首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
自然铁是自然界中极为罕见矿物,诺登斯科德(Norden Ski(?)d)最早(1870年)在格陵兰西海岸狄斯哥(Disko)玄武岩中首次发现自然铁。我国迄今未见自然铁的发现和报道.笔者于1985年在小秦岭金矿金硐岔矿区9号含金石英脉第五阶段自然铁——金属硫化物,氧化物矿石中首次发现自然铁.与自然铁共生的矿物有自然铁外壳磁铁矿、微粒(0.1~0.2mm)它形方铅矿、黄铁矿淡棕色闪锌矿、浅色闪锌矿、密黄色闪锌矿、自形八面体磁铁  相似文献   

2.
广东玉水铜多金属矿床位于华南MVT(密西西比河谷型)铅锌矿床成矿带东段,铜铅锌矿体主要呈不规则囊状产于下石炭统忠信组滨海相石英砂(砾)岩和上石炭统壶天群白云岩之间,少量呈不规则脉状分布于白云岩中。其主矿体中铜的品位极高,2013年入选品位为15.5%;矿石主要呈块状,少量浸染状。矿石矿物主要包括黄铜矿、斑铜矿、辉铜矿、方铅矿、浅色闪锌矿、黄铁矿、赤铁矿、磁铁矿等,主要脉石矿物为白云石、方解石,局部偶见石英。发育赤铁矿-磁铁矿和硫化物两个成矿阶段。选取主成矿阶段——硫化物阶段硫化物矿石中的闪锌矿和石英进行流体包裹体研究,结果表明:玉水流体包裹体主要以气液两相包裹体为主,气液比5%~20%,均一温度范围为90~289℃,其中闪锌矿中流体包裹体均一温度90~289℃,石英中流体包裹体均一温度110~287℃,方解石中流体包裹体均一温度125~210℃,包裹体盐度范围集中在8%~15%。激光拉曼探针测试表明流体包裹体气体成分主要是H_2O,个别气相成分CO_2。流体包裹体研究,结合矿床地质地球化学研究成果表明玉水铜多金属矿床是一个层控的低温热液型矿床。  相似文献   

3.
本文以选择溶解法研究了某地闪锌矿单矿物中各相态银的分别含量。 方法以硫酸高铁铵为选择性溶剂,首先将试样中裸露的自然银溶解分离,加入Hg~(2 )消除S~2—的干扰。继以硫酸酸化的硫脲溶剂溶解裸露的辉银矿,然后根据自然银在非氧化性的无机酸中不溶的特性,采用盐酸溶解闪锌矿并浸出被包裹的辉银矿,以二氯化锡消除Fe~(3 )的干扰。于最后不溶的残渣中测定  相似文献   

4.
周志坚 《地质与资源》1994,3(2):140-143
科克萨依矿床属于区域动力变质热液型金矿。金的赋存形式多样,状态复杂,主要以不规则粒状自然金的形式赋存在石英颗粒裂隙处(裂隙金,51.59%)、石英晶粒间、黄钾铁矾矿物颗粒间、黄铁矿颗粒周边。自然金常附着在残缺细微粒黄铁矿、毒砂的表面。金还与少量的方铅矿、铜蓝伴生,以被包裹的不规则小滴状产出。另外自然金还以鳞片状薄膜状附着在石英脉与绢云母绿泥石片岩的接触面上。  相似文献   

5.
马坑铁矿是福建省一个大型铁钼铅锌多金属矿床,赋存于莒舟-大洋花岗岩外接触带上石炭统经畲组-下二叠统栖霞 组大理岩与下石炭统林地组石英砂岩之间,矿化阶段经历了从无水矽卡岩阶段(钙铁榴石-透辉石) →含水矽卡岩-磁铁矿 阶段(绿帘石-阳起石-绿泥石-钙铁辉石) →硫化物阶段(石英-方解石-萤石-黄铁矿-闪锌矿) →碳酸盐岩阶段(石英-方 解石) 演变,而本文对含水矽卡岩-磁铁矿阶段和硫化物阶段中的钙铁辉石、萤石、石英及方解石中流体包裹体所进行岩 相学观察和显微测温研究表明,早期含水矽卡岩-磁铁矿阶段包裹体类型主要有含NaCl子晶三相包裹体和富液相两相包裹 体,少量富气相两相包裹体;而晚期硫化物阶段包裹体类型主要为富液相两相包裹体。含水矽卡岩-磁铁矿阶段流体出现 流体沸腾作用,流体温度范围为448~596℃,两端员组分流体盐度分别为26.5~48.4 wt % NaCl equiv.和2.4~6.9 wt % NaCl equiv.;硫化物阶段流体呈现出混合趋势,流体温度和盐度分别为182~343℃和1.9~20.1 wt % NaCl equiv.。流体包裹体的均 一温度和盐度的研究结果表明含水矽卡岩-磁铁矿阶段流体主要来自岩浆水,而硫化物阶段流体以岩浆水为主,并有大气 降水加入。由于马坑铁矿化形成于含水矽卡岩阶段,铅锌矿化则形成于硫化物阶段,流体沸腾是导致马坑铁矿床形成的主 要因素,而流体混合则是引起马坑铁矿床铅锌矿化的主要因素。综合地质与地球化学研究,马坑铁矿床应属于与莒舟-大 洋花岗岩有关的矽卡岩型铁矿床。  相似文献   

6.
为研究东天山维权银矿中呈脉状、浸染状分布的自然铋和含铋矿物特征及其形成机制,对维权矿床中含铋的银矿石中的矿物进行了矿相学、电子探针和能谱分析及流体包裹体研究。结果表明,维权银矿床中铋矿物与银矿物共生,铋矿物主要为自然金属(自然铋)、硫化物(辉铋矿)及硫盐矿物(硫铋银矿)等类型;维权矿床的热液成矿过程可分为3个阶段:(Ⅰ)石英-氧化物阶段,主要矿物组合为毒砂-黄铁矿-磁铁矿,流体温度为376~289℃;(Ⅱ)铋矿物-碳酸盐阶段,主要矿物组合为自然铋-硫铋银矿,其流体温度低于271℃;(Ⅲ)银矿物-硫化物阶段,以自然银-方解石-黄铜矿-方铅矿-闪锌矿为主,流体温度为200~160℃。  相似文献   

7.
新桥硫铁矿是一大型多金属硫化物矿床 ,矿石的主要化学成分有铜、硫、铁、铅、锌 ,并伴生有以金、银、镉为主的 13种有益组分 ,其中金矿物以自然金为主 ,大部分呈细粒分散状包裹嵌布于磁黄铁矿和黄铜矿中。银矿物主要为自然银、银金矿 ,亦呈细粒分散状包裹嵌布于脉石、磁铁矿和黄铜矿中。金银在矿床中分布不均 ,在矿体走向和向深部方向局布富集有一定规律。有必要进一步圈定金、银异常区 ,进行独立金、银矿体找矿和资源预测。本矿金、银皆属难解离型 ,建议在电解粗铜中综合回收利用  相似文献   

8.
宁芜陶村磁铁矿矿床成矿流体及成矿作用   总被引:2,自引:0,他引:2  
陶村磁铁矿矿床位于长江中下游成矿带宁芜盆地中段,矿床地质特征及岩浆构造背景与Kiruna型磷灰石-铁氧化物矿床相似。本文在野外工作基础上,通过流体包裹体测温和氢氧硫同位素研究,探讨该矿床成矿流体性质、来源及成矿作用。陶村主要矿石类型为浸染状和脉状磁铁矿,脉状矿石形成稍晚。通过包裹体显微测温获得:磷灰石中包裹体的均一温度集中在210~390℃,盐度集中在15%~23%NaCl_(eqv);石英中包裹体的均一温度集中在330~390℃,盐度主要集中在9%~13%NaCl_(eqv),此外还存在部分高盐度原生包裹体。石英的δD为-96‰~-54‰,δ~(18)O_(H2O)除了一个为8.3‰,其余为1.9‰~4.0‰,指示原始成矿流体为岩浆来源,后期有地表水加入。黄铁矿δ~(34)S为4.8‰~9.3‰,平均值为7.4‰,综合中段地区硫同位素资料,认为成矿流体中的硫来自三叠纪膏盐层与岩浆硫的混合。结合矿床地质特征,陶村成矿作用过程可概括为:岩浆出溶形成的高温含矿气液同化三叠纪膏盐层,带入SO_4~(2-)、Cl~-、Na~+等矿化剂;这种高温气液在岩体内以钠质交代形式富集Fe后,于岩体上部形成浸染状磁铁矿,岩体顶部和边部断裂部位形成(网)脉状磁铁矿。  相似文献   

9.
武定迤纳厂矿床位于我国云南省中部,在大地位置上处于扬子板块西缘,康滇地轴云南段,是滇中具有代表性的元古代铁-铜-金-稀土矿床.其矿化作用分为岩浆气液期、交代成矿期、热液成矿期和成矿后热液期4个期次,其中前3个期次是铁成矿的主要期次,分别以角砾状磁铁矿、浸染状磁铁矿和粗粒脉状磁铁矿为代表.各类磁铁矿含有一定量的SiO2、Cr2O3、Al2O3、MgO等,角砾状磁铁矿石的主元素成分与铁成分比值最高,其次为浸染状磁铁矿,最低为脉状磁铁矿.不同类型的磁铁矿微量元素变化很大,浸染状磁铁矿稀土配分具四重效应,角砾状磁铁矿和粗粒脉状磁铁矿稀土配分为右倾型.成矿早期磁铁矿的形成受岩浆作用影响强烈,含铁的岩浆导致围岩碎裂,形成了早期角砾状矿石;交代成矿期的铁质主要源于岩浆演化晚期分异形成的富铁流体,富铁流体与围岩发生强烈的物质交换,导致大量铁质沉淀;随着矿化作用的进行,热液作用逐渐增强,加之外界流体的逐渐加入,对之前形成的磁铁矿进行改造,使其具有热液成因的表象特征.从矿物成分体现出的矿床成因上看,该矿床属于岩浆隐爆-交代型成因,与世界知名的IOCG型矿床有相似之处.  相似文献   

10.
梅微  吕新彪  王祥东  范谢均  魏巍 《地球科学》2020,45(12):4428-4445
大兴安岭南段黄岗铁锡多金属矿床具有明显的蚀变-矿化特征,对于研究矽卡岩型矿床的成矿过程具有重要的意义.因此对该矿床中具有代表性的蚀变矿物以及金属矿物开展电子探针研究,结果指示研究区的热液演化经历了4个阶段:在进变质矽卡岩阶段(Ⅰ),矿物以含有钙铁榴石GrtⅠ核的钙铝榴石GrtⅡ和钙铁辉石为主;在退变质矽卡岩阶段(Ⅱ),矿物以富铁榴石GrtⅢ、浸染状磁铁矿以及含水矿物为代表;氧化物阶段(Ⅲ)的矿物以大量磁铁矿、锡石以及少量钙铁榴石GrtⅣ和透辉石为主;在硫化物阶段(Ⅳ),磁铁矿逐渐被硫化物交代,最后形成毒砂、黄铁矿、黄铜矿、铁闪锌矿、浅色闪锌矿-黄铜矿-方黝锡矿固溶体、锑黝铜矿等,表明黄岗铁多金属矿床的流体来源从岩浆水、交代流体最后演化为大气降水的加入,流体成分变化复杂,流体演化具体表现为温度逐渐降低,水岩比值逐渐升高,具有还原性→氧化性→还原性等特点.   相似文献   

11.
陨石熔壳研究   总被引:1,自引:0,他引:1  
本文通过对毫县陨石熔壳的化学成分分析,X射线物相分析和红外光谱分析,并与一岩相互对照,讨论了熔壳中Fe的氧化状态的变化、击变玻璃及主要矿物结构参数的变化;研究了熔壳的氧化作用、击变作用、击变作用下矿物的变形机制,同时,熔壳的SEM显微 貌像给出了熔壳的一套完整剖面,从而讨论了熔壳的烧蚀作用主要有破碎作用,熔融作用和抽蚀作用三种方式。此外,透射电观察敢证实了陨石熔壳中石英玻璃的存在。  相似文献   

12.
The Hadamengou gold deposit is located in western part of the northern margin of the North China craton. It is a hydrothermal deposit related to alkaline magmatism. Dissolution of Au, Fe from pyrite and iron oxide (including magnetite and hematite) individual minerals in the three main types of ore shows: in iron oxides (magnetite and hematite), Au and Fe were dissolved simultaneously and their solubilities are positively correlated, which means Au is mainly chemical-bonded (lattice gold) and/or colloidal-adsorbed in iron oxides; while in pyrite, on the contrary, Au dissolution obviously lags behind Fe and the solubility of Au shows negative relationship with that of Fe, which indicates Au is mainly hosted as grains of elemental gold (or native gold) within pyrite. Previous studies revealed that the Hadamengou gold deposit is characterized by intensive K-feldspathization and holds high content of iron oxides occasionally replaced by sulfides, which was caused by oxidizing K-enriched alkaline fluids under a stretching geodynamic setting. These geological features, together with the high Au-content in iron oxides, comparable with that of the Olympic Dam deposit in South Australia, suggest that this deposit is the first example of iron oxide-type gold deposits in China.  相似文献   

13.
本文对发现于锡铁山铅锌矿床中的磁性小球的化学成分、粒度、硬度、形貌、吸收系数、结构和构造进行了分析研究。结果表明,该磁性小球与前人所报道的其他地区的宇宙尘类似。根据它们的化学成分特征(表2、3、4、5)、方铁矿和磁铁矿构成的外壳和α-Fe内核,初步确定其为下古生代宇宙尘。  相似文献   

14.
该文在野外地质调查基础上,对备战铁矿区内的火山岩和矿石进行了详细的矿物学和岩石地球化学研究,并深入讨论了矿床成因。研究表明,该区的主要赋矿围岩为火山岛弧玄武岩,其与磁铁矿有着类似的稀土元素配分模式,说明二者有成因上的联系。成矿物质可能来源于北天山洋块向伊犁板块之下俯冲过程中软流圈上涌形成的富铁玄武质岩浆。受洋块俯冲作用影响,富铁玄武质岩浆沿北天山压扭性深大断裂底侵,并经历了一定的结晶分离或同化混染作用,最后在中地壳形成一套演化的玄武质(安山质)岩浆,并在岩浆晚期阶段发生富铁岩浆和硅酸盐岩浆的分离,此时,火山岩中的普通辉石受岩浆晚期的热液作用影响蚀变为透辉石,发生了Si,Ca,Mg的富集和Fe,Al,Ti的缺失,一定程度上促进了含铁矿浆的富集。  相似文献   

15.
Iron (hydr)oxides not only serve as potent sorbents and repositories for nutrients and contaminants but also provide a terminal electron acceptor for microbial respiration. The microbial reduction of Fe (hydr)oxides and the subsequent secondary solid-phase transformations will, therefore, have a profound influence on the biogeochemical cycling of Fe as well as associated metals. Here we elucidate the pathways and mechanisms of secondary mineralization during dissimilatory iron reduction by a common iron-reducing bacterium, Shewanella putrefaciens (strain CN32), of 2-line ferrihydrite under advective flow conditions. Secondary mineralization of ferrihydrite occurs via a coupled, biotic-abiotic pathway primarily resulting in the production of magnetite and goethite with minor amounts of green rust. Operating mineralization pathways are driven by competing abiotic reactions of bacterially generated ferrous iron with the ferrihydrite surface. Subsequent to the initial sorption of ferrous iron on ferrihydrite, goethite (via dissolution/reprecipitation) and/or magnetite (via solid-state conversion) precipitation ensues resulting in the spatial coupling of both goethite and magnetite with the ferrihydrite surface. The distribution of goethite and magnetite within the column is dictated, in large part, by flow-induced ferrous Fe profiles. While goethite precipitation occurs over a large Fe(II) concentration range, magnetite accumulation is only observed at concentrations exceeding 0.3 mmol/L (equivalent to 0.5 mmol Fe[II]/g ferrihydrite) following 16 d of reaction. Consequently, transport-regulated ferrous Fe profiles result in a progression of magnetite levels downgradient within the column. Declining microbial reduction over time results in lower Fe(II) concentrations and a subsequent shift in magnetite precipitation mechanisms from nucleation to crystal growth. While the initial precipitation rate of goethite exceeds that of magnetite, continued growth is inhibited by magnetite formation, potentially a result of lower Fe(III) activity. Conversely, the presence of lower initial Fe(II) concentrations followed by higher concentrations promotes goethite accumulation and inhibits magnetite precipitation even when Fe(II) concentrations later increase, thus revealing the importance of both the rate of Fe(II) generation and flow-induced Fe(II) profiles. As such, the operating secondary mineralization pathways following reductive dissolution of ferrihydrite at a given pH are governed principally by flow-regulated Fe(II) concentration, which drives mineral precipitation kinetics and selection of competing mineral pathways.  相似文献   

16.
Magnetite is a very common mineral in various types of iron deposits and some sulfide deposits. Recent studies have focused on the use of trace elements in magnetite to discriminate ore types or trace ore-forming process. Germanium is a disperse element in the crust, but sometimes is not rare in magnetite. Germanium in magnetite can be determined by laser ablation ICP-MS due to its low detection limit (0.0X ppm). In this study, we summary the Ge data of magnetite from magmatic deposits, iron formations, skarn deposits, iron oxide copper-gold deposits, and igneous derived hydrothermal deposits. Magnetite from iron formations contains relatively high Ge (up to ~250 ppm), whereas those from all other deposits mostly contains Ge less than 10 ppm, indicating that iron formations can be discriminated from other Fe deposits by Ge contents. Germanium in magmatic/hydrothermal magnetite is controlled by a few factors. Primary magma/fluid composition may be the major control of Ge in magnetite. Higher oxygen fugacity may be beneficial to Ge partition into magnetite. Sulfur fugacity and temperature may have little effect on Ge in magnetite. The enrichment mechanism of Ge in magnetite from iron formations remains unknown due to the complex ore genesis. Germanium along with other elements (Mn, Ni, Ga) and element ratios (Ge/Ga and Ge/Si raios) can distinguish different types of deposits, indicating that Ge can be used as a discriminate factor like Ti and V. Because of the availability of in situ analytical technique like laser ablation ICP-MS, in situ Ge/Si ratio of magnetite can serve as a geochemical tracer and may provide new constraints on the genesis of banded iron formations.  相似文献   

17.
尼雄矿田位于隆格尔-工布江达断隆带,是措勤-申扎铁铜多金属成矿带的重要组成部分.滚纠铁矿位于矿田西北端,矿体主要产于花岗闪长岩和二长花岗岩与二叠系敌布错组的接触带及敌布错组层间破碎带中.矿区主要金属矿物有磁铁矿、穆磁铁矿、赤铁矿、磁赤铁矿及少量的褐铁矿、针铁矿等,夕卡岩矿物有石榴石、透辉石、金云母、蛇纹石、绿帘石、阳起石等,其中金云母与磁铁矿密切伴生,本文对其进行电子探针成分分析和40Ar-39Ar同位素测年.电子探针成分分析表明金云母富镁贫铁,Mg/(Fe+Mg+Mn+Ti)介于0.90~0.94之间;金云母40Ar- 39Ar同位素测年获得总气体年龄(Total age)为112.3 Ma,与成矿相关的花岗闪长岩(113.6±1.6 Ma)和二长花岗岩(112.6±1.6 Ma)年龄在误差范围内一致,指示矿床形成于早白垩世晚期(113Ma).与铁矿化时代不同,矿田内铜矿化主要发生在晚白垩世早期(87 Ma).结合区域地质资料,认为滚纠铁矿的形成与班公湖-怒江洋壳的向南俯冲关系密切,冈底斯陆壳和羌塘陆壳在约113Ma对接碰撞,已俯冲的班公湖-怒江洋壳在俯冲惯性和/或重力拖拽作用下发生板片回转,导致软流圈地幔流体上涌,热的软流圈地幔流体携带的巨大热能引发岩石圈地幔和上覆地壳发生部分熔融,形成以壳源为主的壳幔混源岩浆,在弧后拉张区上侵形成花岗闪长岩和二长花岗岩.同时,遭遇下拉组和敌布错组地层,与之发生接触交代作用并形成磁铁矿床.  相似文献   

18.
周世泰 《地球学报》1987,9(2):139-153
通过对鞍山群变质岩石及条带状铁矿的岩石化学研究,探讨了鞍本地区太古宙老变质岩(正变质岩为斜长角闪岩及中酸性变粒岩等;副变质岩主要为泥质—泥灰质岩及硅铁质胶体化学沉积岩石)岩石学特征,并恢复变质前之原岩建造。太古宙条带状铁矿石的化学成分较单一;SiO_2、Fe_2O_3、FeO之和为85—95%,是一种成分很纯的磁铁矿石。作者从矿体的产状呈层;与围岩之间基本整合;条带状构造所显示的原生层理;铁矿石成分简单以及在世界上的分布情况表明它是海底火山沉积矿床。本文基于铁矿成因和与原岩建造的关系,进而讨论了铁矿的赋存  相似文献   

19.
安徽下扬子区下奥陶统顶部到中奥陶统的灰色生物屑微晶灰岩中,产出一种含铁的非骨架核形石。它形成于宁镇-皖南碳酸盐台地两侧边缘的浅水到潮坪环境中。这种核形石是由蓝绿藻以生物碎屑为核心,围绕核心以底部滚动和悬浮方式生长成同心圆状多层包壳的椭球体,有柱核形石和层柱核形石两种类型。蓝绿藻呈核形石生长过程中,吸附铁质形成含铁核形石,并能吸附铜、铅等金属元素。  相似文献   

20.
Iron mineral (trans)formation during microbial Fe(III) reduction is of environmental relevance as it can influence the fate of pollutants such as toxic metal ions or hydrocarbons. Magnetite is an important biomineralization product of microbial iron reduction and influences soil magnetic properties that are used for paleoclimate reconstruction and were suggested to assist in the localization of organic and inorganic pollutants. However, it is not well understood how different concentrations of Fe(III) minerals and humic substances (HS) affect magnetite formation during microbial Fe(III) reduction. We therefore used wet-chemical extractions, magnetic susceptibility measurements and X-ray diffraction analyses to determine systematically how (i) different initial ferrihydrite (FH) concentrations and (ii) different concentrations of HS (i.e. the presence of either only adsorbed HS or adsorbed and dissolved HS) affect magnetite formation during FH reduction by Shewanella oneidensis MR-1. In our experiments magnetite formation did not occur at FH concentrations lower than 5 mM, even though rapid iron reduction took place. At higher FH concentrations a minimum fraction of Fe(II) of 25-30% of the total iron present was necessary to initiate magnetite formation. The Fe(II) fraction at which magnetite formation started decreased with increasing FH concentration, which might be due to aggregation of the FH particles reducing the FH surface area at higher FH concentrations. HS concentrations of 215-393 mg HS/g FH slowed down (at partial FH surface coverage with sorbed HS) or even completely inhibited (at complete FH surface coverage with sorbed HS) magnetite formation due to blocking of surface sites by adsorbed HS. These results indicate the requirement of Fe(II) adsorption to, and subsequent interaction with, the FH surface for the transformation of FH into magnetite. Additionally, we found that the microbially formed magnetite was further reduced by strain MR-1 leading to the formation of either dissolved Fe(II), i.e. Fe2+, in HEPES buffered medium or Fe(II) carbonate (siderite) in bicarbonate buffered medium. Besides the different identity of the Fe(II) compound formed at the end of Fe(III) reduction, there was no difference in the maximum rate and extent of microbial iron reduction and magnetite formation during FH reduction in the two buffer systems used. Our findings indicate that microbial magnetite formation during iron reduction depends on the geochemical conditions and can be of minor importance at low FH concentrations or be inhibited by adsorption of HS to the FH surface. Such scenarios could occur in soils with low iron mineral or high organic matter content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号