共查询到20条相似文献,搜索用时 15 毫秒
1.
V. V. Yarmolyuk V. P. Kovach V. I. Kovalenko E. B. Salnikova A. M. Kozlovskii A. B. Kotov S. Z. Yakovleva A. M. Fedoseenko 《Petrology》2011,19(1):55-78
Data on the composition, inner structure, and age of volcanic and siliceous-terrigenous complexes and granitoids occurring
in association with them in the Caledonian Lake zone in Central Asia are discussed in the context of major relations and trends
in the growth of the Caledonian continental crust in the Central Asian Foldbelt (CAFB). The folded structures of the Lake
zone host basalt, basalt-andesite, and andesite complexes of volcanic rocks that were formed in distinct geodynamic environments.
The volcanic rocks of the basalt complex are noted for high concentrations of TiO2 and alkalis, occur in association with fine-grained siliceous siltstone and siliceous-carbonate rocks, are thus close to
oceanic-island complexes, and were likely formed in relation to a mantle hotspot activity far away from erosion regions supplying
terrigenous material. The rocks of the basalt-andesite and andesite complexes have lower TiO2 concentrations and moderate concentrations of alkalis and contain rock-forming amphibole. These rocks are accompanied by
rudaceous terrigenous sediments, which suggests their origin in island-arc environments, including arcs with a significantly
dissected topography. These complexes are accompanied by siliceous-terrigenous sedimentary sequences whose inner structure
is close to those of sediments in accretionary wedges. The folded Caledonides of the Lake zone passed through the following
evolutionary phases. The island arcs started to develop at 570 Ma, their evolution was associated with the emplacement of
layered gabbroids and tonalitetrondhjemite massifs, and continued until the onset of accretion at 515–480 Ma. The accretion
was accompanied by the emplacement of large massifs of the tonalite-granodiorite-plagiogranite series. The postaccretionary
evolutionary phase at 470–440 Ma of the Caledonides was marked by intrusive subalkaline and alkaline magmatism. The Caledonides
are characterized by within-plate magmatic activity throughout their whole evolutionary history, a fact explained by the accretion
of Vendian-Cambrian oceanic structures (island arcs, oceanic islands, and back-arc basins) above a mantle hotspot. Indicators
of within-plate magmatic activity are subalkaline high-Ti basalts, alkaline-ultrabasic complexes with carbonatites and massifs
of subalkaline and alkaline gabbroids, nepheline syenites, alkaline granites, subalkaline granites, and granosyenites. The
mantle hotspot likely continued to affect the character of the lithospheric magmatism even after the Caledonian folded terrane
was formed. 相似文献
2.
V. V. Yarmolyuk V. P. Kovach I. K. Kozakov A. M. Kozlovsky A. B. Kotov E. Yu. Rytsk 《Geotectonics》2012,46(4):251-272
Geological and isotopic study of rocks occurring in the Early and Late Baikalian, Caledonian, Hercynian, and Indosinian fold regions of Central Asia is carried out. The juvenile crust formation occurred in these fold regions have determined the systematic differences in isotopic compositions of the crust. In the course of the subsequent (postaccretion) evolution, the crust of these domains underwent multiple reworking. These processes were accompanied by variations in the Nd isotopic compositions of the crust, which, in turn, are recorded in the isotopic compositions of granites and felsic volcanics as products of crust melting. Three types of crust differing in Nd isotopic composition and structure and, as a consequence, in formation mechanisms, are distinguished. The isotopically homogeneous crust is a source of igneous rocks with constant model Nd isotopic age (TNd(DM2st)) irrespective of the age of the crustal igneous rocks. These are the isotopic provinces, the crust of which remained isolated from addition of alien materials during postaccretion evolution. The axial zone of the Hercynides in the Central Asian Foldbelt is an example. The isotopically heterogeneous layered crust consists of fragments differing in isotopic composition. The products of its melting are characterized by widely scattered ɛNd(T) and (TNd(DM2st). The appearance of alien sources of melt is considered in terms of underplating. This mechanism develops either due to subduction of the juvenile oceanic lithosphere beneath the mature continental lithosphere at convergent boundaries or as a result of plume-lithosphere interaction. The first mechanism operated during the formation of granitoids pertaining to the Tuva-Mongolia microcontinent. The second mechanism was responsible for the formation of batholiths in the zonal Hangay, Barguzin, and Mongolia-Transbaikalia magmatic fields. The isotopically heterogeneous mixed crust is composed of fragments differing in isotopic composition, which are tectonically mixed, resulting in the formation of an isotopically uniform reservoir in the domain of magma generation. As a result, the products of melting acquire isotopic parameters substantially distinct from the juvenile rocks of the corresponding structural zone. The formation of such a crust is related to the tectonic delamination, which provides for juxtaposition and a high degree of tectonic mingling of heterogeneous fragments at deep levels. The Caledonides of the Central Asian Foldbelt are characterized by such a mechanism of crust formation. 相似文献
3.
Isotope provinces, mechanisms of generation and sources of the continental crust in the Central Asian mobile belt: geological and isotopic evidence 总被引:17,自引:0,他引:17
V. I. Kovalenko V. V. Yarmolyuk V. P. Kovach A. B. Kotov I. K. Kozakov E. B. Salnikova A. M. Larin 《Journal of Asian Earth Sciences》2004,23(5):605-627
The available geological, geochronological and isotopic data on the felsic magmatic and related rocks from South Siberia, Transbaikalia and Mongolia are summarized to improve our understanding of the mechanisms and processes of the Phanerozoic crustal growth in the Central Asian mobile belt (CAMB). The following isotope provinces have been recognised: ‘Precambrian’ (TDM=3.3–2.9 and 2.5–0.9 Ga) at the microcontinental blocks, ‘Caledonian’ (TDM=1.1–0.55 Ga), ‘Hercynian’ (TDM=0.8–0.5 Ma) and ‘Indosinian’ (TDM=0.3 Ga) that coincide with coeval tectonic zones and formed at 570–475, 420–320 and 310–220 Ma. Continental crust of the microcontinents is underlain by, or intermixed with, ‘juvenile’ crust as evidenced by its isotopic heterogeneity. The continental crust of the Caledonian, Hercynian and Indosinian provinces is isotopically homogeneous and was produced from respective juvenile sources with addition of old crustal material in the island arcs or active continental margin environments. The crustal growth in the CAMB had episodic character and important crust-forming events took place in the Phanerozoic. Formation of the CAMB was connected with break up of the Rodinia supercontinent in consequence of creation of the South-Pacific hot superplume. Intraplate magmatism preceding and accompanying permanently other magmatic activity in the CAMB was caused by influence of the long-term South-Pacific plume or the Asian plume damping since the Devonian. 相似文献
4.
大陆地壳如何形成是国际学术界长期关注并正在持续攻关的一个重大基础科学问题。活动陆缘弧的岩浆成因和密度分选过程是理解大陆地壳形成机制和演化过程的关键。北美白垩纪Cordilleran大陆边缘弧的形成可能经历了与底侵幔源岩浆有关的下地壳部分熔融和岩浆混合,或幔源初始玄武质岩浆的两阶段成分分异过程,以花岗质成分为主的北美内华达地区垂向地壳成分剖面结构可能与榴辉岩相残留体或堆晶岩的拆沉作用密切相关。目前并不清楚亚洲大陆南部以约200 Ma和约90 Ma两个时间断面为代表的中生代冈底斯弧,为何出现大量角闪石岩并具有玄武安山质的平均成分。探究中生代冈底斯弧的岩浆成因、地壳垂向成分结构和地壳形成机制可能有助于或多或少地解决这一问题。 相似文献
5.
According to this paper, the juvenile crust of the Chingiz Range Caledonides (Eastern Kazakhstan) was formed due to suprasubduction magmatism within the Early Paleozoic island arcs developed on the oceanic crust during the Cambrian–Early Ordovician and on the transitional crust during the Middle–Late Ordovician, as well as to the attachment to the arcs of accretionary complexes composed of various oceanic structures. Nd isotopic compositions of the rocks in all island-arc complexes are very similar and primitive (εNd(t) from +4.0 to +7.0) and point to a short crustal prehistory. Further increase in the mass and thickness of the crust of the Chingiz Range Caledonides was mainly due to reworking of island-arc complexes in the basement of the Middle and Late Paleozoic volcanoplutonic belts expressed by the emplacement of abundant granitoids. All Middle and Late Paleozoic granitoids have high positive values of εNd(t) (at least +4), which are slightly different from Nd isotopic compositions of the rocks in the Lower Paleozoic island-arc complexes. Granitoids are characterized by uniform Nd isotopic compositions (<2–3 ε units for granites with a similar age), and thus we can consider the Chingiz Range as the region of the Caledonian isotope province with an isotopically uniform structure of the continental crust. 相似文献
6.
Sune G. Nielsen Mark Rehkämper Per Andersson Peter W. Swarzenski Detlef Günther 《Geochimica et cosmochimica acta》2005,69(8):2007-2019
The thallium (Tl) concentrations and isotope compositions of various river and estuarine waters, suspended riverine particulates and loess have been determined. These data are used to evaluate whether weathering reactions are associated with significant Tl isotope fractionation and to estimate the average Tl isotope composition of the upper continental crust as well as the mean Tl concentration and isotope composition of river water. Such parameters provide key constraints on the dissolved Tl fluxes to the oceans from rivers and mineral aerosols.The Tl isotope data for loess and suspended riverine detritus are relatively uniform with a mean of ε205Tl = −2.0 ± 0.3 (ε205Tl represents the deviation of the 205Tl/203Tl isotope ratio of a sample from NIST SRM 997 Tl in parts per 104). For waters from four major and eight smaller rivers, the majority were found to have Tl concentrations between 1 and 7 ng/kg. Most have Tl isotope compositions very similar (within ±1.5 ε205Tl) to that deduced for the upper continental crust, which indicates that no significant Tl isotope fractionation occurs during weathering. Based on these results, it is estimated that rivers have a mean natural Tl concentration and isotope composition of 6 ± 4 ng/kg and ε205Tl = −2.5 ± 1.0, respectively.In the Amazon estuary, both additions and losses of Tl were observed, and these correlate with variations in Fe and Mn contents. The changes in Tl concentrations have much lower amplitudes, however, and are not associated with significant Tl isotope effects. In the Kalix estuary, the Tl concentrations and isotope compositions can be explained by two-component mixing between river water and a high-salinity end member that is enriched in Tl relative to seawater. These results indicate that Tl can display variable behavior in estuarine systems but large additions and losses of Tl were not observed in the present study. 相似文献
7.
K. E. Degtyarev 《Geotectonics》2011,45(1):23-50
The extended Saryarka and Shyngyz-North Tien Shan volcanic belts that underwent secondary deformation are traced in the Caledonides
of Kazakhstan and the North Tien Shan. These belts are composed of igneous rocks pertaining to Early Paleozoic island-arc
systems of various types and the conjugated basins with oceanic crust. The Saryarka volcanic belt has a complex fold-nappe
structure formed in the middle Arenigian-middle Llanvirnian as a result of the tectonic juxtaposition of Early-Middle Cambrian
and Late Cambrian-Early Ordovician complexes of ensimatic island arcs and basins with oceanic crust. The Shyngyz-North Tien
Shan volcanic belt is characterized by a rather simple fold structure and consists of Middle-Late Ordovician volcanic and
plutonic associations of ensialic island arcs developing on heterogeneous basement, which is composed of complexes belonging
to the Saryarka belt and Precambrian sialic massifs. The structure and isotopic composition of the Paleozoic igneous complexes
provide evidence for the heterogeneous structure of the continental crust in various segments of the Kazakh Caledonides. The
upper crust of the Shyngyz segment consists of Early Paleozoic island-arc complexes and basins with oceanic crust related
to the Saryarka and Shyngyz-North Tien Shan volcanic belts in combination with Middle and Late Paleozoic continental igneous
rocks. The deep crustal units of this segment are dominated by mafic rocks of Early Paleozoic suprasubduction complexes. The
upper continental crust of the Stepnyak segment is composed of Middle-Late Ordovician island-arc complexes of the Shyngyz-North
Tien Shan volcanic belt and Early Ordovician rift-related volcanics. The middle crustal units are composed of Riphean, Paleoproterozoic,
and probably Archean sialic rocks, whereas the lower crustal units are composed of Neoproterozoic mafic rocks. 相似文献
8.
李曙光 《中国地球化学学报》1992,11(4):314-328
A new approach to the investigation of the Sm/Nd evolution of the upper mantle directly from the data on lherzolite xenoliths is described in this paper.It is demonstrated that the model age TCHUR of an unmetasomatic iherzolite zenolith ca represent the mean depletion age of its mantle source, thus presenting a correlation trend between f^Sm/Nd and the mean depletion age of the upper mantle from the data on xenoliths.This correlation trend can also be derived from the data on river suspended loads as well as from granitoids.Based on the correlation trend mentioned above and mean depletion ages of the upper mantle at various geological times, an evolution curve for the mean f^Sm/Nd value of the upper mantle through geological time has been established.It is suggested that the upwilling of lower mantle material into the upper mantle and the recycling of continental crust material during the Archean were more active ,thus maintaining fairly constantf^Sm/Nd and εNd values during this time period. Similarly ,an evolution curve for the mean f^Sm/Nd value of the continental crust through geological time has also been established from the data of continental crust material.In the light of both evolution curves for the upper mantle and continental crust ,a growth curve for the continental crust has been worked out ,suggesting that :(1)about 30%(in volume )of the present crust was present as the continental crust at 3.8 Ga ago ;(2)the growth rate was much lower during the Archean ;and (3)the Proterozoic is another major period of time during which the continental crust wsa built up . 相似文献
9.
During continental collision in the middle Silurian, the thickness of the lithosphere under the Caledonides of S. Norway was doubled by subduction of the western margin of Baltica, including the Western Gneiss Region, under Laurentia. Crustal rocks of the Baltic plate reached sub-Moho depths of near 100 km or more as inferred from the presence of coesite in eclogites. Isostatic calculations indicate an average elevation of the mountain chain of about 3 km at this stage. The subducted lithosphere experienced vertical constrictional strains as a result of slab-pull by its heavy and cold root. Eduction of the deeply buried crustal material was initiated by decoupling of the Thermal Boundary Layer in the subducted lithosphere. Isostatic rebound resulted in very rapid uplift (1–2 mm yr-1), and the deep crust was exhumed, mainly by tectonic extensional stripping over a period of 30–40 Myr. The eduction was probably related to a rolling hinge, footwall uplift mechanism, and the early high-pressure coaxial fabrics were overprinted by extensional simple shear as the deep crust reached middle and upper crustal levels. The model explains the present-day normal crustal thickness under the exhumed deep rocks without necessarily invoking large-scale lateral flow of material in the lower crust or igneous underplating. 相似文献
10.
E. Yu. Rytsk V. P. Kovach V. V. Yarmolyuk V. I. Kovalenko E. S. Bogomolov A. B. Kotov 《Geotectonics》2011,45(5):349-377
New data on the geology and tectonics of the main structural elements of the East Transbaikalian segment of the Central Asian
Foldbelt are discussed. Correlation charts of the main stratified and igneous complexes are compiled. The rocks of the Baikal-Patom
and Baikal-Muya belts, as well as the Barguzin-Vitim Superterrane, are characterized by new Nd isotopic data, which have allowed
us to establish the sources of these rocks, to separate isotopic provinces, and to distinguish two stages of crust-forming
processes: the Early Baikalian (1.0–0.8 Ga) and the Late Baikalian (0.70–0.62 Ga). The Early Baikalian crust was formed in
relatively narrow and spatially isolated troughs of the Baikal-Muya Belt and probably in the Amalat Terrane, whereas the Late
Baikalian continental crust was formed and reworked in the Karalon-Mamakan, Yana, and Katera-Uakit zones of the Baikal-Muya
Belt. The Baikal-Patom Belt and most of the Anamakit-Muya Zone in the Baikal-Muya Belt are characterized by remobilization
of the Early Precambrian continental crust and by a subordinate role of Late Riphean juvenile sources. Reworking of the mixed
Late Riphean and Early Precambrian crustal sources is typical of the Barguzin-Vitim Superterrane. The origination and evolution
of the continental crust in the studied region are considered in light of new data; alternative versions of paleogedynamic
reconstructions are discussed. 相似文献
11.
中国大陆地壳铅同位素演化的动力学模型 总被引:29,自引:9,他引:29
根据中国大陆中、新生代花岗岩长铅同位素数据库,沿用“铅构造模型”的基本思想并作部分改进,建立了中国大陆地壳铅同位素的动力学演化模型。与全球平均的铅同位素演化曲线相比,中国大陆地壳的原始物质相对较贫铀富钍,并且中国大陆的上地壳和下地壳在演化过程中分异得更加彻底。将本模型应用于大别地区中生代花岗岩长石铅同位素数据,结果发现它们具有壳幔铅混合的特征,并且以上下地壳物质混合产生的类地幔铅为主,花岗岩源岩中含有较高的富Th下地壳组分。 相似文献
12.
S. N. Rudnev A. E. Izokh V. P. Kovach R. A. Shelepaev L. B. Terent’eva 《Petrology》2009,17(5):439-475
The paper presents data on the structure, composition, and age of granitoid associations (Tokhtogeshil’skii Complex) composing
the Kharanur and Sharatologoi polychronous plutons in the northern part of the Ozernala zone in western Mongolia. The Tokhtogeshil’skii
Complex was determined to consist of a number of independent magmatic associations, which were formed at 540–450 Ma, within
three age intervals (540–520, 510–485, and 475–450 Ma), have different composition, were derived from different sources, and
were emplaced in different geodynamic environments. During the first, island-arc stage (540–520 Ma), high-Al plagiogranites
were produced, which belong to tonalite-plagiogranite (531 ± 10 Ma) and diorite (529 ±6 Ma) associations in the Kharanur pluton,
low-Al plagiogranites of the tonalite-plagiogranite association (519 ± 8 Ma) in the Sharatologoi pluton, and rocks of the
Khirgisnur peridotite-pyroxenite-gabbronorite complex (Kharachulu and Dzabkhan massifs). The rocks of the diorite and plagiogranite
associations of the Kharanur pluton have ɛNd(T) from +7.9 to +7.4, TNd(DM) = 0.65 Ga, and (87Sr/86Sr)0 = 0.7038–0.7039. The plagiogranites of the Sharatologoi pluton (tonalite-plagiogranite association) are characterized by
ɛNd(T) from +6.5 to +6.6, TNd(DM) = 0.73–0.70 Ga, and (87Sr/86Sr)0 = 0.7038–0.7039, which suggest predominantly juvenile subduction sources of the parental melts at a subordinate role of ancient
crustal material. During the second, accretionary stage (510–485 Ma), low-Al plagiogranites of the diorite-tonalite-plagiogranite
association of the Sharatologoi pluton (494 ± 10 Ma, M type) were formed. The Sr-Nd isotopic characteristics of these rocks
ɛNd(T) = +6.6, (87Sr/86Sr)0 = 0.7039 are analogous to those of the plagiogranitoids of the early type. This suggests that the melted sources were similar
in composition. During the third, postcollisional stage (475–450 Ma), rocks of the diorite-granodiorite-granite association
were formed (459 ± 10 Ma, type I) in the Kharanur pluton. These rocks have ɛNd(T) = +5.1, TNd(DM) = 0.74 Ga, and (87Sr/86Sr)0 = 0.7096. The parental melts were supposedly derived by means of partial melting of “the Caledonian” juvenile crust with
the addition of more ancient crustal material. 相似文献
13.
《地学前缘(英文版)》2022,13(5):101428
Until the middle of the 20th century, the continental crust was considered to be dominantly granitic. This hypothesis was revised after the Second World War when several new studies led to the realization that the continental crust is dominantly made of metamorphic rocks. Magmatic rocks were emplaced at peak metamorphic conditions in domains, which can be defined by geophysical discontinuities. Low to medium-grade metamorphic rocks constitute the upper crust, granitic migmatites and intrusive granites occur in the middle crust, and the lower crust, situated between the Conrad and Moho discontinuities, comprises charnockites and granulites. The continental crust acquired its final structure during metamorphic episodes associated with mantle upwelling, which mostly occurred in supercontinents prior to their disruption, during which the base of the crust experienced ultrahigh temperatures (>1000 °C, ultrahigh temperature granulite-facies metamorphism). Heat is provided by underplating of mantle-derived mafic magmas, as well as by a massive influx of low H2O activity mantle fluids, i.e. high-density CO2 and high-salinity brines. These fluids are initially stored in ultrahigh temperature domains, and subsequently infiltrate the lower crust, where they generate anhydrous granulite mineral assemblages. The brines can reach upper crustal levels, possibly even the surface, along major shear zones, where granitoids are generated through brine streaming in addition to those formed by dehydration melting in upper crustal levels. 相似文献
14.
Gábor Dobosi Pamela D. Kempton Hilary Downes Antal Embey-Isztin Matthew Thirlwall Peter Greenwood 《Contributions to Mineralogy and Petrology》2003,144(6):671-683
Mafic granulite xenoliths from the lower crust of the Pannonian Basin are dominated by LREE-depleted bulk-rock compositions. Many of these have MORB-like 143Nd/144Nd but 87Sr/86Sr is elevated relative to most MORBs. Their '18O values cover a wide range from +3.8 to +9.5. A group of LREE-enriched mafic granulites have higher 87Sr/86Sr (0.704-0.708) and lower 143Nd/144Nd (0.5128-0.5124), with higher '18O values on average (+7.8 to +10.6) than the LREE-depleted granulites. The LREE-enriched granulites are, however, isotopically similar to newly discovered metasedimentary granulite xenoliths. A sublinear correlation in )Hf-)Nd isotope space has a shallower slope than the crust-mantle array, with the metasedimentary rocks forming the low )Hf end member; the radiogenic end is restricted to the LREE-depleted granulites and these overlap the field of MORB. Pb isotopes for the LREE-depleted samples are less radiogenic on average than those of the LREE-enriched and metasedimentary xenoliths, and metasedimentary granulites have consistently higher 208Pb/204Pb. The wide range in '18O over a restricted range in Nd and Sr isotope values, in combination with the predominance of LREE-depleted trace-element compositions, is consistent with an origin as a package of hydrothermally altered oceanic crust. The existence of '18O values lower than average MORB and/or mantle peridotite requires that at least some of these rocks were hydrothermally altered at high temperature, presumably in the oceanic lower crust. The low 143Nd/144Nd of the LREE-enriched mafic granulites cannot be explained by simple mixing between a LREE-depleted melt and an enriched component, represented by the recovered metasediments. Instead, we interpret these rocks as the metamorphic equivalent of the shallowest levels of the ocean crust where pillow basalts are intimately intercalated with oceanic sediments. A possible model is accretion of oceanic crustal slices during subduction and convergence, followed by high-grade metamorphism during the Alpine orogeny. 相似文献
15.
The densities of mantle magmas such as MORB-like tholeiites, picrites, and komatiites at 10 kilobars are greater than densities for diorites, quartz diorites, granodiorites, and granites which dominate the continental crust. Because of these density relations primary magmas from the mantle will tend to underplate the base of the continental crust. Magmas ranging in composition from tholeiites which are more evolved than MORB to andesite can have densities which are less than rocks of the continental crust at 10 kilobars, particularly if they have high water contents. The continental crust can thus be a density filter through which only evolved magmas containing H2O may pass. This explains why primary magmas from the mantle such as the picrites are so rare. Both the over-accretion (i.e., Moho penetration) and the under-accretion (i.e., Moho underplating) of magmas can readily explain complexities in the lithological characteristics of the continental Moho and lower crust. Underplating of the continental crust by dense magmas may perturb the geotherm to values which are characteristic of those in granulite to greenschist facies metamorphic sequences in orogenic belts. An Archean continental crust floating on top of a magma flood or ocean of tholeiite to komatiite could have undergone a major cleansing process; dense blocks of peridotite, greenstone, and high density sediments such as iron formation could have been returned to the mantle, granites sweated to high crustal levels, and a high grade felsic basement residue established. 相似文献
16.
The Seve Nappe Complex of the Scandinavian Caledonides is thought to be derived from the distal passive margin of Baltica which collided with Laurentia in the Scandian Phase of the Caledonian Orogeny at 430–400 Ma. Parts of the Seve Nappe Complex were affected by pre-Scandian high- and ultrahigh-pressure metamorphism, in a tectonic framework that is still unclear, partly due to uncertainties about the exact timing. Previous age determinations yielded between ~ 505 and ~ 446 Ma, with a general trend of older ages in the North (Norrbotten) than in the South (Jämtland). New age determinations were performed on eclogite and garnet–phengite gneiss at Tjeliken in northern Jämtland. Thermodynamic modelling yielded peak metamorphic conditions of 25–27 kbar/680–760 °C for the garnet–phengite gneiss, similar to published peak metamorphic conditions of the eclogite (25–26 kbar/650–700 °C). Metamorphic rims of zircons from the garnet–phengite gneiss were dated using secondary ion mass spectrometry and yielded a concordia age of 458.9 ± 2.5 Ma. Lu–Hf garnet-whole rock dating yielded 458 ± 1.0 Ma for the eclogite. Garnet in the eclogite shows prograde major-element zoning and concentration of Lu in the cores, indicating that this age is related to garnet growth during pressure increase, i.e. subduction. The identical ages from both rock types, coinciding with published Sm–Nd ages from the eclogite, confirm subduction of the Seve Nappe Complex in Northern Jämtland during the Middle Ordovician in a fast subduction–exhumation cycle. 相似文献
17.
麻粒岩的形成及其对大陆地壳演化的贡献 总被引:17,自引:17,他引:17
麻粒岩是地球中最重要的岩石类型之一,它的形成主要受地热条件的控制。麻粒岩的形成可以与大陆碰撞、大陆拉张以及大陆弧模式相联系。麻粒岩在某种程度上,还是下地壳的同义词。通过麻粒岩地体地及火山岩中麻粒岩捕虏体的研究,使人们对地球深部的物质组成和结构有了直接的了解。麻粒岩在陆壳的形成和演化中具有举足轻重的地位。陆核说、陆壳垂直增生或横向增生说,都以麻粒岩作为重要的岩石学依据。 相似文献
18.
A. B. Vrevskii 《Doklady Earth Sciences》2009,429(2):1575-1579
This study presents new data on the geochemical and Sm-Nd isotope compositions, as well as the U-Pb age and geodynamic nature,
of the Neoarchean basalt-andesite-dacite (BAD) association from the Kolmozero-Voron’ya greenstone belt. As it was first demonstrated
by the example of the Neoarchean greenstone belt, the formation of BAD associations within a single Neoarchean greenstone
structure may be explained by the long-lasting evolution of separate mantle or crustal sources not related to subduction processes. 相似文献
19.
I. K. Kozakov E. B. Salnikova V. P. Kovach I. V. Anisimova A. M. Fedoseenko S. Z. Yakovleva 《Stratigraphy and Geological Correlation》2013,21(5):482-495
The Early Caledonian folded area of Central Asia comprises a variety of continental crust fragments with Early to Late Precambrian crystalline basement. Crystalline rocks, which form part of the Songino block, outcrop at the junction between the Dzabkhan and Tuva-Mongolian terranes. The Bayannur zone in the southern part of the Songino block contains the Bayannur migmatite-gneiss and Kholbonur terrigenous-metavolcanic metamorphic complexes. Previous studies provide the 802 ± 6 Ma age for the regional metamorphism and folding within the Bayannur complex. On the basis of the minimum Nd model age of 1.5 Ga, gneisses from this complex cannot be regarded as Early Precambrian. Two main rock associations were distinguished in the Kholbonur complex. Mafic metavolcanics compose the dominant lithology of the first rock association, whereas the second association comprises terrigenous-volcanic and predominantly terrigenous suites. The rocks of the predominantly terrigenous suite, including mudstones, sandstones, and conglomerates, are interpreted to derive from the Late Riphean accretionary prism. The lithology and composition of metaterrigenous rocks suggest that they were possibly derived from erosion of a volcanic arc. The upper age limit of this suite is constrained by postkinematic granites (790 ± 3 Ma; U-Pb zircon), the lower age is given by plagiogranite (874 ± 3 Ma; U-Pb zircon) from comglomerate pebbles. Therefore, the timing of deposition of this terrigenous suite can be bracketed by the 874–790 Ma time interval. These ages and compositional features of the Kholbonur complex terrigenous rocks suggest that the convergence took place at around 870–880 Ma and thus it can be correlated with the divergent processes between the blocks of continental crust composing the supercontinent Rodinia. 相似文献
20.
We have measured both P- and S-wave velocities (Vp and Vs) and Poisson's ratios (υ) of 60 typical ultrahigh pressure (UHP) metamorphic rock samples from the Chinese Continental Scientific Drilling (CCSD) main and pre-pilot holes and surface outcrops in the Sulu–Dabie orogenic belt at hydrostatic confining pressures up to 850 MPa. The experimental results, together with those compiled in Handbook of Seismic Properties of Minerals, Rocks and Ores [ Ji, S.C., Wang, Q., Xia, B., 2002. Handbook of Seismic Properties of Minerals, Rocks and Ores. Polytechnic International Press, Montreal, 630 pp.], reveal that except for monomineralic rocks such as quartzite, serpentinite, anorthosite, limestone, and marble the rest of the rock types have Poisson's ratios falling along an upward convex curve determined from the correlations between elastic moduli and density. Poisson's ratios increase with density as the lithology changes from granite, felsic gneiss and schist, through diorite–syenite, intermediate gneiss and metasediment, to gabbro–diabase, amphibolite, and mafic gneiss, and then decrease as the rocks become ultramafic in composition. Eclogite has a higher density but a lower Poisson's ratio than peridotite. The results were applied to constrain the crustal composition and tectonic evolution of the Chinese continental crust based on crustal thickness (H) and Poisson's ratio (υ) from 248 broadband seismic stations, measured using teleseismic receiver function techniques. The North China, Yangtze, South China and Northeast China blocks and Songpan–Ganzi Terrane are dominated by low (υ < 0.26) and moderate (0.26 ≤ υ < 0.28) υ values (> 70%), suggesting the dominance of felsic composition in the crust. The Lhasa terrane, Qiangtang terrane, and Indochina block are characterized by high proportions (33–42%) of measurements with very high υ values (≥ 0.30 and H is found for the South China block, Northeast block, Lhasa block, Qiangtang terrane and Indochina block, indicating either tectonic thickening of the felsic upper and middle crust by folding and thrusting or the removal of mafic layers from the lower crust into the upper mantle by delamination. 相似文献