首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In NW Himalayas, the suture zone between the collided Indian and the Karakoram plates is occupied by crust of the Cretaceous Kohistan Island\|Arc Terrane [1] . Late Cretaceous (about 90Ma) accretion with the southern margin of the Karakoram Plate at the site of the Shyok Suture Zone turned Kohistan to become an Andean\|type margin. The Neotethys was completely subducted at the southern margin of Kohistan by Early Tertiary, leading to collision between Kohistan and continental crust of the Indian plate at the site of the Main mantle thrust.More than 80% of the Kohistan terrane comprises plutonic rocks of (1) ultramafic to gabbroic composition forming the basal crust of the intra\|oceanic stage of the island arc, and (2) tonalite\|granodiorite\|granite composition belong to the Kohistan Batholith occupying much of the intermediate to shallow crust of the terrane mostly intruded in the Andean\|type margin stage [2] . Both these stages of subduction\|related magmatism were associated with volcanic and sedimentary rocks formed in Late Cretaceous and Early Tertiary basins. This study addresses tectonic configuration of Early Tertiary Drosh basin exposed in NW parts of the Kohistan terrane, immediately to the south of the Shyok Suture Zone.  相似文献   

2.
GENESIS OF COPPER MINERALIZATION IN THE WESTERN KOHISTAN ISLAND ARC TERRANE,NW HIMALAYA—HINDUKUSH, N. PAKISTAN  相似文献   

3.
Kohistan Sequence has been considered as island arc formed during the subduction of oceanic lithosphere at the leading edge of northward moving Indian continent.. Sedimentary sequences indicate that formation of the intra\|oceanic Kohistan arc began in early Cretaceous time. The isotopic data demonstrate the involvement of enriched, DUPAL type mantle, suggesting that Kohistan arc was formed at or south of the present equator (Khan et al., 1997). The Intra oceanic phase of Kohistan lasted until sometime between 102 and 85 Ma, when Kohistan collided with Asia. From this time until collision with India about 50 Ma ago, Kohistan existed as Andean\|type margin. This paleomagnetic study is from the volcanic and plutonic rocks exposed in Gupis\|Shamran area (west of Gilgit) in northern part of the Kohistan arc. According to geochronological data these rocks were formed 61~55Ma ago (Treloar et al., 1989), when Kohistan was existing as Andean\|type margin. Seven to nine samples were collected from nine sites of Shamran volcanics (58±1)Ma and from five sites of Pingal, Gupis, and Yasin plutons (Ar\|Ar hornblende ages ranges from 61~52Ma). On the basis of one Rb\|Sr age of (59±2)Ma from these plutons, the above\|mentioned Ar/Ar ages may be regarded as reasonable intrusion ages of these plutons (Searle, 1991).  相似文献   

4.
The Shyok Suture Zone (Northern Suture) of North Pakistan is an important Cretaceous-Tertiary suture separating the Asian continent (Karakoram) from the Cretaceous Kohistan–Ladakh oceanic arc to the south. In previously published interpretations, the Shyok Suture Zone marks either the site of subduction of a wide Tethyan ocean, or represents an Early Cretaceous intra-continental marginal basin along the southern margin of Asia. To shed light on alternative hypotheses, a sedimentological, structural and igneous geochemical study was made of a well-exposed traverse in North Pakistan, in the Skardu area (Baltistan). To the south of the Shyok Suture Zone in this area is the Ladakh Arc and its Late Cretaceous, mainly volcanogenic, sedimentary cover (Burje-La Formation). The Shyok Suture Zone extends northwards (ca. 30 km) to the late Tertiary Main Karakoram Thrust that transported Asian, mainly high-grade metamorphic rocks southwards over the suture zone.The Shyok Suture Zone is dominated by four contrasting units separated by thrusts, as follows: (1). The lowermost, Askore amphibolite, is mainly amphibolite facies meta-basites and turbiditic meta-sediments interpreted as early marginal basin rift products, or trapped Tethyan oceanic crust, metamorphosed during later arc rifting. (2). The overlying Pakora Formation is a very thick (ca. 7 km in outcrop) succession of greenschist facies volcaniclastic sandstones, redeposited limestones and subordinate basaltic–andesitic extrusives and flow breccias of at least partly Early Cretaceous age. The Pakora Formation lacks terrigenous continental detritus and is interpreted as a proximal base-of-slope apron related to rifting of the oceanic Ladakh Arc; (3). The Tectonic Melange (<300 m thick) includes serpentinised ultramafic rocks, near mid-ocean ridge-type volcanics and recrystallised radiolarian cherts, interpreted as accreted oceanic crust. (4). The Bauma–Harel Group (structurally highest) is a thick succession (several km) of Ordovician and Carboniferous to Permian–Triassic, low-grade, mixed carbonate/siliciclastic sedimentary rocks that accumulated on the south-Asian continental margin. A structurally associated turbiditic slope/basinal succession records rifting of the Karakoram continent (part of Mega–Lhasa) from Gondwana. Red clastics of inferred fluvial origin (‘molasse’) unconformably overlie the Late Palaeozoic–Triassic succession and are also intersliced with other units in the suture zone.Reconnaissance further east (north of the Shyok River) indicates the presence of redeposited volcaniclastic sediments and thick acid tuffs, derived from nearby volcanic centres, presumed to lie within the Ladakh Arc. In addition, comparison with Lower Cretaceous clastic sediments (Maium Unit) within the Northern Suture Zone, west of the Nanga Parbat syntaxis (Hunza River) reveals notable differences, including the presence of terrigenous quartz-rich conglomerates, serpentinite debris-flow deposits and a contrasting structural history.The Shyok Suture Zone in the Skardu area is interpreted to preserve the remnants of a rifted oceanic back-arc basin and components of the Asian continental margin. In the west (Hunza River), a mixed volcanogenic and terrigenous succession (Maium Unit) is interpreted to record syn-deformational infilling of a remnant back-arc basin/foreland basin prior to suturing of the Kohistan Arc with Asia (75–90 Ma).  相似文献   

5.
We report the following new40Ar/39Ar ages: 130–150 and 90–100 Ma from monzodiorite and tremolite-actinolite schist of the Kohistan Complex; 44±0.5, 39.7±0.2 Ma from dikes cutting the Ladakh-Deosai Batholith Complex; 130–145 Ma from a diorite in the Shyok melange; and 7.8±0.1 Ma from a late stage monzogranite of the Kärakorum Batholith. A 261±13 Ma age from gneiss of the Karakorum Batholith is of uncertain significance. These dates, previously published ones which we summarize here, and some Sr isotope data suggest the following, (due to subduction switching between the Indian and Asian margins during closing of the Tethys ocean): Late Cretaceous emplacement of the Dras-Kohistan Cretaceous Island arc, followed by rapid cooling between abut 85 and 45 Ma. A quiet phase tectonically on the northern Indian plate during the Palaeocene to early Eocene, when subduction was occurring on the Asian margin. Further southward thrusting of the Indian continental margin associated with the development of an Andean-type arc (the Ladakh-Desosai Batholiths) on the northern Indian margin during the Eocene. An Oligocene Andean arc (the Karakorum Batholiths) on the Asian margin, followed by Miocene collision of the two continents and intrusion of ‘true’ granites derived from partial melting of continental crust.  相似文献   

6.
A mafic–ultramafic intrusive belt comprising Silurian arc gabbroic rocks and Early Permian mafic–ultramafic intrusions was recently identified in the western part of the East Tianshan, NW China. This paper discusses the petrogenesis of the mafic–ultramafic rocks in this belt and intends to understand Phanerozoic crust growth through basaltic magmatism occurring in an island arc and intraplate extensional tectonic setting in the Chinese Tianshan Orogenic Belt (CTOB). The Silurian gabbroic rocks comprise troctolite, olivine gabbro, and leucogabbro enclosed by Early Permian diorites. SHRIMP II U-Pb zircon dating yields a 427 ± 7.3 Ma age for the Silurian gabbroic rocks and a 280.9 ± 3.1 Ma age for the surrounding diorite. These gabbroic rocks are direct products of mantle basaltic magmas generated by flux melting of the hydrous mantle wedge over subduction zone during Silurian subduction in the CTOB. The arc signature of the basaltic magmas receives support from incompatible trace elements in olivine gabbro and leucogabbro, which display enrichment in large ion lithophile elements and prominent depletion in Nb and Ta with higher U/Th and lower Ce/Pb and Nb/Ta ratios than MORBs and OIBs. The hydrous nature of the arc magmas are corroborated by the Silurian gabbroic rocks with a cumulate texture comprising hornblende cumulates and extremely calcic plagioclase (An up to 99 mol%). Troctolite is a hybrid rock, and its formation is related to the reaction of the hydrous basaltic magmas with a former arc olivine-diallage matrix which suggests multiple arc basaltic magmatism in the Early Paleozoic. The Early Permian mafic–ultramafic intrusions in this belt comprise ultramafic rocks and evolved hornblende gabbro resulting from differentiation of a basaltic magma underplated in an intraplate extensional tectonic setting, and this model would apply to coeval mafic–ultramafic intrusions in the CTOB. Presence of Silurian gabbroic rocks as well as pervasively distributed arc felsic plutons in the CTOB suggest active crust-mantle magmatism in the Silurian, which has contributed to crustal growth by (1) serving as heat sources that remelted former arc crust to generate arc plutons, (2) addition of a mantle component to the arc plutons by magma mixing, and (3) transport of mantle materials to form new lower or middle crust. Mafic–ultramafic intrusions and their spatiotemporal A-type granites during Early Permian to Triassic intraplate extension are intrusive counterparts of the contemporaneous bimodal volcanic rocks in the CTOB. Basaltic underplating in this temporal interval contributed to crustal growth in a vertical form, including adding mantle materials to lower or middle crust by intracrustal differentiation and remelting Early-Paleozoic formed arc crust in the CTOB.  相似文献   

7.
STRUCTURAL AND THERMAL EVOLUTION OF THE SOUTH ASIAN CONTINENTAL MARGIN ALONG THE KARAKORAM AND HINDU KUSH RANGES,NORTH PAKISTAN  相似文献   

8.
40Ar–39Ar geochronological studies carried out on the Khardung volcanics of Ladakh, India and our earlier Ar–Ar results from the volcanics of the Shyok suture along with the available geological and geochemical data provide good constraints for post-collision evolution of the Shyok suture zone. Whole-rock samples from the Shyok volcanics yielded disturbed age-spectra and we have demonstrated earlier that the youngest tectonic event in the Shyok suture zone responsible for the thermal disturbance of these samples is Karakoram fault activation at ~14 Ma. Contrastingly whole-rock samples from the Khardung volcanics, which are in tectonic contact with these Shyok volcanics, and are exposed in the form of thick rhyolitic and ignimbritic flows, yielded undisturbed age-spectra and good plateau-ages. The whole-rock plateau-ages of two rhyolite samples are 52.8 ± 0.9 and 56.4 ± 0.4 Ma. We interpret these ages to be the time and duration of emplacement of these volcanics over thickened margin of the continental crust, which appears to be coeval with the initiation of the collision between the Indian and Asian plate. The lesser extent of post-emplacement isotopic re-equilibration in these samples unlike the Shyok volcanics indicate that these samples were present in different tectonic settings, away from the Karakoram fault, at the time of deformation in the Shyok suture zone. We propose that the two volcanic belts of contrasting nature were brought together in juxtaposition by the Karakoram strike slip faulting at ~14 Ma.  相似文献   

9.
VARIATIONS IN KAMILA AMPHIBOLITES FROM SOUTHEASTERN PART OF THE KOHISTAN ISLAND-ARC TERRANE,PAKISTAN  相似文献   

10.
MINERALOGY AND GEOCHEMISTRY OF ULTRAMAFIC ROCKS FROM THE INDUS SUTURE OPHIOLITE IN SWAT, NW PAKISTAN1 BeccaluvaL ,MacciottaG ,PiccardoGB ,etal.PetrologyoflherzoliticrocksfromthenorthernApennineophiolites[J] .Lithos,1984 ,17:2 99~ 316 . 2 HartmannG ,WedepohlKH .ThecompositionofperidotitetectonitesfromtheIvreacomplex ,northernItaly:residuesfrommeltextraction[J] .GeochimCosmochActa ,1993,57:176 1~ 1782 . 3 JaquesAL ,ChappellBW .Petrologya…  相似文献   

11.
Abstract

The east central part of the Kohistan magmatic arc is made up principally of the Jaglot Group. From bottom to top it consists of I) paragneisses and schists intercalated with amphibolites and calc-silicates (Gilgit Formation), II) Gashu-Confluence Volcanics (GCV) and III) the Thelichi Formation comprising a volcanic base (Majne volcanics) and turbidites, marble, volcanoclastic sediments and lava flows. Metamorphic grade varies up to the sillimanite zone. The GCV are correlated with the Chalt volcanics and the Thelichi Formation with the Yasin Group. Other lithologies include the Chilas Complex, the Kohistan Batholith and part of the Kamila Amphibolite. Metavolcanics show a broad range in chemical composition. Geochemical parameters used to specify the tecto-nomagmatic regime suggest affinities of both island arc and MORB-like back-arc basin basalts. Kohistan can be divided into three tectonic zones, I) the southern (Kamila) zone comprises amphibolitized basalts, and mafic and ultramafic rocks, II) the central Chilas Complex, and III) the northern (Gilgit) zone i.e., the Jaglot Group. Previous tectonic models considered the southern two zones as the crust of a Cretaceous island arc. This investigation concludes that only the southern zone represents a true island arc. The Jaglot Group derives from back-arc basin assemblages and the Chilas Complex is a magmatic diapir emplaced in the back-arc basin.  相似文献   

12.
Abstract

The Shyok suture zone separates the Ladakh terrane to the SW from the Karakoram terrane to the NE. Six tectonic units have been distinguished. From south to north these are; 1. Saltoro formation; 2. Shyok volcanites; 3. Saltoro molasse; 4. Ophiolitic melange; 5. Tirit granitoids; 6. Karakoram terrane including the Karakoram batholith. Albian—Aptian Orbitolina-bearing lime-stones and turbidites of the Saltoro formation tectonically overlie high-Mg-tholeiites similar to the tectonically overlying Shyok volcanites. The high-Mg tholeiitic basalts and calcalkaline andesites of the Shyok volcanites show an active margin signature. The Saltoro molasse is an apron-like, moderately folded association of redgreen shales and sandstones that are interbedded with ~ 50 m porphyritic andesite. Desiccation cracks and rain-drop imprints indicate deposition in a subaerial fluvial environment. Rudist fragments from a polygenic conglomerate of the Saltoro molasse document a post-Middle Cretaceous age. The calcalkaline andesites of the Shyok volcanites are intruded by the Tirit granitoids, which are located immediately south of the Ophiolitic melange and belong to a weakly deformed trondhjemite-tonalite-granodiorite-granite suite. These granitoids are subalkaline, I-type and were emplaced in a volcanic arc setting. The subalkaline to calcalkaline granitoids of the Karakoram batholith are I-and S-type granitoid. The I-type granitoids represent a typical calcalkaline magmatism of a subduction zone environment whereas the S-type granitoids are crustderived, anatectic peraluminous granites. New data suggest that the volcano-plutonic and sedimentary successions of the Shyok suture zone exposed in northern Ladakh are equivalent to the successions exposed along the Northern suture in Kohistan. It is likely that the o istan and Ladakh blocks evolved as one single tectonic domain uring the Cretaceous-Palaeogene. Subsequently, collision, suturing and accretion of the Indian plate along the Indus suture (50–60 Ma) together with tectonic activity along the Nanga Parbataramosh divided Kohistan and Ladakh into two arealy distinct magmatic arc terranes. The activity and a dextral offset along the Karakoram fault (Holocene-Recent) disrupted the original tectonic relationships. © 1999 Éditions scientifiques et médicales Elsevier SAS  相似文献   

13.
The Indus Tsangpo suture zone in Ladakh lies between the Phanerozoic sequence of the Zanskar Zone of Tethys Himalaya in the south and Karakoram zone in the north. The five palaeotectonic regimes recognized in the suture zone are: The Indus palaeosubduction complex, the Ladakh magmatic arc, the Indus arc-trench gap sedimentation, the Shyok backarc and the Post-collision molasse sedimentation. The Ladakh magmatic arc, comprising intrusives of the Ladakh plutonic complex and extrusives of the Dras, Luzarmu and Khardung formations, owes its origin to the subduction of the Indian oceanic plate underneath the Tibet-Karakoram block. The Indus Formation, lower Cretaceous to middle Eocene in age, was laid down in a basin between the magmatic arc and the subduction complex. The Shergol and Zildat ophiolitic melange belts exhibit green-schist and blue-schist facies metamorphism and show structural geometry and deformation history dissimilar to that of the underlying and overlying formations. The melange belts and the flysch sediments of the Nindam Formation represent a palaeosubduction complex. The Shyok suture zone consists of tectonic slices of metamorphics of the Pangong Tso Crystallines, Cretaceous to lower Eocene volcanics and sedimentaries, together with ultramafic and gabbro bodies and molasse sediments. This petrotectonic assemblage is interpreted as representing a back-are basin. Post-collision molasse sedimentaries are continental deposits of Neogene age, and they occur with depositional contact transgressing the lithological and structural boundaries. Two metamorphic belts, the Tso Morari crystalline complex and the Pangong Tso Crystallines, flank to the south and north respectively of the Indus suture zone in Eastern Ladakh. Three generations of fold structures and associated penetrative (and linear) structures, showing a similar deformation history of both the metamorphic belts, are developed. The shortening structures developed as a result of collision during the postmiddle Eocene time.  相似文献   

14.
An integrated study on petrology and geochemistry has been carried out on the Late Carboniferous I-type felsic volcanics of the Liushugou Formation in the Bogda belt to constrain the late Paleozoic tectonic evolution of the Bogda belt. The felsic volcanics were dated to be 315 to 319 Ma and are composed of trachy-andesite–trachyte ignimbrites and rhyolite lavas. They are in conformable contact with high-Al basalt. The eruption of the felsic volcanics and high-Al basalt is not bimodal volcanism, but is related to bimodal magma (basaltic and rhyolitic magmas). MELTS modeling and comparison with previous basaltic melting experiments indicate that the felsic volcanics are likely produced by partial melting of hydrated mafic crust rather than fractional crystallization of high-Al basalt. It is also supported by relatively large amounts of felsic volcanics to high-Al basalts and remarkably different incompatible element ratios (e.g., Th/Zr, Nb/Zr and U/Zr) of the rocks. The Bogda felsic volcanics have positive εNd(t) values (6.2–7.4), low Pb isotopes and low zircon saturation temperatures, consistent with a derivation from a juvenile crust in an arc setting. The intermediate ignimbrites display melting–mingling textures and abundant feldspar aggregates and have various δEu ratios, indicating that magma mingling and feldspar fractionation processes may have played an important role in the genesis of the ignimbrites. In contrast, the Early Permian felsic rocks in this region are of post-collisional A-type. We therefore propose that the Bogda belt was an island arc in the Late Carboniferous and then switched to a post-collisional setting in the Early Permian due to the arc–arc collision at the end of the Late Carboniferous.  相似文献   

15.
张少兵  吴鹏  郑永飞 《地球科学》2019,44(12):4157-4166
超大陆的聚合必然伴随着从大洋俯冲、弧陆碰撞到陆陆碰撞等一系列板块汇聚和造山过程,这些不同阶段的俯冲和汇聚过程会产生不同特征的岩浆岩记录.华南陆块是新元古代罗迪尼亚超大陆的重要组成部分,在这个超大陆聚合过程中有格林维尔期洋壳俯冲及其伴随的壳幔相互作用.总结了华南陆块北缘记录的罗迪尼亚超大陆聚合不同阶段发生的岩浆活动,比较了其产物的地球化学特征,探讨了它们对应的构造环境.华南陆块北缘900~950 Ma的岩浆活动产物以镁铁质岩浆岩为主,伴随有少量斜长花岗岩,为洋壳俯冲作用的产物.当洋壳俯冲到大陆边缘之下形成安第斯型俯冲带,古老陆源沉积物也被携带进入俯冲带,由此部分熔融产生的含水熔体交代上覆地幔楔形成极度富集的造山带岩石圈地幔,其在新元古代中期发生部分熔融形成具有极负锆石εHf(t)值的镁铁质岩浆岩.因此,在罗迪尼亚超大陆聚合过程中地幔楔被交代形成镁铁质-超镁铁质交代岩,其中一部分在俯冲阶段就发生部分熔融形成大洋弧或大陆弧镁铁质岩浆岩,另一部分在俯冲之后由于大陆裂断引起造山带岩石圈拉张使其与上覆地壳一起部分熔融形成双峰式岩浆岩.   相似文献   

16.
Abstract The E-W-trending Kohistan terrane in the NW Himalaya is a sandwich of a magmatic arc between the collided Karakoram (Asian) and Indian plates. The southern part of the Kohistan arc is principally made up of amphibolites derived from volcanic and plutonic rocks of Early Cretaceous age. Gabbroic relics in the amphibolites display calc-alkaline character, and their mineralogy is similar to low-P plutonic rocks reported from modern and ancient island arcs. The largest of these relics, occurring along the southern margin of the amphibolite belt near Khwaza Khela, is subcircular in outline and is about 1 km across. It consists of cumulate gabbros and related rocks displaying a record of cooling and crustal thickening. Primary olivine and anorthite reacted to produce coronas consisting of two pyroxenes +Mg-Fe2+-Al spinel ± tschermakitic hornblende at about 800° C, 5.5–7.5 kbar. This thermotectonic event is of regional extent and may be related to the overthrusting of the Karakoram plate onto the Kohistan arc some 85 Ma ago, or even earlier. Later the gabbros were locally traversed by veins containing high-P assemblages: garnet, kyanite, zoisite, paragonite, oligoclase, calcite, scapolite and quartz ° Chlorite ° Corundum ± diopside. Formed in the range 510–600° C, and 10–12 kbar, these suggest further thickening and cooling of the crust before its uplift during the Tertiary. This paper presents microprobe data on the minerals, and discusses the tectonic implications of the coronitic and vein assemblages in the gabbros.  相似文献   

17.
对内蒙古巴林右旗新开坝地区大石寨组玄武安山岩进行了锆石U-Pb年代学、锆石原位Hf同位素分析及地球化学研究,定年结果表明玄武安山岩结晶年龄为280Ma,形成于早二叠世。地球化学特征显示高场强元素Nb、Ta强烈亏损,Ti轻微亏损,大离子亲石元素Sr、Ba、Rb、K富集,表现出岛弧火山岩特征。地球化学结果和Hf同位素的不同来源(亏损地幔及古老地壳的再循环),表明岩浆起源于俯冲沉积物熔体和流体交代地幔楔橄榄岩。与大石寨地区玄武安山岩进行了对比研究,表明巴林右旗大石寨组玄武安山岩在俯冲的构造背景,形成于岛弧-活动大陆边缘弧的环境,古亚洲洋板块由南向北进行俯冲,说明早二叠世古亚洲洋未闭合。  相似文献   

18.
雅鲁藏布江断裂带的构造特征   总被引:1,自引:0,他引:1  
雅鲁藏布扛断裂带是印度板块与欧亚板块俯冲、碰撞的界面。通过对断裂带及邻近地质体的构造变形及大地构造背景研究,可将断裂带的发展划分成4个阶段:1)蛇绿岩侵位前的板块俯冲阶段(90Ma以前):2)蛇绿岩侵位时的板块俯冲阶段(90Ma左右—始新世);3)板块碰撞阶段(始新世以后);4)走滑阶段(现代)。  相似文献   

19.
雅鲁藏布江断裂带的构造特征   总被引:2,自引:0,他引:2  
雅鲁藏布扛断裂带是印度板块与欧亚板块俯冲、碰撞的界面。通过对断裂带及邻近地质体的构造变形及大地构造背景研究,可将断裂带的发展划分成4个阶段:1)蛇绿岩侵位前的板块俯冲阶段(90Ma以前):2)蛇绿岩侵位时的板块俯冲阶段(90Ma左右—始新世);3)板块碰撞阶段(始新世以后);4)走滑阶段(现代)。  相似文献   

20.
The tectonic evolution of the Indian plate, which started in Late Jurassic about 167 million years ago (~ 167 Ma) with the breakup of Gondwana, presents an exceptional and intricate case history against which a variety of plate tectonic events such as: continental breakup, sea-floor spreading, birth of new oceans, flood basalt volcanism, hotspot tracks, transform faults, subduction, obduction, continental collision, accretion, and mountain building can be investigated. Plate tectonic maps are presented here illustrating the repeated rifting of the Indian plate from surrounding Gondwana continents, its northward migration, and its collision first with the Kohistan–Ladakh Arc at the Indus Suture Zone, and then with Tibet at the Shyok–Tsangpo Suture. The associations between flood basalts and the recurrent separation of the Indian plate from Gondwana are assessed. The breakup of India from Gondwana and the opening of the Indian Ocean is thought to have been caused by plate tectonic forces (i.e., slab pull emanating from the subduction of the Tethyan ocean floor beneath Eurasia) which were localized along zones of weakness caused by mantle plumes (Bouvet, Marion, Kerguelen, and Reunion plumes). The sequential spreading of the Southwest Indian Ridge/Davie Ridge, Southeast Indian Ridge, Central Indian Ridge, Palitana Ridge, and Carlsberg Ridge in the Indian Ocean were responsible for the fragmentation of the Indian plate during the Late Jurassic and Cretaceous times. The Réunion and the Kerguelen plumes left two spectacular hotspot tracks on either side of the Indian plate. With the breakup of Gondwana, India remained isolated as an island continent, but reestablished its biotic links with Africa during the Late Cretaceous during its collision with the Kohistan–Ladakh Arc (~ 85 Ma) along the Indus Suture. Soon after the Deccan eruption, India drifted northward as an island continent by rapid motion carrying Gondwana biota, about 20 cm/year, between 67 Ma to 50 Ma; it slowed down dramatically to 5 cm/year during its collision with Asia in Early Eocene (~ 50 Ma). A northern corridor was established between India and Asia soon after the collision allowing faunal interchange. This is reflected by mixed Gondwana and Eurasian elements in the fossil record preserved in several continental Eocene formations of India. A revised India–Asia collision model suggests that the Indus Suture represents the obduction zone between India and the Kohistan–Ladakh Arc, whereas the Shyok-Suture represents the collision between the Kohistan–Ladakh arc and Tibet. Eventually, the Indus–Tsangpo Zone became the locus of the final India–Asia collision, which probably began in Early Eocene (~ 50 Ma) with the closure of Neotethys Ocean. The post-collisional tectonics for the last 50 million years is best expressed in the evolution of the Himalaya–Tibetan orogen. The great thickness of crust beneath Tibet and Himalaya and a series of north vergent thrust zones in the Himalaya and the south-vergent subduction zones in Tibetan Plateau suggest the progressive convergence between India and Asia of about 2500 km since the time of collision. In the early Eohimalayan phase (~ 50 to 25 Ma) of Himalayan orogeny (Middle Eocene–Late Oligocene), thick sediments on the leading edge of the Indian plate were squeezed, folded, and faulted to form the Tethyan Himalaya. With continuing convergence of India, the architecture of the Himalayan–Tibetan orogen is dominated by deformational structures developed in the Neogene Period during the Neohimalayan phase (~ 21 Ma to present), creating a series of north-vergent thrust belt systems such as the Main Central Thrust, the Main Boundary Thrust, and the Main Frontal Thrust to accommodate crustal shortening. Neogene molassic sediment shed from the rise of the Himalaya was deposited in a nearly continuous foreland trough in the Siwalik Group containing rich vertebrate assemblages. Tomographic imaging of the India–Asia orogen reveals that Indian lithospheric slab has been subducted subhorizontally beneath the entire Tibetan Plateau that has played a key role in the uplift of the Tibetan Plateau. The low-viscosity channel flow in response to topographic loading of Tibet provides a mechanism to explain the Himalayan–Tibetan orogen. From the start of its voyage in Southern Hemisphere, to its final impact with the Asia, the Indian plate has experienced changes in climatic conditions both short-term and long-term. We present a series of paleoclimatic maps illustrating the temperature and precipitation conditions based on estimates of Fast Ocean Atmospheric Model (FOAM), a coupled global climate model. The uplift of the Himalaya–Tibetan Plateau above the snow line created two most important global climate phenomena—the birth of the Asian monsoon and the onset of Pleistocene glaciation. As the mountains rose, and the monsoon rains intensified, increasing erosional sediments from the Himalaya were carried down by the Ganga River in the east and the Indus River in the west, and were deposited in two great deep-sea fans, the Bengal and the Indus. Vertebrate fossils provide additional resolution for the timing of three crucial tectonic events: India–KL Arc collision during the Late Cretaceous, India–Asia collision during the Early Eocene, and the rise of the Himalaya during the Early Miocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号