首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Temporal variation of PM10 using 2-year data (January, 2007–December, 2008) of Delhi is presented. PM10 varied from 42 to 200 μg m−3 over January to December, with an average 114.1 ± 81.1 μg m−3. They are comparable with the data collected by Central Pollution Control Board (National Agency which monitors data over the entire country in India) and are lower than National Ambient Air Quality (NAAQ) standard during monsoon, close to NAAQ during summer but higher in winter. Among CO, NO2, SO2, rainfall, temperature, and wind speed, PM10 shows good correlation with CO. Also, PM10, PM2.5, and PM1 levels on Deepawali days when fireworks were displayed are presented. In these festive days, PM10, PM2.5, and PM1 levels were 723, 588, and 536 μg m−3 in 2007 and 501, 389, and 346 μg m−3 in 2008. PM10, PM2.5, and PM1 levels in 2008 were 1.5 times lower than those in 2007 probably due to higher mixing height (446 m), temperature (23.8°C), and winds (0.36 ms−1).  相似文献   

2.
The rapid urbanization, industrialization, modernization, and the frequent Middle Eastern dust storms have negatively impacted the ambient air quality in Bahrain. The objective of this study is to identify the most critical atmospheric air pollutants with emphasis on their potential risk to health based on calculated AQI (air quality index) values using EPA approach. The air quality datasets of particulate matters (PM10 and PM2.5), ozone (O3), sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO) were measured in January 2012 and August 2012 using five mobile air quality monitoring stations located at different governorates. The results of this study demonstrated that PM10 and PM2.5 are the most critical air pollutants in Bahrain with PM2.5 prevailing during January 2012 and PM10 prevailing during August 2012. The corresponding AQI categories were utilized to evaluate spatial variability of particulate matters in five governorates. The impact of meteorological factors such as ambient air temperature, wind speed, relative humidity, and total precipitation on ambient air quality were discussed. The analysis demonstrated that the highest PM10 concentrations were observed in the Northern Governorate while the highest PM2.5 concentrations were observed in the Capital, Central, and Northern Governorates during August 2012. It was observed that the levels of PM2.5 pollution were higher within proximity of the industrial zone. The results suggested that the average PM2.5/PM10 ratio in August 2012 was lower than in January 2012 due to the Aeolian processes. This study concludes that higher wind speed, total precipitation, relative humidity rates, and lower ambient air temperature in January 2012 assisted with the dissipation of particulate matter thus lowering the pollution levels of both PM10 and PM2.5 in comparison to August 2012.  相似文献   

3.
This paper is concerned with the estimation of the removal efficiency of PM10 by large-scale precipitation under no-wind conditions in a background (rural) and urban areas. The changes in PM10 concentrations before, during and after the presence of rainfall were studied from 2007 to 2013. The study was conducted in two different locations identified with regard to air quality. DAVIS weather stations were used to determine the meteorological conditions. The concentration of PM10 was calculated with the use of the gravimetric reference method. Two hundred and ninety-nine measurement series were carried out. A linear relationship was found between the intensity and duration of rainfall and the value of the removal coefficient (ΔC). It was proved that except light rains, for the near-to-ground troposphere, the effectiveness of the removal of PM10C) did not assume different values at various locations for rainfall with the same intensity and duration. It was found that a temporary interaction of the effect of the purification by wet deposition was being minimised in areas characterised by low air quality. It was confirmed that intense rains resulted in the maintenance of higher values of air quality.  相似文献   

4.
Outdoor PM2.5 easily flows into indoor and seriously influences indoor air quality due to its characteristics of flow, diffusion and penetration. It is a proper ‘gas’ tracer similar to CO2 to study building ventilation. Therefore, in this paper, a model for calculating air change rates by removing indoor PM2.5 was deduced. Also, some factors influencing the air change rate were qualitatively analyzed and the expression of possible air change rate error was given. The comparison between the results from PM2.5 removal method and the data from CO2 decay method validated the model. The relative error between the results of the two methods is less than 10%. On the basis of validating the model, this paper presented the research of air change rates in ten naturally ventilated house rooms in three Chinese cities. It is found that the rooms with the ventilation rates of 1.15–6.75 m3/h/person have inadequate ventilation.  相似文献   

5.
Given the relevance of desert aerosols to environmental issues such as dust storms, climate change and human health effects, we provide a demonstration of how the bedrock geology of an arid area influences the mineralogy and geochemistry of even the finest particulate matter (i.e., the inhalable fraction <10 μm in size: PM10). PM10 samples extracted from desert sediments at geologically contrasting off-road sites in central and southeastern Australia (granitic, high grade metamorphic, quartzitic sandstone) were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma atomic emission spectrometry (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS). The “granitic” PM10 are highly alkali feldspathic and illitic, with a wide range of accessory minerals including rutile (TiO2), monazite [(Ce, La, Nd, Th, Y) PO4], xenotime (YPO4), apatite [Ca5(PO4)3 (F, OH, Cl)], hematite (Fe3O4), zircon (ZrSiO4) and thorite (ThSiO4). This mineralogy is reflected in the geochemistry which shows notable enrichments in rare earth elements (REE) and most high field strength elements (both held in the accessory minerals), and higher than normal levels of low (<2.0) ionic potential elements (Na, K, Li, Cs, Rb: held in alkali feldspar and illite). The “metamorphic” resuspended PM10 define a mineralogy clearly influenced by local exposures of pelitic and calc-silicate schists (sillimanite, muscovite, calcite, Ca-amphibole), a dominance of monazite over other REE-bearing phases, and a geochemistry distinguished by enrichments in alkaline earth metals (Ca, Mg, Ba, Sr) and depletion in heavy REE. The “quartzite” PM10, derived from rocks already recycled by Precambrian erosion and sedimentary transport, show a sedimentologically mature mineralogy of mostly quartz and kaolinite, detrital accessory ilmenite, rutile, monazite and hematite, and the strongest geochemical depletion (especially K, Rb, Cs, Na, Ca, Mg, Ba).  相似文献   

6.
The high-pressure behavior of a vanadinite (Pb10(VO4)6Cl2, a = b = 10.3254(5), = 7.3450(4) Å, space group P63/m), a natural microporous mineral, has been investigated using in-situ HP-synchrotron X-ray powder diffraction up to 7.67 GPa with a diamond anvil cell under hydrostatic conditions. No phase transition has been observed within the pressure range investigated. Axial and volume isothermal Equations of State (EoS) of vanadinite were determined. Fitting the PV data with a third-order Birch-Murnaghan (BM) EoS, using the data weighted by the uncertainties in P and V, we obtained: V 0 = 681(1) Å3, K 0 = 41(5) GPa, and K′ = 12.5(2.5). The evolution of the lattice constants with P shows a strong anisotropic compression pattern. The axial bulk moduli were calculated with a third-order “linearized” BM-EoS. The EoS parameters are: a 0 = 10.3302(2) Å, K 0(a) = 35(2) GPa and K′(a) = 10(1) for the a-axis; c 0 = 7.3520(3) Å, K 0(c) = 98(4) GPa, and K′(c) = 9(2) for the c-axis (K 0(a):K 0(c) = 1:2.80). Axial and volume Eulerian-finite strain (fe) at different normalized stress (Fe) were calculated. The weighted linear regression through the data points yields the following intercept values: Fe a (0) = 35(2) GPa for the a-axis, Fe c (0) = 98(4) GPa for the c-axis and Fe V (0) = 45(2) GPa for the unit-cell volume. The slope of the regression lines gives rise to K′ values of 10(1) for the a-axis, 9(2) for the c-axis and 11(1) for the unit cell-volume. A comparison between the HP-elastic response of vanadinite and the iso-structural apatite is carried out. The possible reasons of the elastic anisotropy are discussed.  相似文献   

7.
Aeolian (wind) erosion is most common in arid regions. The resulted emission of PM10 (particulate matter that is smaller than 10 μm in diameter) from the soil has many environmental and socioeconomic consequences such as soil degradation and air pollution. Topsoil resistance to aeolian transport highly depends on the surface composition. The study aim was to examine variations in PM10 fluxes in a desert-dust source due to surface composition and topsoil disturbance. Aeolian field experiments using a boundary layer wind tunnel alongside soil composition analysis were integrated in this study. The results show variations in PM10 fluxes (ranging from 9.5 to 524.6 mg m?2 min?1) in the studied area. Higher wind velocity increased significantly the PM10 fluxes in all surface compositions. A short-term natural disturbance caused changes in the aggregate soil distribution (ASD) and increased significantly PM10 emissions. Considering that PM10 contains clays, organic matter, and absorbed elements, the recorded PM10 fluxes are indicative of the potential soil loss and degradation by wind erosion in such resource-limited ecosystems. The findings have implications in modeling dust emission from a source area with complex surfaces.  相似文献   

8.
9.
10.
For the first time, chemical characterization of PM10 aerosols was attempted over the Bay of Bengal (BoB) and Arabian Sea (AS) during the ICARB campaign. Dominance of SO 4 2? , NH 4 + and NO 3 ? was noticed over both the regions which indicated the presence of ammonium sulphate and ammonium nitrate as major water soluble particles playing a very important role in the radiation budget. It was observed that all the chemical constituents had higher concentrations over Bay of Bengal as compared to Arabian Sea. Higher concentrations were observed near the Indian coast showing influence of landmass indicating that gaseous pollutants like SO2, NH3 and NO x are transported over to the sea regions which consequently contribute to higher SO 4 2? , NH 4 + and NO 3 ? aerosols respectively. The most polluted region over BoB was 13°?19°N and 70°?90°E while it was near 11°N and 75°E over AS. Although the concentrations were higher over Bay of Bengal for all the chemical constituents of PM10 aerosols, per cent non-sea salt (nss) fraction (with respect to Na) was higher over Arabian Sea. Very low Ca2+ concentration was observed at Arabian Sea which led to higher atmospheric acidity as compared to BoB. Nss SO 4 2? alone contributed 48% of total water soluble fraction over BoB as well as AS. Ratios SO 4 2? /NO ? 3 over both the regions (7.8 and 9 over BoB and AS respectively) were very high as compared to reported values at land sites like Allahabad (0.63) and Kanpur (0.66) which may be due to very low NO.3 over sea regions as compared to land sites. Air trajectory analysis showed four classes: (i) airmass passing through Indian land, (ii) from oceanic region, (iii) northern Arabian Sea and Middle East and (iv) African continent. The highest nss SO 4 2? was observed during airmasses coming from the Indian land side while lowest concentrations were observed when the air was coming from oceanic regions. Moderate concentrations of nss SO2. 4 were observed when air was seen moving from the Middle East and African continent. The pH of rainwater was observed to be in the range of 5.9–6.5 which is lower than the values reported over land sites. Similar feature was reported over the Indian Ocean during INDOEX indicating that marine atmosphere had more free acidity than land atmosphere.  相似文献   

11.
R. O. Sack 《Petrology》2017,25(5):498-515
Possible topologies of miscibility gaps in arsenian (Cu,Ag)10(Fe,Zn)2(Sb,As)4S13 fahlores are examined. These topologies are based on a thermodynamic model for fahlores whose calibration has been verified for (Cu,Ag)10(Fe,Zn)2Sb4S13 fahlores, and conform with experimental constraints on the incompatibility between As and Ag in (Cu,Ag)10(Fe,Zn)2(Sb,As)4S13 fahlores, and with experimental and natural constraints on the incompatibility between As and Zn and the nonideality of the As for Sb substitution in Cu10(Fe,Zn)2(Sb,As)4S13 fahlores. It is inferred that miscibility gaps in (Cu,Ag)10(Fe,Zn)2As4S13 fahlores have critical temperatures several °C below those established for their Sb counterparts (170 to 185°C). Depending on the structural role of Ag in arsenian fahlores, critical temperatures for (Cu,Ag)10(Fe,Zn)2(Sb,As)4S13 fahlores may vary from comparable to those inferred for (Cu,Ag)10(Fe,Zn)2As4S13 fahlores, if the As for Sb substitution stabilizes Ag in tetrahedral metal sites, to temperatures approaching 370°C, if the As for Sb substitution results in an increase in the site preference of Ag for trigonal-planar metal sites. The latter topology is more likely based on comparison of calculated miscibility gaps with compositions of fahlores from nature exhibiting the greatest departure from the Cu10(Fe,Zn)2(Sb,As)4S13 and (Cu,Ag)10(Fe,Zn)2Sb4S13 planes of the (Cu,Ag)10(Fe,Zn)2(Sb,As)4S13 fahlore cube.  相似文献   

12.
Freshwater marshes could be a source of greenhouse gases emission because they contain large amounts of soil carbon and nitrogen. These emissions are strongly influenced by exogenous nitrogen. We investigate the effects of exogenous nitrogen on ecosystem respiration (CO2), CH4 and N2O emissions from freshwater marshes in situ in the Sanjiang Plain Northeast of China during the growing seasons of 2004 and 2005, using a field fertilizer experiment and the static opaque chamber/GC techniques. The results show that there were no significant differences in patterns of seasonal variations of CO2 and CH4 among the fertilizer and non-fertilizer treatments, but the seasonal patterns of N2O emission were significantly influenced by the exogenous nitrogen. Seasonal averages of the CO2 flux from non-fertilizer and fertilizer were 987.74 and 1,344.35 mg m 2 h 1, respectively, in 2004, and 898.59 and 2,154.17 mg m 2 h 1, respectively, in 2005. And the CH4 from the control and fertilizer treatments were 6.05 and 13.56 mg m 2 h 1 and 0.72 and 1.88 mg m 2 h 1, respectively, in 2004 and 2005. The difference of N2O flux between the fertilizer and non-fertilizer treatments is also significant either in 2004 and 2005. On the time scale of 20-, 100-, and 500-year periods, the integrated global warming potential (GWP) of CO2 + CH4 + N2O released during the two growing seasons for the treatment of fertilizer was 97, 94 and 89%, respectively, higher than that for the control, which suggested that the nitrogen fertilizer can enhance the GWP of the CH4 and N2O either in long time or short time scale.  相似文献   

13.
The crystal structure of the unstable mineral alumoklyuchevskite K3Cu3AlO2(SO4)4 [monoclinic, I2, a = 18.772(7), b = 4.967(2), c = 18.468(7) Å, β = 101.66(1)°, V = 1686(1) Å] was refined to R 1 = 0.131 for 2450 unique reflections with F ≥ 4σF hkl. The structure is based on oxocentered tetrahedrons (OAlCu 3 7+ ) linked into chains via edges. Each chain is surrounded by SO4 tetrahedrons forming a structural complex. Each complex is elongated along the b axis. This type of crystal structure was also found in other fumarole minerals of the Great Tolbachik Fissure Eruption (GTFE, Kamchatka Peninsula, Russia, 1975–1976), klyuchevskite, K3Cu3Fe3+O2(SO4)4; and piypite, K2Cu2O(SO4)2.  相似文献   

14.
 Synthetic aegirine LiFeSi2O6 and NaFeSi2O6 were characterized using infrared spectroscopy in the frequency range 50–2000 cm−1, and at temperatures between 20 and 300 K. For the C2/c phase of LiFeSi2O6, 25 of the 27 predicted infrared bands and 26 of 30 predicted Raman bands are recorded at room temperature. NaFeSi2O6 (with symmetry C2/c) shows 25 infrared and 26 Raman bands. On cooling, the C2/cP21/c structural phase transition of LiFeSi2O6 is characterized by the appearance of 13 additional recorded peaks. This observation indicates the enlargement of the unit cell at the transition point. The appearance of an extra band near 688 cm−1 in the monoclinic P21/c phase, which is due to the Si–O–Si vibration in the Si2O6 chains, indicates that there are two non-equivalent Si sites with different Si–O bond lengths. Most significant spectral changes appear in the far-infrared region, where Li–O and Fe–O vibrations are mainly located. Infrared bands between 300 and 330 cm−1 show unusually dramatic changes at temperatures far below the transition. Compared with the infrared data of NaFeSi2O6 measured at low temperatures, the change in LiFeSi2O6 is interpreted as the consequence of mode crossing in the frequency region. A generalized Landau theory was used to analyze the order parameter of the C2/cP21/c phase transition, and the results suggest that the transition is close to tricritical. Received: 21 January 2002 / Accepted: 22 July 2002  相似文献   

15.
In this work, permeation of mixed gases H2S/CH4 through commercial polyphenylene oxide (PPO) hollow fiber and poly (ester urethane) urea (PEUU) flat membranes was studied at pressures of 345–689 kPa, at ambient temperature and at 313.15 K. Various H2S concentrations of about 100–5000 ppm in CH4 binary synthetic gas mixtures as well as a real natural gas sample obtained from a gas refinery containing 0.3360 mol.% H2S (equivalent to 3360 ppm) were tested. It was observed that the permeance of components was affected by the balance between competitive sorption and plasticization effects. Separation factors of H2S/CH4 were in the range of 1.3–2.9, 1.8–3.1 and 2.2–4.3 at pressures of 345, 517 and 689 kPa, respectively. In the range of 101–5008 ppm of H2S in CH4, the effect of temperature on the separation factor was nearly negligible; however, permeances of both components of the mixtures increased with temperature. Additionally, the results obtained by PEUU membrane indicated that it was a better choice for hydrogen sulfide separation from H2S/CH4 mixtures than PPO. For PPO membrane, removal of hydrogen sulfide from high-concentration (up to 5008 ppm) binary mixtures of H2S/CH4 was compared with that of low concentration (as low as 101 ppm) through PPO. At concentrations of 101–968 ppm, plasticization was dominant compared with the competitive sorption, while for the H2S feed concentrations of 3048 ppm, the competitive sorption effect was dominant. For H2S concentration of 5008 ppm, the balance between these two effects played an important role for explanation of its trend.  相似文献   

16.
A field facility located in Bozeman, Montana provides the opportunity to test methods to detect, locate, and quantify potential CO2 leakage from geologic storage sites. From 9 July to 7 August 2008, 0.3 t CO2 day−1 were injected from a 100-m long, ~2.5-m deep horizontal well. Repeated measurements of soil CO2 fluxes on a grid characterized the spatio-temporal evolution of the surface leakage signal and quantified the surface leakage rate. Infrared CO2 concentration sensors installed in the soil at 30 cm depth at 0–10 m from the well and at 4 cm above the ground at 0 and 5 m from the well recorded surface breakthrough of CO2 leakage and migration of CO2 leakage through the soil. Temporal variations in CO2 concentrations were correlated with atmospheric and soil temperature, wind speed, atmospheric pressure, rainfall, and CO2 injection rate.  相似文献   

17.
Thermal behavior of two new exhalation copper-bearing minerals, bradaczekite and urusovite, from the Great Tolbachik Fissure Eruption (1975–1976, Kamchatka Peninsula, Russia) has been studied by X-ray thermal analysis within the range 20–700°C in air. The following major values of the thermal expansion tensor have been calculated for urusovite: α11 = 10, α22 = αb = 7, α33 = 4, αV = 21 × 10−6°C−1, μ = c∧α33 = 49° and bradaczekite: α11aver = 23, α22 = 8, α33aver = 6 × 10−6°C−1, μ(c∧α33) = 73°. The sharp anisotropy of thermal deformations of these minerals, absences of phase transitions, and stability of the minerals in the selected temperature range corresponding to conditions of their formation and alteration during the posteruption period of the volcanic activity are established.  相似文献   

18.
Crystals of hydronium jarosite were synthesized by hydrothermal treatment of Fe(III)–SO4 solutions. Single-crystal XRD refinement with R1=0.0232 for the unique observed reflections (|Fo| > 4F) and wR2=0.0451 for all data gave a=7.3559(8) Å, c=17.019(3) Å, Vo=160.11(4) cm3, and fractional positions for all atoms except the H in the H3O groups. The chemical composition of this sample is described by the formula (H3O)0.91Fe2.91(SO4)2[(OH)5.64(H2O)0.18]. The enthalpy of formation (Hof) is –3694.5 ± 4.6 kJ mol–1, calculated from acid (5.0 N HCl) solution calorimetry data for hydronium jarosite, -FeOOH, MgO, H2O, and -MgSO4. The entropy at standard temperature and pressure (So) is 438.9±0.7 J mol–1 K–1, calculated from adiabatic and semi-adiabatic calorimetry data. The heat capacity (Cp) data between 273 and 400 K were fitted to a Maier-Kelley polynomial Cp(T in K)=280.6 + 0.6149T–3199700T–2. The Gibbs free energy of formation is –3162.2 ± 4.6 kJ mol–1. Speciation and activity calculations for Fe(III)–SO4 solutions show that these new thermodynamic data reproduce the results of solubility experiments with hydronium jarosite. A spin-glass freezing transition was manifested as a broad anomaly in the Cp data, and as a broad maximum in the zero-field-cooled magnetic susceptibility data at 16.5 K. Another anomaly in Cp, below 0.7 K, has been tentatively attributed to spin cluster tunneling. A set of thermodynamic values for an ideal composition end member (H3O)Fe3(SO4)2(OH)6 was estimated: Gof= –3226.4 ± 4.6 kJ mol–1, Hof=–3770.2 ± 4.6 kJ mol–1, So=448.2 ± 0.7 J mol–1 K–1, Cp (T in K)=287.2 + 0.6281T–3286000T–2 (between 273 and 400 K).  相似文献   

19.
During the production of hydrocarbons from subterranean reservoirs, scaling with calcium carbonate and barium sulfate causes flux decline and dangerous problems in production facilities. This work is intended to study the effect of calcium ions on the precipitation of barium sulfate (barite); then, the effect of the formed barite on calcium carbonate crystallization. The conductometric and pH methods were used to follow the progress of the precipitation reaction in aqueous medium. The obtained precipitates were characterized by FTIR, RAMAN, SEM, and XRD. It was shown that Ca2+ in the reaction media does not affect the microstructure of barite even for higher calcium–barium molar ratio. It influences the precipitation kinetics and the solubility of barite by the formation of CaSO4° ion pairing as a predominant role of complex formation (CaSO4) and the increase of the ionic strength. In Ca(HCO3)2-BaSO4-NaCl aqueous system, experiments have showed that added or formed barite in the reaction media accelerates calcite precipitation. No effect on the microstructure of heterogeneous formed calcite which remain calcite shape. However the presence of carbonate ions affects slightly the microstructure of barite.  相似文献   

20.
The position of hydrogen in the structure of topaz-OH was determined by means of ab-initio quantum-mechanic calculations. Static lattice energy calculations predict the existence of four non-equivalent positions of protons, which are characterized by O4–H1... O1, O4–H2... O2, O4–H3... O3 and O4–H4... O4 hydrogen bonds. The distribution of the protons between positions of local equilibrium is controlled by the proton–proton avoidance rule and the strength of the hydrogen bonds. The most favourable configuration of hydrogen atoms is achieved for adjacent protons, which form O4–H3... O3 and O4–H4... O4 hydrogen bonds, respectively. The thermal excitation of atoms at a temperature of 55 K is large enough for the hydrogen atoms occasionally to change their positions to form O4–H1... O1 and O4–H2... O2 bonds. At ambient pressures and higher temperatures the protons are in a dynamic exchange between the allowed positions of local minima. As a consequence, for nearly room-temperature conditions, the dynamic change between different structural configurations leads to the violation of all possible symmetry elements and with that to space group #E5/E5#1. The flipping of the protons between different sites is achieved by simple rotation of the OH-dipole and does not produce any significant distortion of the framework of topaz, whose symmetry remains that of the space group Pbnm. Therefore, no reduction of symmetry has been observed in former X-ray studies on topaz-OH. Calculated IR absorption spectra of topaz-OH were found to be in good agreement with measured spectra. According to the calculations, the two favourable configurations of protons might correspond to the measured peak splitting within the OH-stretching range. An experimentally observed low-frequency band at 3520 cm–1 was assigned to the OH-stretching of the O4–H3... O3 bond, while the band at 3600 cm–1 was attributed to OH-stretching of the O4–H4... O4 hydrogen bond. The broad peak in FAR-IR frequency range at 100–150 cm–1 is attributed to the stretching of H3... O3 and H4... O4 contacts. The rate of proton exchange at 670 K among different sites was estimated by ab-inito molecular dynamic simulations. The calculations predict that flipping of adjacent protons between O4–H3... O3 and O4–H4... O4 bonds at 670 K occur at a rate of about 1.96 THz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号