首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K.E. Johnson   《New Astronomy Reviews》2004,48(11-12):1337
The Square Kilometer Array (SKA) will enable studies of star formation in nearby galaxies with a level of detail never before possible outside of the Milky Way. Because the earliest stages of stellar evolution are often inaccessible at optical and near-infrared wavelengths, high spatial resolution radio observations are necessary to explore extragalactic star formation. The SKA will have the sensitivity to detect individual ultracompact HII regions out to the distance of nearly 50 Mpc, allowing us to study their spatial distributions, morphologies, and populations statistics in a wide range of environments. Radio observations of Wolf-Rayet stars outside of the Milky Way will also be possible for the first time, greatly expanding the range of conditions in which their mass loss rates can be determined from free-free emission. On a vastly larger scale, natal of super star clusters will be accessible to the SKA out to redshifts of nearly z 0.1. The unprecedented sensitivity of radio observations with the SKA will also place tight constraints on the star formation rates as low as 1M yr−1 in galaxies out to a redshift of z 1 by directly measuring the thermal radio flux density without assumptions about a galaxy’s magnetic field strength, cosmic ray production rate, or extinction.  相似文献   

2.
The epoch of reionization (EoR) sets a fundamental benchmark in cosmic structure formation, corresponding to the formation of the first luminous objects that act to ionize the neutral intergalactic medium (IGM). Recent observations at near-IR and radio wavelengths imply that we are finally probing into this key epoch of galaxy formation at z 6. The Square Kilometer Array (SKA) will provide critical insight into the EoR, in a number of ways. First, the ability of the SKA to image the neutral IGM in 21-cm emission is a truly unique probe of the process of reionization, and is recognized as the next necessary and fundamental step in our study of the evolution of large scale structure and cosmic reionization. Second, study of HI 21-cm absorption toward the first radio loud objects probes small to intermediate scale structure in the neutral ‘cosmic web’, as well as HI in the first collapsed structures (proto-disks and mini-halos). And third, the incomparable sensitivity of the SKA allows for the study of the molecular gas, dust, and star formation activity in the first galaxies, as well as the radio continuum emission from the first accreting massive black holes. Such objects will be obscured at optical wavelengths due to absorption by the neutral IGM.  相似文献   

3.
Recent observations of the environments of gamma-ray bursts (GRBs) favour massive stars as their progenitors, which are likely to be surrounded by gas and dust. The visibility of the optical and UV emission of a GRB is expected to depend on the characteristics of both the dust and the GRB emission itself. A reasonable distribution of surrounding dust is capable of absorbing all the optical and UV emission of the optical flash and afterglow of a GRB, unless the optical flash has a peak isotropic luminosity L peak≳1049 erg s−1 . This means that dark bursts should exist and these bursts will have to be studied at infrared rather than optical wavelengths. In this paper details will be given about the infrared GRB dust emission. The reprocessed dust emission peaks at a rest-frame wavelength of about 8 μm. Forthcoming space telescopes, in particular the IRAC camera on board the Space Infrared Telescope Facility , could detect this emission out to a redshift of about two. However, an accurate position of the GRB afterglow must be provided for this emission to be identified, because the light curve of the reprocessed dust emission does not vary on time-scales less than several years.  相似文献   

4.
Using the generic hydrodynamic model of gamma-ray burst(GRB) afterglows, we calculate the radio afterglow light curves of low luminosity, high luminosity,failed and standard GRBs in different observational bands of FAST’s energy window.The GRBs are assumed to be located at different distances from us. Our results rank the detectability of GRBs in descending order as high luminosity, standard, failed and low luminosity GRBs. We predict that almost all types of radio afterglows except those of low luminosity GRBs could be observed by a large radio telescope as long as the domains of time and frequency are appropriate. It is important to note that FAST can detect relatively weak radio afterglows at a higher frequency of 2.5 GHz for very high redshift up to z = 15 or even more. Radio afterglows of low luminosity GRBs can only be detected after the completion of the second phase of FAST. FAST is expected to significantly expand the sample of GRB radio afterglows in the near future.  相似文献   

5.
6.
The intra-cluster and inter-galactic media that pervade the large scale structure of the Universe are known to be magnetized at sub-micro Gauss to micro Gauss levels and to contain cosmic rays. The acceleration of cosmic rays and their evolution along with that of magnetic fields in these media is still not well understood. Diffuse radio sources of synchrotron origin associated with the Intra-Cluster Medium (ICM) such as radio halos, relics and mini-halos are direct probes of the underlying mechanisms of cosmic ray acceleration. Observations with radio telescopes such as the Giant Metrewave Radio Telescope, the Very Large Array and the Westerbork Synthesis Radio Telescope have led to the discoveries of about 80 such sources and allowed detailed studies in the frequency range 0.15–1.4 GHz of a few. These studies have revealed scaling relations between the thermal and non-thermal properties of clusters and favour the role of shocks in the formation of radio relics and of turbulent re-acceleration in the formation of radio halos and mini-halos. The radio halos are known to occur in merging clusters and mini-halos are detected in about half of the cool-core clusters. Due to the limitations of current radio telescopes, low mass galaxy clusters and galaxy groups remain unexplored as they are expected to contain much weaker radio sources. Distinguishing between the primary and the secondary models of cosmic ray acceleration mechanisms requires spectral measurements over a wide range of radio frequencies and with high sensitivity. Simulations have also predicted weak diffuse radio sources associated with filaments connecting galaxy clusters. The Square Kilometre Array (SKA) is a next generation radio telescope that will operate in the frequency range of 0.05–20 GHz with unprecedented sensitivities and resolutions. The expected detection limits of SKA will reveal a few hundred to thousand new radio halos, relics and mini-halos providing the first large and comprehensive samples for their study. The wide frequency coverage along with sensitivity to extended structures will be able to constrain the cosmic ray acceleration mechanisms. The higher frequency (>5 GHz) observations will be able to use the Sunyaev–Zel’dovich effect to probe the ICM pressure in addition to tracers such as lobes of head–tail radio sources. The SKA also opens prospects to detect the ‘off-state’ or the lowest level of radio emission from the ICM predicted by the hadronic models and the turbulent re-acceleration models.  相似文献   

7.
In the rapidly developing field of study of the transient sky, fast radio transients are perhaps the most exciting objects of scrutiny at present. The SKA, with its wide field-of-view and significant improvement in sensitivity over existing facilities, is expected to detect a plethora of fast transients which, in addition to help resolve the mysteries surrounding their nature and origin, will also lead to other interesting applications in astrophysics. We explore some of these possibilities here, and also emphasize the current status and future plans of the Indian community working in this area, in the context of ongoing work and extension of this to the SKA.  相似文献   

8.
We present a brief review of progress in the understanding of general spiral and elliptical galaxies, through merger, star formation and AGN activities. With reference to case studies performed with the GMRT, we highlight the unique aspects of studying galaxies in the radio wavelengths where powerful quasars and bright radio galaxies are traditionally the dominating subjects. Though AGN or quasar activity is extremely energetic, it is extremely short-lived. This justify focussing on transitional galaxies to find relic-evidences of the immediate past AGN-feedback which decide the future course of evolution of a galaxy. Relic radio lobes can be best detected in low frequency observations with the GMRT, LOFAR and in future SKA. The age of these relic radio plasma can be as old as a few hundred Myr. There is a huge gap between this and what is found in optical bands. The very first relic-evidences of a past quasar activity (Hanny’s Voorwerp) was discovered in 2007 by a Galaxy Zoo citizen-scientist, a school teacher, in the optical bands. This relic is around a few tens of thousand years old. More discoveries needed to match these time-scales with star formation time-scales in AGN host galaxies to better understand black hole galaxy co-evolution process via feedback-driven quenching of star formation. It is now well-accepted that discovery and characterization of such faint fuzzy relic features can be more efficiently done by human eye than a machine. Radio interferometry images are more complicated than optical and need the citizen-scientists to be trained. RAD@home, the only Indian citizen-science research project in astronomy, analysing TIFR GMRT Sky Survey (TGSS) 150 MHz data and observing from the Giant Meterwave Radio Telescope (GMRT), was launched in April 2013. Unique, zero-infrastructure zero-funded design of RAD@home as a collaboratory of 69 trained e-astronomers is briefly described. Some of the new-found objects like episodic radio galaxies, radio-jet and companion galaxy interaction, radio galaxy bent by motion of the intra-filament medium in a Mpc-scale galaxy filament etc. are briefly presented as demonstration of its potential. Citizen-science has not only opened up a new way for astronomy research but also possibly the only promising way to extract maximum science out of the Big Data in the SKA-era. This possibly can convert the Big Data problem into a prospect. Citizen-science can contribute to the knowledge creation in never-seen-before speed and in approach. As it is based on internet, it can provide an equal opportunity of academic-growth to people even in the under-developed regions where we always need to put our optical and radio telescopes. This can liberate the research-activity of city-based research-institutes out of the four brick walls and alleviate various socio-economic and geo-political constraints on growth of citizens educated in undergraduate-level science but located in remote areas.  相似文献   

9.
We calculate the reverse shock (RS) synchrotron emission in the optical and the radio wavelength bands from electron–positron pair-enriched gamma-ray burst ejecta with the goal of determining the pair content of gamma-ray bursts (GRBs) using early-time observations. We take into account an extensive number of physical effects that influence radiation from the RS-heated GRB ejecta. We find that optical/infrared flux depends very weakly on the number of pairs in the ejecta, and there is no unique signature of ejecta pair enrichment if observations are confined to a single wavelength band. It may be possible to determine if the number of pairs per proton in the ejecta is ≳100 by using observations in optical and radio bands; the ratio of flux in the optical and radio at the peak of each respective RS light curve is dependent on the number of pairs per proton. We also find that over a large parameter space, RS emission is expected to be very weak; GRB 990123 seems to have been an exceptional burst in that only a very small fraction of the parameter space produces optical flashes this bright. Also, it is often the case that the optical flux from the forward shock is brighter than the RS flux at deceleration. This could be another possible reason for the paucity of prompt optical flashes with a rapidly declining light curve at early times as was seen in GRBs 990123 and 021211. Some of these results are a generalization of similar results reported in Nakar & Piran.  相似文献   

10.
Radio imaging of ULIR galaxies is ideal to explore the connection between the starburst and the AGN phenomenon since it is unaffected by dust obscuration, and provides the required high angular resolution to distinguish between an AGN and starburst emission. We have made combined 18 cm radio continuum, EVN and MERLIN observations of 13 ULIRGs that have the parsec and deci-parsec scale resolution necessary to distinguish between an AGN and supernovae remnants at the centres of these galaxies, and assess the contribution of each to the total energy distribution. Images of three galaxies are presented here.  相似文献   

11.
We discuss the detection of redshifted line and continuum emission at radio wavelengths using a Square Kilometer Array (SKA), specifically from low-excitation rotational molecular line transitions of CO and HCN (molecular lines), the recombination radiation from atomic transitions in almost-ionized hydrogen (radio recombination lines; RRLs), OH and H2O maser lines, as well as from synchrotron and free–free continuum radiation and HI 21-cm line radiation. The detection of radio lines with the SKA offers the prospect to determine the redshifts and thus exact luminosities for some of the most distant and optically faint star-forming galaxies and active galactic nuclei, even those galaxies that are either deeply enshrouded in interstellar dust or shining prior to the end of reionization. Moreover, it provides an opportunity to study the astrophysical conditions and resolved morphologies of the most active regions in galaxies during the most active phase of star formation at redshift z 2. A sufficiently powerful and adaptable SKA correlator will enable wide-field three-dimensional redshift surveys at chosen specific high redshifts, and will allow new probes of the evolution of large-scale structure (LSS) in the distribution of galaxies. The detection of molecular line radiation favours pushing the operating frequencies of SKA up to at least 26 GHz, and ideally to 40 GHz, while very high redshift maser emissions requires access to about 100 MHz. To search for LSS the widest possible instantaneous field of view would be advantageous.  相似文献   

12.
天线增益校准是射电天文观测数据处理过程中的一个关键步骤.分析了经典的天线增益校准算法Antsol的基本原理,并基于Python对Antsol算法进行了高性能实现,所完成的程序代码已经集成到平方公里阵列(Square Kilometre Array,SKA)的射电天文模拟校准成像软件(Radio Astronomy Si...  相似文献   

13.
In this paper we consider the use of gamma-ray bursts (GRBs) as distance markers to study the unification of dark energy and dark matter in the context of the so-called generalized Chaplygin gas (GCG) model. We consider that the GRB luminosity may be estimated from its variability and time-lag, and we also use the so-called Ghirlanda relation. We evaluate the improvements expected once more GRBs and their redshift become available. We show that although GRBs allow for extending the Hubble diagram to higher redshifts, its use as a dark energy probe is limited when compared to Type Ia supernovae. We find that the information from GRBs can provide some bounds on the amount of dark matter and dark energy independently of the equation of state. This is particularly evident for XCDM-type models, which are, for low redshifts  ( z ≤ 2)  , degenerate with the GCG.  相似文献   

14.
The origin and nature of the highest energy cosmic ray events is currently the subject of intense investigation by giant air shower arrays and fluorescent detectors. These particles reach energies well beyond what can be achieved in ground-based particle accelerators and hence they are fundamental probes for particle physics as well as astrophysics. One of the main topics today focuses on the high energy end of the spectrum and the potential for the production of high-energy neutrinos. Above about 1020 eV cosmic rays from extragalactic sources are expected to be severely attenuated by pion photoproduction interactions with photons of the cosmic microwave background. Investigating the shape of the cosmic ray spectrum near this predicted cut-off will be very important. In addition, a significant high-energy neutrino background is naturally expected as part of the pion decay chain which also contains much information.Because of the scarcity of these high-energy particles, larger and larger ground-based detectors have been built. The new generation of digital radio telescopes may play an important role in this, if properly designed. Radio detection of cosmic ray showers has a long history but was abandoned in the 1970s. Recent experimental developments together with sophisticated air shower simulations incorporating radio emission give a clearer understanding of the relationship between the air shower parameters and the radio signal, and have led to resurgence in its use. Observations of air showers by the SKA could, because of its large collecting area, contribute significantly to measuring the cosmic ray spectrum at the highest energies. Because of the large surface area of the moon, and the expected excellent angular resolution of the SKA, using the SKA to detect radio Cherenkov emission from neutrino-induced cascades in lunar regolith will be potentially the most important technique for investigating cosmic ray origin at energies above the photoproduction cut-off.  相似文献   

15.
16.
Radio wavelength observations of solar system bodies reveal unique information about them, as they probe to regions inaccessible by nearly all other remote sensing techniques and wavelengths. As such, the SKA will be an important telescope for planetary science studies. With its sensitivity, spatial resolution, and spectral flexibility and resolution, it will be used extensively in planetary studies. It will make significant advances possible in studies of the deep atmospheres, magnetospheres and rings of the giant planets, atmospheres, surfaces, and subsurfaces of the terrestrial planets, and properties of small bodies, including comets, asteroids, and KBOs. Further, it will allow unique studies of the Sun. Finally, it will allow for both indirect and direct observations of extrasolar giant planets.  相似文献   

17.
平方公里阵列(Square Kilometre Array,SKA)项目是建设全球最大射电望远镜的国际合作项目,其灵敏度和测量速度将比当前所有的射电望远镜都要高出一个数量级.连续谱巡天是SKA的主要观测模式之一,基于连续谱成像建立巡天区域的标准星图,将能为后续天文科学研究奠定重要基础.银河系与河外星系全天默奇森宽场阵列拓展巡天(GaLactic and Extragalactic All-sky Murchison Widefield Array survey eXtended,GLEAM-X)是2018—2020年利用SKA先导望远镜默奇森宽场阵列(Murchison Wide-field Array,MWA)二期拓展阵列开展的新的射电连续谱巡天项目,观测期间积累了大量的低频巡天观测数据.海量观测数据的自动化、大批量处理是SKA望远镜项目所面临的的最大挑战和难题之一,基于分布式执行框架的成像管线优化经验将有助于解决海量数据处理问题.详细介绍了GLEAM-X成像管线并对其进行整合和改进,在中国SKA区域中心原型机(China SKA Regional Centre Prototype,...  相似文献   

18.
Popular models for the origin of gamma-ray bursts (GRBs) include short-lived massive stars as the progenitors of the fireballs. Hence the redshift distribution of GRBs should track the cosmic star formation rate of massive stars accurately. A significant proportion of high-mass star formation activity appears to occur in regions that are obscured from view in the optical waveband by interstellar dust. The amount of dust-enshrouded star formation activity taking place has been estimated by observing the thermal radiation from the dust that has been heated by young stars in the far-infrared and submillimetre wavebands. Here we discuss an alternative probe – the redshift distribution of GRBs. GRBs are detectable at the highest redshifts, and because gamma-rays are not absorbed by dust, the redshift distribution of GRBs should therefore be unaffected by dust extinction. At present the redshifts of GRBs can only be determined from the associated optical transient emission; however, useful information about the prevalence of dust-obscured star formation can also be obtained from the ratio of GRBs with and without an associated optical transient. Eight GRBs currently have spectroscopic redshifts. Once about a hundred redshifts are known, the population of GRBs will provide an important test of different models of the star formation history of the Universe.  相似文献   

19.
High resolution radio observations provide a unique tool for investigation ofultraluminous infrared galaxies, due to the combination of high angularresolution and source transparency available at centimeter wavelengths. Thetypical angular size of the IR emitting region in the most luminous systems isof order 0.1 arcsec, while dust absorption appears to obscure this region fromdirect view at wavelengths shorter than 100 microns. Radio observationswith VLBI and MERLIN are revealing compact radio structures indicative of bothstarburst and AGN activity in these systems. Additional observations arerequired to clarify relationships between radio structures and the energygeneration mechanisms, and to realize the full potential of radio interferometryfor ULIRG studies.  相似文献   

20.
Transient radio sources are necessarily compact and usually are the locations of explosive or dynamic events, therefore offering unique opportunities for probing fundamental physics and astrophysics. In addition, short-duration transients are powerful probes of intervening media owing to dispersion, scattering and Faraday rotation that modify the signals. While radio astronomy has an impressive record obtaining high time resolution, usually it is achieved in quite narrow fields of view. Consequently, the dynamic radio sky is poorly sampled, in contrast to the situation in the X-ray and γ-ray bands. The SKA has the potential to change this situation, opening up new parameter space in the search for radio transients. We summarize the wide variety of known and hypothesized radio transients and demonstrate that the SKA offers considerable power in exploring this parameter space. Requirements on the SKA to search the parameter space include the abilities to: (1) make targeted searches using beam forming capability; (2) conduct blind, all-sky surveys with dense sampling of the frequency–time plane in wide fields; (3) sample the sky with multiple fields of view from spatially well-separated sites in order to discriminate celestial and terrestrial signals; (4) utilize as much of the SKAs aggregate collecting area as possible in blind surveys, thus requiring a centrally condensed configuration, and; (5) localize repeating transient sources to high angular precision, requiring a configuration with long baselines, thus requiring collecting area in both a centrally condensed “core” array and sufficient area on long baselines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号