首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study constructs a hazard map for ground subsidence around abandoned underground coal mines (AUCMs) at Samcheok City in Korea using a probability (frequency ratio) model, a statistical (logistic regression) model, and a Geographic Information System (GIS). To evaluate the factors related to ground subsidence, an image database was constructed from a topographical map, geological map, mining tunnel map, Global Positioning System (GPS) data, land use map, lineaments, digital elevation model (DEM) data, and borehole data. An attribute database was also constructed from field investigations and reports on the existing ground subsidence areas at the study site. Nine major factors causing ground subsidence were extracted from the probability analysis of the existing ground subsidence area: (1) depth of drift; (2) DEM and slope gradient; (3) groundwater level, permeability, and rock mass rating (RMR); (4) lineaments and geology; and (5) land use. The frequency ratio and logistic regression models were applied to determine each factor’s rating, and the ratings were overlain for ground subsidence hazard mapping. The ground subsidence hazard map was then verified and compared with existing subsidence areas. The verification results showed that the logistic regression model (accuracy of 95.01%) is better in prediction than the frequency ratio model (accuracy of 93.29%). The verification results showed sufficient agreement between the hazard map and the existing data on ground subsidence area. Analysis of ground subsidence with the frequency ratio and logistic regression models suggests that quantitative analysis of ground subsidence near AUCMs is possible.  相似文献   

2.
3.
在具有冲击倾向性矿井的动载支护设计中,地震动对动态载荷的估算有重要作用。目前,国内外普遍采用半经验公式(scaling law)来估算质点峰值振动速度(PPV)。然而,此方法在实际估算地震动时忽略了地质和巷道开挖对地震动分布的影响。为更好地理解开挖对地震动在地下开挖边界分布的影响,基于笔者提出的适于开挖边界的非线性速度模型及FLAC/SPECFEM2D的耦合数值模拟方法,针对高质量及中等质量围岩体两种情况,对一地下采场的地震动分布进行了数值分析。研究结果表明,不同速度模型对地震动分布影响很大。考虑了围压及开挖影响的非均匀速度模型能够更好地模拟地震动在地下开挖边界附近的分布,且模拟的地震动在采场表面的放大作用与现场观测的放大现象具有很好的一致性。相比于高质量围岩体,当模拟的开挖采场围岩为中等质量围岩体时,采场开挖边界处具有更强的地震动及更广的地震响应。  相似文献   

4.
This study deals with the characteristics of subsidence and the relationships between the subsidence factors over abandoned coal mines in South Korea. The subsidence factors that were investigated were the dip angle and thickness of the coal bed, mining depth, depth of subsidence, and subsidence area in 548 cases of subsidence that occurred throughout the country. A close relationship between the type of subsidence and mining method was identified. There was an intimate relation between the depth of subsidence and the dip angle of the coal bed, while the subsidence area proved to be in proportion to the thickness of the coal bed and mining depth and was in inverse proportion to the dip angle of the coal bed.  相似文献   

5.
废弃矿山生态恢复工程地质灾害危险性评估方法探讨   总被引:1,自引:1,他引:0  
废弃矿山一般地处地质环境较复杂的山区,人类工程活动强烈,加之废弃矿山植被恢复工程的特殊性,与常规建设工程的地质灾害危险性评估相比,其工作方法和内容等都具有明显的区别。本文以北京市房山区霞云岭乡废弃矿山地质灾害危险性评估为实例,着重探讨了此项评估技术的基本思路、方法和技术手段等内容,以期为类似工程地质灾害危险性评估工作提供参考。  相似文献   

6.
Permeable geologic faults in the coal seam can cause intermittent production problems or unexpected amounts of groundwater outburst from the underlying aquifers. With the acknowledgment of the basic mechanism for groundwater outbursts, the groundwater outburst along the fault zones in coal mines are numerically investigated using RFPA, a numerical code based on FEM. The fracture initiation, propagation, and coalescence in the stressed strata and the seepage field evolution in the stress field are represented visually during the whole process of groundwater outburst. The numerically obtained damage evolution shows that the floor strata could be classified as three zones, i.e. mining induced fracture zone, intact zone and fault reactivation zone, in which the intact zone is the key part for resisting groundwater outburst and directly determines the effective thickness of water-resisting rock layer. With understanding of the evolution of stress field and seepage flow in floor strata, the groundwater outburst pathway is calibrated and the transformation of floor rock mass from water-resisting strata to outburst pathway is clearly illuminated. Moreover, it is shown that geometrical configuration, including inclination angle of faults and seam drop along faults, have an important influence on groundwater outburst. Finally, based on geological, hydrogeology survey and numerical results, the mechanism analysis of groundwater outburst in an engineering case is studied, which can provide significantly meaningful guides for the investigation on mechanism and prevention of groundwater outburst induced by faults in practice.  相似文献   

7.
Roof falls accounted for 18.18% of all fatal accidents in Indian coal mines, contributing about 35.29% of all fatal accidents in below-ground operations in 2005. The support safety factor, always preferred in support planning and design of underground coal mines, may be an important predictor for roof falls. In this paper, geotechnical data were collected from 14 roof fall incident places in an underground coal mine, located in the Eastern India, which has bord and pillar method of workings. The mean value of probabilistic support safety factor for the case study mine was found to be 1.24. However, the probability, of the estimated support safety factor of less than or equal to one, was found to be 0.246. Sensitivity analysis was conducted to analyze the effects of the contributing parameters on support safety factor and the likelihood of the roof fall. The multi-variate regression analysis was carried out for the data generated by Monte Carlo method to correlate the contributing factors to support safety factor. It ranked gallery width as the first parameter to control the support safety factor.  相似文献   

8.
Summary Most empirical methods of subsidence prediction are based on the prior knowledge of the maximum possible subsidence, Smax, for a particular coalfield. The subsidence profile and other associated parameters along a desired line may be derived, in most cases, as a function of S max. These methods are site specific and are not based upon the rational concepts of mechanics. Purely mechanistic methods, on the other hand, could not find wide application because of their limitations in representing the complex behaviour of a rockmass.Therefore a semi-empirical method of calculation of S max or S, which is an improvement over the empirical method reported elsewhere (Bahuguna et al., 1991a), has been derived from combining the mechanistic and empirical approach. The effects of various parameters are studied by numerical modelling. These qualitative results are then used to influence the development of a more general semiempirical method. The method has been tested for 125 coal mine workings in India and 22 mines of the North Appalachian basin. The method is easily adaptable to other countries.  相似文献   

9.
From the viewpoint of safety in underground coal mining, the most suitable mining panel is the one with minimum geological structures, the right machinery, and equipment selection, trained employee, and proficient stope management. Since the ground parameters are uncontrollable and inherent uncertainties exist, a high percent of risk will usually accompany the underground coal mining activities. The main purpose of this study is to present a geological–geotechnical risk assessment model for identification of high risk-prone areas in underground coal mines using an integrated GIS-geostatistics system. Tabas as the first mechanized and largest underground coal mine in Iran was selected as a case study in this study. Gas content of coal seam, Coal Mine Roof Rating (CMRR), initial in situ stress state, fault throw, and orientation were selected as hazard/risk factors. For estimating the amount of coal seam gas content, CMRR and initial in situ stress in unsampled areas and providing the prediction maps, geostatistics module in ArcGIS was used. Rock engineering system–interaction matrix method was used for attribute weight assignment. Next, the attribute layers were weighted, rated, and overlaid to create a final map of geohazards risk. The analysis results of final risk map indicate that about 45% of under study area is prone to high to very high geohazards risk. Comparison of the results with experiences obtained during the early part of the mine and mined-out panels showed generally good agreement with promising ideas. This highlights the potential application of the GIS-based approach for hazards detection and geohazards risk assessment in underground coal mines.  相似文献   

10.
闭坑矿井地面塌陷监测示范区建设初探   总被引:1,自引:0,他引:1       下载免费PDF全文
一些闭坑矿井地面塌陷问题已对人居环境构成严重威胁。综述了国内外闭坑矿井地面塌陷监测的技术现状,提出了国家级地面塌陷监测示范区建设的目标框架,介绍了监测示范区选取原则、监测网的布置、监测桩的埋设形式,对多种监测技术适用条件及优缺点进行了对比分析,并探讨了测量要求及数据的处理。研究结果为类似地质环境条件下示范区的建设有一定的借鉴意义。  相似文献   

11.
An integrated GIS-based approach for establishing a spatial and temporal prediction system for groundwater flow and land subsidence is proposed and applied to a subsidence-progressed Japanese coastal plain. Various kinds of fundamental data relating to groundwater flow and land subsidence are digitized and entered into a GIS database. A surface water hydrological cycle simulation is performed using a GIS spatial data operation for the entire plain, and the spatial and temporal groundwater infiltration quantity is hereby obtained. Through the data transformation from the GIS database to a groundwater flow code (MODFLOW), a 3D groundwater flow model is established and unsteady groundwater flow simulation for the past 21 years is conducted with results which compare satisfactorily with observed results. Finally, a Visual Basic code is developed for land subsidence calculations considering aquifer and aquitard deformation. Future land subsidence in the plain is predicted assuming different water pumping scenarios, and the results provide important information for land subsidence mitigation decision-making.  相似文献   

12.
The Weights-of-Evidence (W-of-E) technique was applied, within a geographic information system (GIS), to derive a model of rockfall potential associated with mining-induced subsidence. The purpose of the model was to describe the potential for rockfalls from up to 60 m high steep sandstone gorges and slopes associated with proposed underground longwall operations within the immediate vicinity of a previously mined area. Ten known rock falls associated with the previous mining operation were used as training points. Six evidential themes were considered-slope, cliff height, planform curvature, profile curvature, the distance of the cliff areas from the longwall panels, and the distance of the cliff areas from the river. Two models were created, one based on a mine layout in which longwall panels extend beneath the steep areas of a nearby river, and a second in which the mine layout is modified so that mining does not occur directly beneath or within 50 m of the steep slopes. This is to allow for the comparison of rockfall potential based on different mining configurations. The results demonstrate that the W-of-E method is a suitable tool for mine subsidence impact assessment, and suggest that not mining directly under the Nepean river may decrease rockfall potential, on average, by approximately ten times. Numerous limitations with the results, relating to the availability of appropriate evidential theme data and the accuracy of training points, are discussed.  相似文献   

13.
Hazard maps of ground subsidence around abandoned underground coal mines (AUCMs) in Samcheok, Korea, were constructed using fuzzy ensemble techniques and a geographical information system (GIS). To evaluate the factors related to ground subsidence, a spatial database was constructed from topographic, geologic, mine tunnel, land use, groundwater, and ground subsidence maps. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 70/30 for training and validation of the models. The relationships between the detected ground-subsidence area and the factors were identified and quantified by frequency ratio (FR), logistic regression (LR) and artificial neural network (ANN) models. The relationships were used as factor ratings in the overlay analysis to create ground-subsidence hazard indexes and maps. The three GSH maps were then used as new input factors and integrated using fuzzy-ensemble methods to make better hazard maps. All of the hazard maps were validated by comparison with known subsidence areas that were not used directly in the analysis. As the result, the ensemble model was found to be more effective in terms of prediction accuracy than the individual model.  相似文献   

14.
Control of gas emissions in underground coal mines   总被引:4,自引:0,他引:4  
A high level of knowledge is now available in the extremely relevant field of underground gas emissions from coal mines. However, there are still tasks seeking improved solutions, such as prediction of gas emissions, choice of the most suitable panel design, extension of predrainage systems, further optimization of postdrainage systems, options for the control of gas emissions during retreat mining operations, and prevention of gas outbursts. Research results on these most important topics are presented and critically evaluated. Methods to predict gas emissions for disturbed and undisturbed longwall faces are presented. Prediction of the worked seam gas emission and the gas emission from headings are also mentioned but not examined in detail. The ventilation requirements are derived from the prediction results and in combination with gas drainage the best distribution of available air currents is planned. The drainage of the gas from the worked coal seam, also referred to as predrainage, can be performed without application of suction only by over or underworking the seam. But in cases where this simple method is not applicable or not effective enough, inseam-boreholes are needed to which suction is applied for a relatively long time. The reason for this is the low permeability of deep coal seams in Europe. The main influences on the efficiency of the different degasing methods are explained. Conventional gas drainage employing cross measure boreholes is still capable of improvement, in terms of drilling and equipment as well as the geometrical borehole parameters and the operation of the overall system. Improved control of gas emissions at the return end of retreating faces can be achieved by installation of gas drainage systems based on drainage roadways or with long and large diameter boreholes. The back-return method can be operated safely only with great difficulty, if at all. Another method is lean-gas drainage from the goaf. The gas outburst situation in Germany is characterized by events predominantly in the form of ‘nonclassical' outbursts categorized as ‘sudden liberation of significant quantities of gas'. Recent research results in this field led to a classification of these phenomena into five categories, for which suitable early detection and prevention measures are mentioned.  相似文献   

15.
结合企业批量定制生产和产品变型开发的特点,定义了坑道钻机的数字化设计流程;提出了坑道钻机数字化设计中的数字化建模、数字化仿真和数字化管理3项关键技术。数字化建模用于建立产品三维模型和装配分析;数字化仿真用于分析产品的动态特性;数字化管理则用于管理产品设计过程及其数据。进而建立了坑道钻机数字化设计平台,包括基础、平台和应用3个层次。结合千米定向钻机开发说明了该数字化设计技术的应用。  相似文献   

16.
We present here a methodology implemented within a geographical information system (GIS) for hazard mapping of small volume pyroclastic density currents (PDCs). This technique is implemented as a set of macros written in Visual Basic for Applications (VBA) that run within GIS-software (i.e. ArcGIS). Based on the energy line concept, we calibrated an equation that relates the volume (V) and the mobility (ΔH/L) of single PDCs using data from Soufrière Hills volcano (Montserrat) and Arenal volcano (Costa Rica). Maximum potential run-outs can be predicted with an associated uncertainty of about 30%. Also based on the energy line concept and with data from Soufrière Hills volcano and Mt. St. Helens (USA), we were able to calibrate an equation that predicts the flow velocity as a function of the vertical distance between the energy line and the ground surface (Δh). Velocities derived in this way have an associated uncertainty of 3 m s−1. We wrote code to implement these equations and allow the automatic mapping of run-out and velocity with the inputs being (i) the height and location of the vent (ii) the flow volume and (iii) a digital elevation model (DEM) of the volcano. Dynamic pressure can also be estimated and mapped by incorporating the density of the pyroclastic density current (PDC). This computer application allows the incorporation of uncertainties in the location of the vent and of statistical uncertainties expressed by the 95% confidence limits of the regression model. We were able to verify predictions by the proposed methodology with data from Unzen volcano (Japan) and Mayon volcano (The Philippines). The consistencies observed highlight the applicability of this approach for hazard mitigation and real-time emergency management.  相似文献   

17.
Accidents in underground collieries, under geological and geotechnical uncertainties, cause some irrecoverable consequences for workers. Recognizing and studying the effective factors in the occurrence of such accidents have a very crucial impact on improving worker safety and reducing mining costs. This paper introduces a new and beneficial technique named “modified risk priority number (MRPN)” for recognizing and assessing those risks which may cause working accidents in Iranian underground collieries. The available qualitative data from the mines was quantified using standard tables established for risk assessment. The technique was exemplified using data from mine accidents in Kerman and East-Alborz regions. Roof-fall was found to be the most significant risk factor in the mines that were investigated.  相似文献   

18.
与地面地震勘探相比,煤矿井下地震勘探具有较高的分辨率,但也存在一些特殊问题,如炮间时差即为其一,需要采取特殊处理手段加以解决。针对矿用雷管引起的各炮间时差问题,采用单炮初至时间回归预测分析方法校正激发时间不一致所带来的延迟时,并引入了地表一致性振幅校正及地表一致性反褶积技术,使得煤矿井下地震信号振幅、波形不一致的问题得到了较大的改善。实际资料处理效果表明:经过以上处理后,煤矿井下地震叠加剖面效果得到明显改善,为构造解释和岩性解释创造了条件。  相似文献   

19.
盐岩地下储备库引发地表沉陷事故的风险分析   总被引:2,自引:0,他引:2  
在盐岩储备库的建设和运营过程中,由于腔体不断收缩而导致上覆岩层发生变形,从而引起储库上部地表发生碟状沉降变形,甚至造成地表塌陷事故是盐岩地下储备库的重要事故类型之一。针对盐岩地下储备库引发的地表沉陷事故进行分析,找出了该类事故的发生机制并建立相应的故障树模型,计算得到地表沉陷事故的14种发生模式和10个基本致因事件,并提出了相应的控制措施。并从风险分析的角度对盐岩储备库引发的地表沉降事故的后果严重性进行预测分析研究,并以湖北云应盐矿为例,假设该地区在储气库的建设或运营过程中发生地表沉降事故,采用模糊综合评价法对该类事故后果的严重性进行风险预测,得出后果为可忽略、需考虑、严重、非常严重、灾难性的概率分别为0.24、0.28、0.29、0.15、0.04。为有效预防盐岩储备库运营引发地表沉陷事故以及在事故发生前进行损失严重性预测提供了依据和方法  相似文献   

20.
根据弹性力学理论,建立了地表下沉预测分析的三维层状理论模型,并用于小官庄铁矿地下开采引起地表下沉的预测分析。在分析过程中,采用Matlab软件进行数值积分计算和图形绘制。通过工程实例计算分析,表明理论计算结果与矿山现场实测资料二者吻合较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号