首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Sanshenjiang gold deposit in southeastern Guizhou Province, China, is hosted by the Neoproterozoic metasedimentary rocks which experienced low-grade greenschist facies metamorphism. Gold mineralization occurs mainly in the ribbon chiltern slate of the first member of the Longli Formation and is controlled by both strata and faults. Ore bodies are characterized by abundant quartz-arsenopyrite-gold-pyrite-bedding veins, veinlets and small lenses within the shear zone. In this study, trace element and REE geochemistry was analyzed to constrain the origin and genesis of this deposit. The trace element signatures of wall rocks and veins display a basically similar tendency in the spider diagram, showing the genetic relationship. The values of Co/Ni, Y/Ho, Hf/Sm, Nb/La and Th/La reflect that the hydrothermal fluids of this deposit were derived from the mixture of multiple sources with marked enrichment of Cl and moderate to high temperature. There is a broad similarity in the chondrite-normalized patterns and REE fractionation between wall rocks and ore bodies, possibly reflecting their similar origin. Based on the difference in δCe and δEu, quartz veins and lenses can be subdivided into weakly negative Ce-anomalies (δCe=0.81 to 1.06) with slight Eu anomalies (δEu=0.81 to 1.06) type and the significant positive Ce-anomalies (δCe=1.13 to 1.97) with moderate negative Eu-anomalies type, probably suggesting physical-chemical changes in the evolution process of ore-forming fluids from the early to late stage. It can be concluded that the ore-forming process may have experienced three stages: formation of the original ore source bed, regional metamorphism and gold mineralization, on the basis of trace element and REE analysis and field observation.  相似文献   

2.
The Gaoshan gold-silver deposit, located between the Yuyao-Lishui Fault and JiangshanShaoxing fault in Longquan Area, occurs in the Suichang-Longquan gold-silver polymetallic metallogenic belt. This study conducted an investigation for ore-forming fluids using microthermometry, D-O isotope and trace element. The results show that two types of fluid inclusions involved into the formation of the deposit are pure liquid phase and gas-liquid phase aqueous inclusions. The homogenization temperature and salinity of major mineralization phase ranges from 156°C to 236°C(average 200°C) and 0.35% to 8.68%(NaCleqv)(average 3.68%), respectively, indicating that the ore-forming fluid is characteristic of low temperature and low salinity. The oreforming pressure ranges between in 118.02 to 232.13'105 pa, and it is estabmiated that the oreforming depth ranges from 0.39 to 0.77 km, indicating it is a hypabyssal deposit in genesis. The low rare earth elements content in pyrites, widely developed fluorite in late ore-forming stage and lack of chlorargyrite(Ag Cl), indicates that the ore-forming fluid is rich in F rather than Cl. The ratios of Y/Ho, Zr/Hf and Nb/Ta of between different samples have little difference, indicating that the later hydrothermal activities had no effects on the former hydrothermal fluid. The chondrite-normalized REE patterns of pyrites from country rocks and ore veins are basically identical, with the characteristics of light REE enrichment and negative Eu anomalies, implying that the ore-forming fluid was oxidative and derived partly from the country rocks. The δD and δ18O of fluid inclusions in quartz formed during the main metallogenic stage range from -105‰ to -69 ‰ and -6.01‰ to -3.81‰, respectively. The D-O isotopic diagram shows that the metallogenic fluid is characterized by the mixing of formation water and meteoric water, without involvement of magmatic water. The geological and geochemical characteristics of the Gaoshan gold-silver deposit are similar to those of continental volcanic hydrothermal deposit, and could be assigned to the continental volcanic hydrothermal gold-silver deposit type.  相似文献   

3.
Through studies on the element geochemistry, alteration of country rocks, ore-forming fluids and isotopegeochemistry of the Arno tin deposit in the metamorphic rocks of the Upper Proterozoic Ximeng Group, theauthors consider that the concentration of the B-F-Li-Rb-Cs-Sn association is related to acidic magmatism inthe study area. The Fe-Mg-Li tourmaline in the ore is the replaced product of the country rocks byhypothermal fluid. The δ~(18)O values of mineral separates are +2.01- +13.16‰ and their δ~(34)S values, +2.6-+7.2‰. The ore-forming materials were derived from hydrothermal fluid of granitic magma. For themineralization, the temperature is 450°-350℃, the pressure, 450-1000×10~5 Pa, and the age, Himalayan(21.5 Ma). According to the geochemical characteristics, a minerogenic model is established: the deposit is ahypothermal cassiterite-quartz vein type tin deposit controlled by the hidden Himalayan granites.  相似文献   

4.
<正>Jinshan gold deposit is located in northeastern Jiangxi,South China,which is related to the ductile shear zone.It has a gold reserve of more than 200 tons,with 80%of gold occurring in pyrite. The LREE of gold-bearing pyrite is as higher as 171.664 ppm on average,with relatively higher light rare earth elements(LREE;159.556 ppm) and lower HREE(12.108 ppm).TheΣLREE/ΣHREE ratio is 12.612 and(La/Yb)_N is 11.765.These indicate that pyrite is rich in LREE.The(La/Sm)_N ratio is 3.758 and that of(Gd/Yb)_N is 1.695.These are obvious LREE fractionations.The rare earth element(REE) distribution patterns show obvious Eu anomaly with averageδEu values of 0.664,andδCe anomalies of 1.044.REE characteristics are similar to those of wall rocks(regional metamorphic rocks),but different from those of the Dexing granodiorite porphyry and Damaoshan biotite granite.These features indicate that the ore-forming materials in the Jinshan gold deposit derived from the wall rocks, and the ore-forming fluids derived from metamorphic water.The Co/Ni ratio(average value 0.38) of pyrite suggests that the Jinshan gold deposit formed under a medium-low temperature.It is inferred from the values of high-field strength elements,LREE,Hf/Sm,Nb/La,and Th/La of the pyrite that the ore-forming fluids of the Jinshan gold deposit derived from metamorphic water with ClF.  相似文献   

5.
The theory of dissipative structures is applied in this paper to probing into the dynamics, temporal struc-tures and spatial structures of ore-forming processes and the inherent relationships among them. Areas of oreformation are large dynamic systems in development and evolution. The core of ore formation is the "onset ofore-forming processes". and the crux of it is the "transition from mineralization to ore formation". The theoryof bifurcation and theory of fluctuation make possible the access to the solution of this problem. The multiord-er or successive bifurcation of dissipative structures introduces dynamic geochemical processes into geosciencesand inverses the dynamic evolution and temporal rhythms of ore-forming processes. The localization ofdissipative structures introduces dynamic geochemical fields into geosciences and brings to light the causes andmechanisms of the formation and development of geochemical areas of ore formation (regions and zones of oreformation) and their spatial dynamic patterns.  相似文献   

6.
The Middle–Lower Yangtze River Metallogenic Belt (MLYB) is known to contain abundant copper and iron porphyry-skarn deposits, with an increasing number of tungsten deposits and scheelite in Fe–Cu deposits being discovered in the MLYB during recent decades. The ore genesis of the newly-discovered tungsten mineralization in the MLYB is poorly understood. We investigate four sets of scheelite samples from tungsten, iron and copper deposits, using CL imaging and LA–ICP–MS techniques to reveal internal zonation patterns and trace element compositions. The REE distribution patterns of four studied deposits show varying degrees of LREE enrichment with negative Eu anomalies. The oxygen fugacity of ore-forming fluid increased in Donggushan, while the oxygen fugacity of ore-forming fluid decreased in Ruanjiawan, Guilinzheng and Gaojiabang. The scheelites from the Donggushan, Ruanjiawan, Guilinzheng and Gaojiabang deposits show enrichment in LREEs and HFSE, with Nb/La ratios ranging from 1.217 to 52.455, indicating that the four tungsten deposits are enriched in the volatile fluorine. A plot of (La/Lu)N versus Mo/δEu can be used to distinguish quartz vein type, porphyry and skarn tungsten deposits. This study demonstrates that scheelite grains can be used to infer tungsten mineralization and are effective in identifying magmatic types of tungsten deposits in prospective mining sites.  相似文献   

7.
The western Hunan–eastern Guizhou Zn-Pb metallogenic belt is one of the important Zn-Pb mineralization regions in China. The Dadongla deposit, located in the northeast of Guizhou Province, is one of the typical Zn-Pb deposits in the region and has estimated resources more than 12 million metric tons (Mt) with an average grade of 4.11 wt% Zn+Pb. Its orebodies are hosted in the lower Cambrian Aoxi Formation dolomite, occurring as bedded, para-bedded in shape, and in conformity with the wall rock. The ore mineral assemblage is simple, dominated by sphalerite with minor pyrite and galena, and the gangue minerals are composed of dolomite, calcite with minor bitumen and barite. In view of the lack of geological and geochemical researches, the genesis of Zn-Pb ore is still unclear. Laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS) spot and mapping analyses were used to obtain sphalerite trace element chemistry in the Dadongla Zn-Pb deposit in Guizhou, China, aiming to constrain its ore genesis. The results show that sphalerite is characterized by the enrichment of Cd, Fe, Ge and Hg, corresponding with that of typical MVT deposits. Four zones were identified in the sphalerite crystal from Dadongla from the center to margin according to the color bands, in which the zone in the center, representing the early ore-stage sphalerite, is characterized by enrichment of Cd relatively, while the zone forming at late ore-stage is enriched in Ge and Hg relatively. The finding was controlled by differential leached metals content in ore-forming fluid from its source rock. Notably, critical element Ge trends to be enriched at the late ore-stage and follows a substitution of 2Zn2+? Ge4++□ (vacancy). Moreover, the calculated ore-forming temperature ranges from 79.9°C to 177.6°C by the empirical formula, which is similar to that of typical Mississippi Valley-type (MVT) deposits. Compared with the features of trace elements in sphalerite from different types of deposits, together with the geology, the Dadongla deposit belongs to an MVT Zn-Pb deposit.  相似文献   

8.
Based on an analysis of the fractal structures and mass transport mechanism of typical shear-fluid-ore formation system, the fractal dispersion theory of the fluid system was used in the dynamic study of the ore formation system. The model of point-source diffusive illuviation of the shear-fluid-ore formation system was constructed, and the numerical simulation of dynamics of the ore formation system was finished. The result shows that: (1) The metallogenic system have nested fractal structure. Different fractal dimension values in different systems show unbalance and inhomogeneity of ore-forming processes in the geohistory. It is an important parameter to symbolize the process of remobilization and accumulation of ore-forming materials. Also it can indicate the dynamics of the metallogenic system quantitatively to some extent. (2) In essence, the fractal dispersive ore-forming dynamics is a combination of multi-processes dominated by fluid dynamics and supplemented by molecule dispersion in fluids and  相似文献   

9.
The ductile shear zone-type gold deposit is a kind that both the ore-forming mechanism and ore-controlling factors are closely related to the ductile shear zone and its evolution. Ductile shear zone develops in Beishan area, Gansu of Northwest China, and develops especially well in the south belt. The controls of the ductile shear zone on gold deposits are as follows. (1) The regional distribution of gold deposits (and gold spots) is controlled by the ductile shear zone. (2) The ductile-brittle shear zone is formed in the evolution process of ductile shear zone and both are only ore-bearing structures and con- trol the shape, attitude, scale, and distribution of mineralization zones and ore-bodies. (3) Com- presso-shear ductile deformation results in that the main kind of gold mineralization is altered mylonite type and the main alteralization is metasomatic. (4) Ore-bearing fracture systems are mainly P-type ones, some D-type and R-type ones, but only individual R’-type and T-type ones. (5) Dynamic differen- tiation and dynamic metamorphic hydrothermal solution resulting from ductile deformation is one of the sources of ore-forming fluid of gold mineralization, and this is identical with that ore-forming ma- terials are mainly from metamorphic rocks, and ore-forming fluid is mainly composed of metamorphic water, and with the fluid inclusion and geo-chemical characteristics of the deposit. (6) There is a nega- tive correlation between the gold abundance and susceptibility anisotropy (P) of the altered mylonite samples from the deposit, which shows that the gold mineralization is slightly later than the structural deformation. All above further expound the ore-forming model of the ductile shear zone type of gold deposits.  相似文献   

10.
The Changkeng gold-silver deposits consist of a sediment-hosted, disseminated gold deposit and a replacement-type silver deposit. The mineralizations of gold and silver are zoned and closely related to the silicification of carbonate and clastic rocks, so that siliceous ores dominate in the deposit. The mineralizing temperature ranges mainly from 300 to 170℃, and K+, Na+, Ca2+, Mg2+, and Cl- are the major ions in the ore-forming fluid. Calculations of distribution of metal complexes show that gold is mainly transported by hydrosulphide complexes, but chloride complexes of silver, iron, lead, and zinc, which are transformed into hydroxyl and hydrosulphide complexes under neutral to weak-alkaline circumstances in the late stage, predominate in the ore-forming solutions. Water-rock interaction is confirmed to be the effective mechanism for the formation of silver ores by computer modelling of reaction of hydrothermal solution with carbonate rocks. The solubility analyses demonstrate that the precipitation  相似文献   

11.
Calcite samples were extracted both from the rock matrix and the superficial coating of a karstified fault plane of an underground quarry, located in the eastern border of the Paris basin. The karstification is dated as Quaternary. Analysis of mechanical calcite twinning reveals that only the calcite matrix has also undergone a compression trending WNW that can be attributed to the Mio-Pliocene alpine collision. Both coating and matrix have undergone a strike-slip regime with σ1 roughly trending north–south, that could correspond to the regional present-day state of stress, a strike-slip compression rather trending NNW, modified by local phenomena. To cite this article: M. Rocher et al., C. R. Geoscience 335 (2003).  相似文献   

12.
HYDROGEOLOGY     
正20141756 Chen Ruige(Mathematical College,China University of Geosciences,Beijing100083,China);Zhou Xun Numerical Simulation of Groundwater Level Fluctuation in a Coastal Confined Aquifer with Sloping Initial Groundwater Level Induced by the Tide(Geological Bulletin of China,ISSN1671-2552,CN11-4648/P,32(7),2013,p.1099-1104,6 illus.,16 refs.) Key words:confined water,groundwater level  相似文献   

13.
正20141408 Cai Jia(Institute of Geology,Chinese Academy of Geological Sciences,Beijing100037,China);Liu Fulai Petrogenesis and Metamorphic P-T Conditions of Garnet-Spinel-Biotitebearing Paragneiss in Danangou Area,Daqingshan-Wulashan Metamorphic Complex Belt(Acta Petrologica Sinica,ISSN1000-0569,CN11-1922/P,29(7),  相似文献   

14.
15.
正20142386An Guoying(China Aero Geophysical Survey and Remote Sensing Center for Land and Resources,Beijing 100083,China)Application of Satellite Remote Sensing in Regional Hydrogeological Investigation:Taking Cenozoic Strata in Wenquan Sheet(1∶250 000)of Karakoram Range as an Example(Geosci-  相似文献   

16.
正20141016An Chengbang(Key Laboratory of Western China’s Environmental Systems,Ministry of Education,Lanzhou University,Lanzhou 730000,China);Zhao Yongtao Lake Records during the Last Glacial Maximum from Xinjiang,NW China and Their Climatic Impli-  相似文献   

17.
正20141538 Cao Qing(School of Earth Sciences and Engineering,Xi’an Petroleum University,Xi’an 710065,China);Zhao Jingzhou Characteristics and Significance of Fluid Inclusions from Majiagou Formation,Yichuan Huangling Area,Ordos Basin(Advances in Earth Science,ISSN1001-8166,CN62-1091/P,28(7),2013,p.819-828,7 illus.,3 tables,43 refs.)  相似文献   

18.
GEOCHEMISTRY     
正20142002 Wei Hualing(Institute of Geophysical and Geochemical Exploration,Chinese Academy of Geological Sciences,Langfang065000,China);Zhou Guohua Element Content and Mineral Compositions in Different Sizes of Soil in Tongling Area,Anhui Province(Geological Bulletin of China,ISSN1671-2552,CN11-4648/P,32(11),2013,p.1861  相似文献   

19.
正20141768 An Shaopeng(Institute of Rock and Soil Mechannics,Chinese Academy of Sciences,Wuhan 430071,China);Wei Lide Experimental Study on Mechanical Behavior of Xigeda Formation Siltstone and Structure Interface(Journal of Engineering Geology,ISSN1004-9665,CN11-3249/P,21(5),2013,p.702-708,9illus.,1 table,16 refs.)  相似文献   

20.
正20140985Chen Liang(Post-Doctoral Research Station of Mining Engineering,School of Nuclear Resources and Nuclear Fuel Engineering,University of South China,Heng-yang 421001,China);Huang Wei Composition of Major and Correlated Elements with Organic Matters and Paleoclimatic Implication for Lower Paleogene Sediments in Sanshui Basin  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号