopy Telescope)Data Release 5(DR5)的F5、G5、K5型1维恒星光谱转化成2维傅里叶谱图像,再通过胶囊网络对2维谱图像进行自动分类.由于胶囊网络具有保留图像中实体之间的分层位姿关系和无需池化层的优点,实验结果表明:胶囊网络具有较好的分类性能,对于F5、G5、K5型恒星光谱的分类,准确率优于其他分类方法.  相似文献   

4.
The rapid development of large-scale sky survey project has produced a large amount of stellar spectral data, which make the automatic classification of stellar spectral data a challenging task. In this paper, we have proposed a stellar spectral classification method based on a capsule network. At first, by using the one-dimensional convolutional network and short-time Fourier transform (STFT), the one-dimensional spectra of the F5, G5, and K5 types selected from the LAMOST Data Release 5 (DR5) are converted into the two-dimensional Fourier spectrum images. Then, the two-dimensional Fourier spectrum images are classified automatically by the capsule network. Because the capsule network can preserve the hierarchical pose relationships among the entities in the image, and it does not need any pooling layers, the experimental results show that the capsule network has a better classification performance, for the classifications of the F5, G5, and K5-type stellar spectra, its classification accuracy is superior to other classification methods.  相似文献   

5.
A fast and robust method of classifying a library of optical stellar spectra for O to M type stars is presented. The method employs, as tools: (1) principal component analysis (PCA) for reducing the dimensionality of the data and (2) multilayer back propagation network (MBPN) based artificial neural network (ANN) scheme to automate the process of classification. We are able to reduce the dimensionality of the original spectral data to very few components by using PCA and are able to successfully reconstruct the original spectra. A number of NN architectures are used to classify the library of test spectra. Performance of ANN with this reduced dimension shows that the library can be classified to accuracies similar to those achieved by Gulati et al. but with less computational load. Furthermore, the data compression is so efficient that the NN scheme successfully classifies to the desired accuracy for a wide range of architectures. The procedure will greatly improve our capabilities in handling and analysing large spectral data bases of the future.  相似文献   

6.
7.
天体光谱分类是天文学研究的重要内容之一,其关键是从光谱数据中选择和提取对分类识别最有效的特征构建特征空间.提出一种新的基于2维傅里叶谱图像的特征提取方法,并应用于LAMOST (the Large Sky Area Multi-Object Fiber Spectroscopic Telescope)恒星光谱数据的分类研究中.光谱数据来源于LAMOST Data Release 5(DR5),选取30000条F、 G和K型星光谱数据,利用短时傅里叶变换(Short-Time Fourier Transform, STFT)将1维光谱数据变换成2维傅里叶谱图像,对得到的2维傅里叶谱图像采用深度卷积网络模型进行分类,得到的分类准确率是92.90%.实验结果表明通过对LAMOST恒星光谱数据进行STFT可得到光谱的2维傅里叶谱图像,谱图像构成了新的光谱数据特征和特征空间,新的特征对于光谱数据分类是有效的.此方法是对光谱分类的一种全新尝试,对海量天体光谱的分类和挖掘处理有一定的开创意义.  相似文献   

8.
恒星光谱分类是天文学中一个重要的研究问题.对于已经采集到的海量高维恒星光谱数据的分类,采用模式匹配方法对光谱型分类较为成功,但其缺点在于标准恒星模版之间的差异性在匹配实际观测数据中不能体现出来,尤其是当需要进行光谱型和光度型的二元分类时模版匹配法往往会失败.而采用谱线特征测量的光度型分类强烈地依赖谱线拟合的准确性.为了解决二元分类的问题,介绍了一种基于卷积神经网络的恒星光谱型和光度型分类模型(Classification model of Stellar Spectral type and Luminosity type based on Convolution Neural Network, CSSL CNN).这一模型使用卷积神经网络来提取光谱的特征,通过注意力模块学习到了重要的光谱特征,借助池化操作降低了光谱的维度并压缩了模型参数的数量,使用全连接层来学习特征并对恒星光谱进行分类.实验中使用了大天区面积多目标光纤光谱天文望远镜(Large Sky Area Multi-Object Fiber Spectroscopy Telescope, LAMOST)公开数据集Data Release 5 (DR5,用了其中71282条恒星光谱数据,每条光谱包含了3000多维的特征)对该模型的性能进行验证与评估.实验结果表明,基于卷积神经网络的模型在恒星的光谱型分类上准确率达到92.04%,而基于深度神经网络的模型(Celestial bodies Spectral Classification Model, CSC Model)只有87.54%的准确率; CSSL CNN在恒星的光谱型和光度型二元分类上准确率达到83.91%,而模式匹配方法MKCLASS仅有38.38%的准确率且效率较低.  相似文献   

9.
A method combining the support vector machine (SVM) the K-Nearest Neighbors (KNN), labelled the SVM-KNN method, is used to construct a solar flare forecasting model. Based on a proven relationship between SVM and KNN, the SVM-KNN method improves the SVM algorithm of classification by taking advantage of the KNN algorithm according to the distribution of test samples in a feature space. In our flare forecast study, sunspots and 10cm radio flux data observed during Solar Cycle 23 are taken as predictors, and whether an M class flare will occur for each active region within two days will be predicted. The SVM- KNN method is compared with the SVM and Neural networks-based method. The test results indicate that the rate of correct predictions from the SVM-KNN method is higher than that from the other two methods. This method shows promise as a practicable future forecasting model.  相似文献   

10.
An automated classification technique for large size stellar surveys is proposed. It uses the extended Kalman filter as a feature selector and pre-classifier of the data, and the radial basis function neural networks for the classification. Experiments with real data have shown that the correct classification rate can reach as high as 93%, which is quite satisfactory. When different system models are selected for the extended Kalman filter, the classification results are relatively stable. It is shown that for this particular case the result using extended Kalman filter is better than using principal component analysis.  相似文献   

11.
12.
1 IntroductionSingleStellarPopulations (SSPs)arethebasicbuildingblocksofsyntheticspectraofgalaxies(Bressanetal1 994) .Intheframeworkoftheevolutionarypopulationsynthesisstudy ,SSPsaremodelledwithproperstellarevolutionarytracksofdifferentmassesandinitialchemi…  相似文献   

13.
In this article we present a method for the automated prediction of stellar atmospheric parameters from spectral indices. This method uses a genetic algorithm (GA) for the selection of relevant spectral indices and prototypical stars and predicts their properties, using the k-nearest neighbors method (KNN). We have applied the method to predict the effective temperature, surface gravity, metallicity, luminosity class and spectral class of stars from spectral indices. Our experimental results show that the feature selection performed by the genetic algorithm reduces the running time of KNN up to 92%, and the predictive accuracy error up to 35%. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
日冕物质抛射(Coronal Mass Ejection, CME)的检测是建立CME事件库和实现对CME在行星际传播的预报的重要前提. 通过Visual Geometry Group (VGG) 16卷积神经网络方法对日冕仪图像进行自动分类. 基于大角度光谱日冕仪(Large Angle and Spectrometric Coronagraph Experiment, LASCO) C2的白光日冕仪图像, 根据是否观测到CME对图像进行标记. 将标记分类的数据集用于VGG模型的训练, 该模型在测试集分类的准确率达到92.5%. 根据检测得到的标签结果, 结合时空连续性规则, 消除了误判区域, 有效分类出CME图像序列. 与Coordinated Data Analysis Workshops (CDAW)人工事件库比较, 分类出的CME图像序列能够较完整地包含CME事件, 且对弱CME结构有较高的检测灵敏度. 未来先进天基太阳天文台(Advanced Space-based Solar Observatory, ASO-S)卫星的莱曼阿尔法太阳望远镜将搭载有白光日冕仪(Solar Corona Imager, SCI), 使用此分类方法将该仪器产生的日冕图像按有无CME分类. 含CME标签的图像将推送给中国的各空间天气预报中心, 对CME进行预警.  相似文献   

15.
In this article we show how machine learning methods can beeffectively applied to the problem of automatically predictingstellar atmospheric parameters from spectral information, a veryimportant problem in stellar astronomy. We apply feedforwardneural networks, Kohonen's self-organizing maps andlocally-weighted regression to predict the stellar atmosphericparameters effective temperature, surface gravity and metallicityfrom spectral indices. Our experimental results show that thethree methods are capable of predicting the parameters with verygood accuracy. Locally weighted regression gives slightly betterresults than the other methods using the original dataset asinput, while self-organizing maps outperform the other methods when significant amounts of noise are added. We also implemented a heterogeneous ensemble of predictors, combining the results given by the three algorithms. This ensemble yields better results than any of the three algorithms alone, using both the original and the noisy data.  相似文献   

16.
太阳磁场的极性反转线(Polarity Inversion Line, PIL)是研究太阳活动、分析太阳磁场结构演变和预测太阳耀斑最重要的日面特征之一.磁场极性反转的位置是太阳耀斑和暗条可能出现的位置."先进天基太阳天文台(ASO-S)"是中国首颗空间太阳专用观测卫星,其搭载的"全日面矢量磁像仪(Full-Disk Vector Magnetograph, FMG)"主要任务是探测高空间、高时间分辨率的全日面矢量磁场.为了提高观测数据使用效率、快速监测太阳活动水平、提高太阳耀斑与日冕物质抛射的预报水平以及更好地服务于FMG数据处理与分析系统,采用了图像自动识别与处理技术,更加精确有效地检测极性反转线.从支持向量机(Support Vector Machine, SVM)的模型出发,将极性反转线位置的探测问题转化为一个模式识别中的二分类问题,提出了一种基于支持向量机的极性反转线检测算法,自动探测与识别太阳动力学天文台(Solar Dynamics Observatory, SDO)日震和磁成像仪(Helioseismic and Magnetic Imager, HMI)磁图的极性反转线位置.与现有算法的对比结果表明,此算法可以精确直观地检测太阳活动区的极性反转线.  相似文献   

17.
光谱预处理及其对星系/类星体分类结果的影响   总被引:1,自引:0,他引:1  
由于噪声、畸变和观测环境等因素的影响,在天体光谱自动处理之前,需要对它进行相应的预处理.研究巡天光谱的预处理(数据格式和流量标准化)对光谱自动分析的影响.分析了同数据格式对光谱及其谱线特征的影响和格式标准化研究的必要性;通过分析光谱流量数量级的不确定性及其特点,提出了流量数量级变化的基本模型,并给出了相应的标准化方法.通过星系和类星体的分类实验,结果表明:1)采用对数波长数据格式对光谱的自动分类更有利;2)验证了所提出的流量标准化模型的合理性,以及所给流量标准化方法良好的性能.特别需要指出的是,文献中通常采用的流量标准化方法在光谱自动分类中的效果反而是较差的.  相似文献   

18.
Because of the effects of noise, distortion, observational environment and other factors, some appropriate preprocessing should be made in advance of automatic classification of celestial spectra. We have studied the effect of data format and flux standardization on the automatic classification of sky survey spectra. A basic model adaptable for the order-of-magnitude variation of fluxes is proposed, and the corresponding standardization methods are given. Our experimental results on galaxy and quasar classification show that the logarithmic wavelength data format is better for the automatic spectral classification. By these experiments, the reasonableness of the proposed model and the performances of the given flux standardization methods are verified. Especially, it is noted that the commonly used flux standardization is the worst, among other standardizations, for automatic spectral classification.  相似文献   

19.
The results of a spectral classification of 257 M stars observed in the Cepheus region are given. Their equatorial coordinates, photographic stellar magnitudes, and spectral subtypes were determined. These stars are giants and supergiants, in all probability. None of them appear in a catalog of variable stars. It is assumed that variability might be detected in many of them upon further study. Fifty-two of the stars have been identified with infrared sources.  相似文献   

20.
肖胡兵 《天文学报》2022,63(3):37-140
<正>耀变体是活动星系核的一个具有极端观测性质的子类,耀变体是目前已知的宇宙中辐射最强最持久的天体,其辐射包括电磁辐射以及中微子辐射.费米大视场望远镜的发射对耀变体的研究作出了极大的贡献,自从其2008年发射至今已经公布的4代源表包括了3000多个耀变体的伽马波段观测数据.本文中将分别从数据的统计分析,耀变体全波段SED (spectral energy distribution)拟合,以及Me V波段探测的设计模拟出发对耀变体进行全面的研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号