首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
北京市平原区地下水分层质量评价   总被引:2,自引:1,他引:2       下载免费PDF全文
郭高轩 《中国地质》2012,39(2):518-523
本文提出了一套基于ArcGIS平台的区域地下水水质评价方法,实现了单因子指标质量评价和多因子综合质量评价。方法不仅能够批量处理地下水水样和地下水质量评价结果的网格化成图,并且保留了以往容易被忽略的水质"极差点"。最后应用该方法对来自于北京市平原区1 035眼水井中的丰、枯水期近3 000余个水质数据进行了评价,结果表明平原区单因子超标的主要有总硬度、溶解性总固体、锰、氨氮、铁、氟、硝酸盐、亚硝酸盐。北京平原区地下水由浅层到中层再到深层,水质越来越好,其超III类水的面积分别为3 649 km2、2 258 km2和737 km2。区域评价结果表明,平原区地下水丰水期的水质普遍略差于其枯水期水质。  相似文献   

2.
A geochemical assessment of groundwater quality and possible contamination in the vicinity of the Bhalswa landfill site was carried out by using a hydrochemical approach with graphical and multivariate statistical methods with the objective of identifying the occurrence of various geochemical processes and understanding the impact of landfill leachates on groundwater quality. Results indicate that nitrate, fluoride and heavy-metal pollution are in an alarming state with respect to the use of groundwater for drinking purposes. Various graphical plots and statistical analyses have been applied to the chemical data based on the ionic constituents, water types, and hydrochemical facies to infer the impact of the landfill on groundwater quality. The statistical analysis and spatial and temporal variations indicate the leaching of contaminants from the landfill to the groundwater aquifer system. The concentrations of heavy metals in the landfill leachates are as follows: Fe (22 mg/l), Mn (~20 mg/l), Cu (~10 mg/l), Pb (~2 mg/l), Ni (0.25 mg/l), Zn (~10 mg/l), Cd (~0.2 mg/l), Cl (~4,000 mg/l), SO42− (~3,320 mg/l), PO43− (~4 mg/l), NO3 (30 mg/l) and fluoride (~50 mg/l); all were much higher than the standards. The study reveals that the landfill is in a depleted phase and is affecting groundwater quality in its vicinity and the surrounding area due to leaching of contaminants.  相似文献   

3.
The low annual and seasonal variability of the shallow groundwater temperature in the alluvial plain aquifers of the Piemonte region (NW Italy) confirmed the potentiality of the low-enthalpy open-loop groundwater heat pumps (GWHP) diffusion to contribute to the reduction of regional greenhouse gas emissions. The distribution of mean groundwater temperatures ranged from a minimum of 10.3°C to a maximum of 17.9°C with a mean of 14.0°C. Differences among diverse areas were slight according with the modest variations in the general climatic condition. Like the air, temperature distribution of the shallow groundwater temperatures is generally similar to topographic elevations in reverse manner. Higher temperature values recorded were typical of summer months (June, July). On the opposite lower values were measured in January and February. No significant difference phase (time) difference between air and groundwater temperature appeared in the data analysis. Besides air-temperature influence (seasonal variability) seemed strictly connected to the depth to groundwater in the measure point and it was negligible when the value was over 9.5 m. For the application of the open-loop systems, extensive examinations of the hydrogeological local conditions should be conducted at site scale and groundwater heat transport modelling should be developed.  相似文献   

4.
以安徽淮北平原浅层地下水中的水质状况为研究对象,有针对性地采集了浅层地下水水样151个,应用多种方法测试了26种水样指标。综合分析结果表明:安徽淮北平原浅层地下水色度、浊度超标率小于10%;pH均值为7.6,为中性偏碱性水;HCO3—Na.Ca、HCO3—Na、SO4—Na、HCO3.SO4—Na.Mg等4种水化学类型占62.9%;硬度和TDS均值分别为481mg/L,641mg/L;Fe、Mn超标率分别为50.8%,46.9%;F-均值为1.4mg/L,低洼地势含氟矿物的溶解是导致F-局部偏高的主要原因,最高可达4.1mg/L;CODMn变化范围为1.0~3.5mg/L,有机污染程度低;三氮浓度随深度的增加而减少,农药化肥的过量使用是导致NO3--N和NH4+-N超标的主要原因,NO2--N超标19.1%,且与Fe2+浓度呈正相关关系(相关系数为0.933)。主成分分析发现,地下水的交换吸附作用、溶滤作用,原始沉积环境以及农业生产活动是影响其水质的主要因素。  相似文献   

5.
The present study was carried out in the Mulaylih area which forms a part of Wadi Al Hamad in the Madinah Province of Saudi Arabia. Thirty groundwater samples from agricultural farms were collected and analyzed for various physio-chemical parameters including trace elements. The area is occupied by the Quaternary alluvium deposits which form shallow unconfined aquifers. Evaporation and ion exchange are the major processes which control the major ion chemistry of the area. The extreme aridity has results in high total dissolved solid values (average of 9793.47 mg/l). Trace element concentrations are low and are mainly attributed to geogenic sources (silicate weathering). Na-Cl groundwater type is the main hydrochemical facies found in the area. The waters are found to be oversaturated with calcite/aragonite and dolomite. The average nitrate concentration was found to be 134.10 mg/l and is much higher than the WHO recommended limit of 50 mg/l in drinking water. Their high values are mainly associated with the application of N-fertilizers on the agricultural farms. The average fluoride concentration in the study was found to be 1.54 mg/l. The relation between F and Cl and Cl and Na reveals that the fluoride concentrations are mainly attributed to geogenic sources. A comparison of the groundwater quality with the Saudi drinking water standards shows that the water is unfit for drinking. The high salinity and sodicity of the groundwater make it unfit for irrigation. Principal component analysis resulted in extraction of four principal components accounting for 79.5% of the total data variability and supports the fact that the natural hydrochemical processes (evaporation and ion exchange) control the overall groundwater chemistry.  相似文献   

6.
Fifty groundwater samples were collected from Al-Hasa to analyze the pH, electrical conductivity (EC, dS m?1), total dissolved solids (TDS), major anions (HCO3?, CO32?, Cl?, SO42?, and NO3?), major cations (Ca2+, Mg2+, Na+, and K+), and total hardness. The analyzed data plotted in the Piper, Gibbs, and Durov diagrams, and water quality index (WQI) were calculated to evaluate the groundwater geochemistry and its water quality. The results reveal that most of the investigated samples are Ca2+, Mg2+, SO42?, Cl? and Na+, and HCO3? water types using the Piper diagram. Na+?>?Ca2+?>?Mg2+ are the dominant cations, while Cl??>?HCO3??>?SO42??>?CO32? are the dominant anions. Sodium adsorption ratio (SAR) values varied from 0.79 to 10; however, the Kelly ratio (KR) ranged between 0.1 and 2.2. The permeability index (PI) showed that well water is suitable for irrigation purposes with 75% or more of maximum permeability. The US salinity diagram revealed that the water quality classes of studied waters were CIII-SI, CIII-SII, and CIV-SII, representing height hazards of salinity and medium- to low-sodium hazard. The water quality index (WQI) results indicated that total dissolved solids are out of the drinking water standard limits in Saudi Arabia. The WQI revealed that 38% of the studied wells were considered as poor water (class III), 52% are found as very poor water class (IV), and 10% are unsuitable water for drinking class (V).  相似文献   

7.
Hydrogeochemical investigation of groundwater has been carried out in the coastal aquifers of southern Tamil Nadu, India. Seventy-nine dug well samples were collected and analyzed for various physicochemical parameters. The result of the geochemical analysis indicates the groundwater in the study area is slightly alkaline with moderate saline water. The cation and anion concentrations confirm most of the groundwater samples belong to the order of Na+ > Mg2+ > Ca2+ > K+ and Cl? > SO4 2? > HCO3 ?. Thereby three major hydrochemical facies (Ca–Cl, mixed Ca–Mg–Cl and Na–Cl) were identified. Based on the US Salinity diagram, majority of the samples fall under medium to very high salinity with low to high sodium hazard. The cross plot of Ca2+ + Mg2+ versus chloride shows 61 % of the samples fall under saline water category. Higher EC, TDS and Cl concentrations were observed from Tiruchendur to Koodankulam coastal zone. It indicates that these regions are significantly affected by saltwater contamination due to seawater intrusion, saltpan deposits, and beach placer mining activities.  相似文献   

8.
In this study, the hydrochemical characteristics of shallow groundwater in a coastal region (Khulna) of southwest Bangladesh have been evaluated based on different indices for drinking and irrigation uses. Water samples were collected from 26 boreholes and analyzed for major cations and anions. Other physico-chemical parameters like pH, electrical conductivity (EC), and total dissolved solids were also measured. Most groundwater is slightly alkaline and largely varies in chemical composition, e.g. EC ranges from 962 to 9,370 μs/cm. The abundance of the major ions is as follows: Na+ > Ca2+ > Mg2+ > K+ = Cl > HCO3  > SO4 2− > NO3 . Interpretation of analytical data shows two major hydrochemical facies (Na+–K+–Cl–SO4 2− and Na+–K+–HCO3 ) in the study area. Salinity, total hardness, and sodium percentage (Na%) indicate that most of the groundwater samples are not suitable for irrigation as well as for domestic purposes and far from drinking water standard. Results suggest that the brackish nature in most of the groundwaters is due to the seawater influence and hydrogeochemical processes.  相似文献   

9.
The Yamuna flood plains spread across the northern part of Indian subcontinent is home to millions of people. The ever-growing population in these plains make it difficult to sustain the demand of freshwater resources. However, the productive aquifers of flood plains could provide solution for these issues. In this context, it is necessary to understand the aquifer characteristics. Thus, the paper attempts to characterize the aquifer in Palla area of the flood plain using integrated approach. Besides, grain size analysis and site-litholog study, the nature of aquifer material was also ascertained from bulk mineralogy of the sediments using X-Ray Diffraction. The aquifer parameters were estimated with help of long duration pumping test data. Moreover, the effect of pumping on salinity variation and hydrochemical facies evolution was also examined. The sand dominant, unconfined aquifer was estimated to have horizontal hydraulic conductivity in the range of 25 m/day and vertical hydraulic conductivity of 6–7 m /day. While the specific yield of the aquifer was estimated in the range of 0.07–0.08. It is observed that under conducive active flood plain environment, the given sand mineralogy at the site does not allow salinity increase in groundwater even after more than a decade of groundwater pumping. In fact, over years, hydrochemical facies have evolved towards Bicarbonate type. These things put together make the active flood plain aquifer a sustainable groundwater resource.  相似文献   

10.
Stable isotopes (δ18O, δ2H and 13C) and radioactivity (3H, 14C) have been used in conjunction with chemical data to evaluate the processes generating the chemical composition, reconstruct the origin of the water and groundwater residence time. The Aleppo basin is comprised of two main limestone aquifers: the first one is unconfined of Paleogene age and the second is confined of Upper Cretaceous age. The chemical data indicate that the dissolution of minerals and evaporation are the main processes controlling groundwater mineralization. The groundwater from the two aquifers is characterized by distinctive stable isotope signatures. This difference in water isotopes is interpreted in terms of difference origin and recharge period. Fresh and brackish shallow groundwater were mostly recharged during the Holocene period. The presence of 3H in several groundwater samples of this aquifer gives evidence that groundwater recharge is going on. Brackish water of the deep confined aquifer has depleted stable isotope composition and very low 14C activity that indicates recharge during the late Pleistocene cold period.  相似文献   

11.
信阳市浅层地下水质量评价   总被引:1,自引:0,他引:1  
李军  周晓玉 《地下水》2010,32(2):43-46
为了保护信阳市浅层地下水资源环境,进一步合理开发该区浅层地下水,在对信阳市市区大量浅层地下水水样分析资料的基础上,从饮用水评价,农业灌溉用水评价,工业锅炉用水评价及综合评价等四个方面对该区浅层地下水质量进行了评价。评价结果表明:评价区内虽没有极差的Ⅴ级水,但在人口集中和用水集中的市区均为较差的Ⅳ级水,是人们生产和生活用水质量下降的主要原因;人口集中带来的生活污染是本区浅层地下水主要污染源,次要污染源为工业污染,这些理应引起高度重视,防止污染的进一步扩大。  相似文献   

12.
The present study deals with the hydrogeochemistry and water quality of shallow aquifers in two important river basins—the Ithikkara and Kallada river basins—draining the south western flanks of Western Ghats in Kerala, South West India. Well water samples were collected from 20 dug wells with a depth range of 1 m below ground level (mbgl) to 18.2 mbgl during pre-monsoon, monsoon, and post-monsoon seasons of the year 2011–2012. These samples were analyzed for various physico-chemical parameters following standard methods and were evaluated for their interrelations and drinking water suitability. The pH of the water samples shows wide variation from highly acidic to highly alkaline water. About 80% of pre-monsoon samples recorded Fe2+ concentration above the permissible limit of drinking water standard. Water Quality Index (WQI) shows that majority of the well water samples fall in the category of excellent–good for drinking purpose. The results of the irrigation suitability assessment using the procedures like Percent Sodium, Sodium Absorption Ratio, Residual Sodium Carbonate, Kelly Index, Permeability Index, and Magnesium Hazard reveal that the well waters of the study area are fit for irrigation purpose. Na+/Cl? ratio reflects the release of sodium to water due to silicate weathering. The samples have a Ca2+/Mg2+ ratio equal or greater than 2 indicating the effect of silicate minerals in contributing Ca2+ and Mg2+ ions to the well water. The saturation indices reveal that groundwater is supersaturated with SiO2. Among the causative factors that determine the hydrochemical quality of well water samples, silicate weathering plays a pivotal role with significant input of ions from anthropogenic sources.  相似文献   

13.
14.
江汉平原东北部浅层高铁锰地下水环境特征   总被引:1,自引:0,他引:1  
铁、锰元素是影响江汉平原东北部浅层地下水质量的主要因素.为了查明该地区地下水中铁锰的分布特征及地下水环境特征,选择典型研究区,采集了13件地下水样品,测试了地下水中铁锰的含量以及酸碱度、矿化度和氧化还原条件,分析了上述条件对铁锰含量的影响,并与江汉平原腹地高铁锰地下水环境进行对比.结果表明,本研究区地下水以HCO3-Ca、HCO3-Ca·Mg型为主,高铁锰水主要分布于研究区东部和南部沿江地带,与江汉平原腹地地下水化学类型一致,铁锰的含量相对偏低.研究区上部土层中铁锰的氧化物为地下水中的铁锰提供了丰富的来源,地下水的酸碱度、矿化度和氧化还原环境是影响铁锰迁移的主要因素.研究区高铁锰地下水多呈弱酸性,矿化度较高,地下水中铁锰的含量与溶解氧具弱负相关,与氨氮具强烈正相关,表明相对还原的环境有利于铁锰释放到地下水中,江汉平原腹地处于更加还原的环境,是地下水中铁锰高于本研究区的主要原因.  相似文献   

15.
Adverse effect of rapid industrialization on groundwater quality and quantity is widely known problem especially in developing countries. Tirupur, which is situated on the bank of Noyyal River in India, is known for intensive textile processing activities. As groundwater is the main water source for drinking water, there is an urgency to assess the groundwater quality. Twenty groundwater samples were collected for each post and pre-monsoon sampling during August 2009 and March 2010, respectively. Chemical and statistical analysis along with numerical modelling has been performed to assess the current status. The hydro-geochemical study revealed that the dominance of Mg–Cl and Na–HCO3 groundwater type in the upstream region Tirupur industrial hub of Noyyal River basin. Na–Cl groundwater type was found increasing in industrial hub (Kasipalayam) and downstream of the industrial hub (Anaipalayam) sites. The dominance of Na–Cl type of water is mainly due to the impact of salts like NaCl, Na2SO4, etc. used in textile processing, which after discharge, percolate and accumulate in the aquifers. Seasonal groundwater quality of Tirupur region as a whole showed the dominance of Ca–HCO3 ?, Na–HCO3 ? and Na–Cl water types. PHREEQC model output indicates that nearly all the groundwater samples were oversaturated with respect to calcite and dolomite and undersaturated with respect to gypsum and halite. The results obtained in this study were then compared with groundwater quality of the Noyyal River basin for the year 2008–2009. Among the two sites, Kasipalayam was found to be most contaminated due to incessant industrial discharge. But with the advent of new treatment technologies like CETPs having zero liquid discharge system and MBR, there has been slight decline in the concentration of different physicochemical parameters from 2002–2003 to 2008–2009. This study not only makes situation alarming but also calls for immediate attention for sustainable management of water resources.  相似文献   

16.
Monitoring of shallow groundwater quality is part of the Danish Agricultural Watershed Monitoring Programme. The monitoring program provides fast and field-related information on impacts of changes in agricultural practices on a watershed scale. The monitoring concept described is carried out in six well-defined hydrological basins and includes new types of groundwater nests and soil water stations. Results from the first three years are presented through examples from the clayey till watershed Lillebæk and the sandy watershed Barslund Bæk. By averaging concentrations of solutes in groundwater sampled at the same depth on a monthly basis, it is possible to evaluate trends in the overall impact of climate and different agricultural practices in a watershed on the groundwater quality. Characteristic seasonal variations in nitrate concentrations related to water level fluctuations was observed. The monitoring has demonstrated significantly higher nitrate concentrations in groundwater sampled downgradient of fields receiving manure than in groundwater sampled downgradient of fertilized fields. Significant vertical nitrate reduction downgradient of manured fields was observed in both the sandy and the clayey watershed though above the redoxcline. In the clayey till watershed fast vertical transport and insignificant nitrate reduction was observed downgradient of fertilized fields probably due to fracture and macro-pore flow.  相似文献   

17.
Celico  F.  Musilli  I.  Naclerio  G. 《Environmental Geology》2004,46(2):233-236
Hydrogeological and microbiological research is in progress to analyze the interaction between groundwater and microbial pollutants, produced by pasture and/or manure spreading, in the areas of different carbonate aquifers of southern Italy. Several springs and wells were studied, and the precipitation, the discharge, the groundwater level and the classic microbial indicators of pollution were monitored weekly or daily. The experimental results show that the pasture and the manure spreading produced microbial contamination of the groundwater, even if runoff infiltration in swallow holes does not exist. The time dependence of microbial contamination shows a series of peaks irregularly distributed, related to the precipitation that produce effective infiltration.  相似文献   

18.
The present study has examined the relationship of groundwater arsenic (As) levels in alluvial aquifers with topographic elevation, slope, and groundwater level on a large basinal-scale using high-resolution (90 m × 90 m) Shuttle Radar Topography Mission (SRTM) digital elevation model and water-table data in Bangladesh. Results show that high As (>50 μg/l) tubewells are located in low-lying areas, where mean surface elevation is approximately 10 m. Similarly, high As concentrations are found within extremely low slopes (<0.7°) in the country. Groundwater elevation (weekly measured by Bangladesh Water Development Board) was mapped using water-table data from 950 shallow (depth <100 m) piezometers distributed over the entire country. The minimum, maximum and mean groundwater elevation maps for 2003 were generated using Universal Kriging interpolation method. High As tubewells are located mainly in the Ganges–Brahmaputra–Meghna delta, Sylhet Trough, and recent floodplains, where groundwater elevation in shallow aquifers is low with a mean value of 4.5 m above the Public Works Datum (PWD) level. Extremely low groundwater gradients (0.01–0.001 m/km) within the GBM delta complex hinder groundwater flow and cause slow flushing of aquifers. Low elevation and gentle slope favor accumulation of finer sediments, As-carrying iron-oxyhydroxide minerals, and abundant organic matter within floodplains and alluvial deposits. At low horizontal hydraulic gradients and under reducing conditions, As is released in groundwater by microbial activity, causing widespread contamination in the low-lying deltaic and floodplain areas, where As is being recycled with time due to complex biogeochemical processes.  相似文献   

19.
A detailed hydrogeological investigation was carried out in parts of the Central Ganga Plain, India, with the objective of assessing the aquifer framework and its resource potential. The area was studied because of its dual hydrogeological situation, that is water logging and soil salinization in the canal command areas and depletion of aquifers in the western part of the basin. A comprehensive investigation of the aquifer system between the Ganga River and Kali River revealed its lateral and vertical dimensions and hydrogeological characteristics. Moreover, study of the groundwater occurrences, movements and behaviour, in terms of water level fluctuation with time and space, confirms the coexistence of over exploitation as well as water logging in the area.

Electronic Supplementary Material Supplementary material is available for this article at
Resumen Una investigación hidrogeológica detallada se llevó a cabo en partes de la Llanura de Ganga Central, India, con el objetivo de evaluar la estructura del acuífero y su potencial del recurso. El área fue estudiada por su doble situación hidrogeológica, es decir la saturación con agua y salinización de suelos en las áreas dominadas por el canal y vaciamiento de acuíferos en el la parte occidental de la cuenca. Una investigación completa del sistema acuífero entre el Río Ganga y el Río Kali, reveló sus dimensiones verticales y laterales y las características hidrogeológicas. Además, los estudios sobre la ocurrencia del agua subterránea, sus movimientos y comportamiento, en lo que se refiere al nivel de agua, y a su fluctuación en el tiempo y el espacio, confirma la co-existencia en el área de sobre- explotación así como de saturación con agua.

Résumé L'objectif de cette étude hydrogéologique détaillée de portions de la Plaine Centrale du Gange est de déreminer la structure aquifère et la ressource potentielle. L'intérêt de la zone repose sur sa dualité du point de vue hydrogéologique, les zones influencées par le canal présentent une remontée de la nappe avec une salinisation des sols, la portion Ouest du bassin présente une baisse du niveau des aquifères. Par cette étude, le système aquifère compris entre la rivière du Gange et la rivière Kali révèle ses dimensions latérales et verticales ainsi que ses caractéristiques hydrogéologiques. De plus, l'étude des événements, des mouvements et du régime hydrogéologique affectant le niveau phréatique confirme la co-existence de surexploitation et de saturation des sols dans la région.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号