首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The motion of a submarine in liquid under an ice plate covered with flooded snow is considered. The ice is modelled as an elastic plate and the snow cover is modelled as a viscous layer on the top of the plate. The submarine is modelled as a slender solid of revolution with scale 1:300. The experimental and theoretical study of the influence of the viscous snow layer on deflections of the floating ice plate is conducted. The viscous layer reduces the amplitudes of flexural-gravity waves. The greatest influence of the viscous layer on the plate deflections is achieved for velocities of the submarine, where the waves of maximum amplitude are generated. Theoretical results are in good qualitative and quantitative agreement with the model experiments.  相似文献   

2.
S. V. Muzylev 《Oceanology》2006,46(4):465-471
Edge waves in an ice-covered sea at a straight coast with a sloping beach are analyzed within the linearized theory. Such waves propagate along the coast with an amplitude which exponentially decays offshore. The problem is examined without using the hydrostatic assumption. The seawater is considered to be a homogeneous, inviscid, nonrotating, and incompressible fluid. Ice with a uniform thickness is considered, with constant values of density, cylindrical rigidity, Poisson ratio, and compressive stress in the ice. The normal velocity at the bottom is zero; the linearized kinematic and dynamic boundary conditions are satisfied at the lower surface of the ice. Explicit solutions for the edge flexural-gravity waves and the corresponding dispersion equations are obtained and analyzed.  相似文献   

3.
The linear three-dimensional problem of ice loads acting on a vertical circular cylinder frozen in an ice cover of infinite extent is studied. The loads are caused by an uni-directional hydroelastic wave propagating in the ice cover towards the cylinder mounted to the see bottom in water of constant depth. There are no open water surfaces in this problem. The deflection of the ice cover is described by the Bernoulli–Euler equation of a thin elastic plate of constant thickness. At the contact line between the ice cover and the surface of the cylinder, some edge conditions are imposed. In this study, the edge of the ice plate is either clamped to the cylinder or has no contact with the cylinder surface, with the plate edge being free of stresses and shear forces. The water is of finite constant depth, inviscid and incompressible. The problem is solved by both the vertical mode method and using the Weber integral transform in the radial coordinate. Each vertical mode corresponds to a root of the dispersion relation for flexural-gravity waves. It is proved that these two solutions are identical for the clamped edge conditions. This result is non-trivial because the vertical modes are non-orthogonal in a standard sense, they are linearly dependent, the roots of the dispersion relation can be double and even triple, and the set of the modes could be incomplete. A general solution of the wave-cylinder interaction problem is derived by the method of vertical modes and applied to different edge conditions on the contact line. There are three conditions of solvability in this problem. It is shown that these conditions are satisfied for any parameters of the problem.  相似文献   

4.
We study horizontal wave currents generated in a liquid of finite depth by a load of constant intensity moving over the floating ice cover and analyze the dependences of the space structure of the field of wave velocities on the characteristics of the ice cover and the velocity of motion of the load. It is shown that the velocity of wave currents caused by flexural waves can increase with the velocity of motion of the load, whereas the wave currents caused by the gravity waves decay monotonically. The ice compression increases the velocity of horizontal wave currents.  相似文献   

5.
The paper analyses the effect of non-linearity and bottom friction on propagation of tsunami-type surface waves from the abyssal part of the Black Sea towards the shelf zone. The study relies, on numerical solution of unidimensional non-linear equations for long waves, using the finite-difference technique. Numerical experiments have been conducted for the bottom profile continental slope and shelf, with the full wave reflection being prescribed at a 10-m depth contour. It has been shown that the major role in transforming solitary waves belongs to non-linear topographic factors rather than to dissipation. The reflected wave has been found to be non-linearly distorted, and wave heights in the Black Sea coastal zone have been found to increase by many times. Translated by Vladimir A. Puchkin.  相似文献   

6.
In this paper, the interaction of flexural-gravity waves with a submerged disc is studied. The problem is solved by transforming it into a two-dimensional hypersingular integral equation. Initially, wave scattering problem is studied followed by radiation and radiation-diffraction problems. The effects of the rigidity of the ice cover and submergence depth of the rigid disc are investigated for all the three cases. It is observed that the submergence of a rigid disc causes significant changes in the scattered as well as radiated wave profiles. However, the presence of the rigid disc creates high-frequency resonance. The present study appears to be useful for understanding the nature of the flow physics in presence of a rigid disc beneath the ice-covered surface.  相似文献   

7.
Ice cover oscillations induced by a moving load are studied in a linear formulation using a threedimensional flexural-gravity wave model. Theoretically-derived ice deflection profiles and critical velocities of the moving vehicle are compared with known experimental data. Translated by V. Puchkin.  相似文献   

8.
A nearly continuous zone of sediment waves is present on the lower continental rise off western Morocco which parallels the regional bathymetric trends. The individual sediment waves within the zone migrate upslope with time and, in general, also trend parallel to the regional bathymetric contours. These observations suggest that geostrophic contour currents are responsible for the formation of sediment waves. Physical oceanographic measurements and sea-floor photographs indicate only a very weak bottom circulation in this region. This suggests either that strong bottom currents are not essential for the formation of sediment waves or that relatively stronger bottom currents flowed along the continental margin of Morocco in the recent past. Turbidity flows may also influence the distribution of these sediment waves.  相似文献   

9.
2008年3月6日至2008年4月9日, 在南海北部外陆架与陆坡上的沙波区进行了海底流速的连续观测,观测结果表明潮流与海流较弱,但时有流速达30—77cm.s-1的海底强流发生。强流方向与南海北部内波传播方向相对应,多分布在偏NW向与偏SE向。偏SE向流强于偏NW向流,与内波在传播方向上的下坡流大于上坡流的特征一致。对流速序列进行了旋转功率谱分析,结果表明,高于M2分潮的频率中,众多的振荡分量具有内波流性质,说明阵发性强流为内波所致。采用观测流速计算了沙波的移动速度,计算结果得出强流能起动海底泥沙,由于NW向传播(上坡方向)的内波导致了SE向(下坡方向)的净流动,沙波偏SE向移动,但沙波移动速度不大,小型沙波移动速度小于1.6m.a-1。采用潮流、风暴潮耦合模型计算了强台风驱动的海底流速过程,表明潮流、风暴潮耦合也能移动海底沙波,但沙波移动方向与台风路径相关,不一定为SE向,且移动距离更小,潮流、风暴潮耦合不是沙波移动的主要动力机制。  相似文献   

10.
Most of the large scaled casualties are caused by loss of structural strength and stability due to the progressive flooding and the effect of waves and wind. To prevent foundering and structural failure, it is necessary to predict the motion of the damaged ship in waves.This paper describes the motion of damaged ship in waves resulting from a theoretical and experimental study. A time domain theoretical model, which can be applied to any type of ship or arrangement, for the prediction of damaged ship motion and accidental flooding has been developed considering the effects of flooding of compartments. To evaluate the accuracy of the model, model tests are carried out in ship motion basin for three different damaged conditions: engine room bottom damage, side shell damage and bow visor damage of Ro–Ro ship in regular and irregular waves with different wave heights and directions.  相似文献   

11.
在近岸波浪相关研究中,辐射应力是波动在水体中引起的剩余动量流,是波浪运动的重要物理量.在波浪从深水逐渐传向浅水的过程中,波浪的非线性逐渐增强,甚至会发生破碎等剧烈变形,引起辐射应力的强烈变化,对次重力波生成等有重要贡献.应用OpenFOAM精细模拟波浪在潜堤上的传播,得出波浪运动的详细流场信息,计算了有波浪破碎情况下潜...  相似文献   

12.
为研究浮冰在波浪下的运动特性,以单个聚氯乙烯(PVC)塑料圆板模拟浮冰,进行了一系列波浪试验研究。在规则波试验基础上,同时研究了双色波条件下的浮冰运动特性。结果显示:规则波条件下浮冰运动幅频响应算子首先随无量纲波长的增大而增大,当无量纲波长大于4.0后,运动幅频响应算子随无量纲波长的变化不明显,且趋于一定值;在双色波条件下,对应频率组成成分的浮冰运动幅频响应算子与规则波条件下随波长的变化规律一致。根据部分规则波试验结果提出预测浮冰慢漂速度的经验公式,并用已有的试验和余下的规则波与双色波试验结果进行验证。结果表明,经验公式对规则波和双色波条件下的浮冰慢漂速度的误差在20%以内,预测结果吻合较好。  相似文献   

13.
The paper describes the results of an experimental study on the behaviour of a submerged rock berm in liquefied backfill soil. The soil is liquefied by waves, and the rock berm is subject to the orbital motion of the liquefied soil. The soil used in the experiments was silt with d50=0.075 mm. Various berm materials were used, stones of size 0.74-2.5 cm, plastic balls of size 3.6 cm, brass of size 2.5 cm and steel of size 1.0 cm. The experiments show that rock berms that are stable under very large waves can be unstable when they are exposed to the motion of liquefied soil. The limited data obtained in the study were plotted as a function of the mobility number versus the Keulegan-Carpenter number for the range of the Reynolds number of the tests. The critical mobility number corresponding to the incipient motion of the berm stones is determined. Recommendations are made as to how the present findings can be implemented in practice.  相似文献   

14.
A high resolution one-dimensional thermodynamic snow and ice(HIGHTSI) model was used to model the annual cycle of landfast ice mass and heat balance near Zhongshan Station, East Antarctica. The model was forced and initialized by meteorological and sea ice in situ observations from April 2015 to April 2016. HIGHTSI produced a reasonable snow and ice evolution in the validation experiments, with a negligible mean ice thickness bias of(0.003±0.06) m compared to in situ observations. To further examine the impact of different snow conditions on annual evolution of first-year ice(FYI), four sensitivity experiments with different precipitation schemes(0, half, normal, and double) were performed. The results showed that compared to the snow-free case,the insulation effect of snow cover decreased bottom freezing in the winter, leading to 15%–26% reduction of maximum ice thickness. Thick snow cover caused negative freeboard and flooding, and then snow ice formation,which contributed 12%–49% to the maximum ice thickness. In early summer, snow cover delayed the onset of ice melting for about one month, while the melting of snow cover led to the formation of superimposed ice,accounting for 5%–10% of the ice thickness. Internal ice melting was a significant contributor in summer whether snow cover existed or not, accounting for 35%–56% of the total summer ice loss. The multi-year ice(MYI)simulations suggested that when snow-covered ice persisted from FYI to the 10 th MYI, winter congelation ice percentage decreased from 80% to 44%(snow ice and superimposed ice increased), while the contribution of internal ice melting in the summer decreased from 45% to 5%(bottom ice melting dominated).  相似文献   

15.
An investigation undertaken recently by the Division of Regional Geoecology and Marine Geology of the Karpinsky All-Russian Research Geological Institute in the coastal zones of the Eastern Gulf of Finland allowed finding some specific relief forms of both near-shore bottom topography and shoreline shape. First of all, among the most interesting objects, the sand ridges on the surface of submarine terrace (between Repino locality and Cape Lautaranta) should be mentioned. These ridges are elongated at an angle to the shoreline and are located beyond the limits of wave action. The other interesting morphological type is represented by longshore sand waves up to some hundreds of meters long and some tens of meters wide near the Bol’shaya Izhora locality. Longshore sand waves move along the southern coast of the gulf, this causing alteration of erosion and accretion zones and leading to formation and degradation of the sand spits. Shore-face-connected ridges are believed to develop under the action of drift currents generated during the passage of deep west cyclones. It is shown that the ridge turned toward the current gives rise to a convergence of the cross-shore flows over the crest and provokes a shift of the maximum velocity toward the front side of the structure. Associated changes in sediment discharges result in accumulation and growth of the ridge. The origin of wavelike features in the shoreline contour (longshore sand waves) is due to a very oblique wave approach caused by predominance of the west winds blowing along the axis of the gulf. Under these conditions a small perturbation of the shoreline contour is shown to manifest a trend to increase with time.  相似文献   

16.
This paper studies the continuous evolution of breaking wave for the surface water waves propagating on a sloping beach. A Lagrangian asymptotic solution is derived. According to the solution coupled with the wave breaking criteria and the equations of water particles motion, the wave deformation and the continuous wave breaking processes for the progressive water waves propagating on a sloping bottom can be derived. A series of experiments are also conducted to compare with the theoretical solution. The results show that the present solution can reasonably describe the plunging or spilling wave breaking phenomenon.  相似文献   

17.
Based on the lumped-mass method and rigid-body kinematics theory, a mathematical model of a gravity cage system attacked by irregular waves is developed to simulate the hydrodynamic response of cage system, including the maximum tension of mooring lines and the motion of float collar. The normalized response amplitudes (response amplitude operators) are calculated for the cage motion response in heave and surge, and the mooring line tension response, in regular waves. In addition, a statistical approach is taken to determine the motion and tension transfer functions in irregular waves. In order to validate the numerical model of a gravity cage attacked by irregular waves, numerical predictions have been compared with the experimental observations in the time and frequency domain. The effect of wave incident angle on the float collar motion, mooring line tension and net volume reduction of the gravity cage system in irregular waves is also investigated. The results show that at high frequencies, the cage system has no significant heave motion. It tends to contour itself to longer waves. The variation amplitude of mooring line forces decreases as the wave frequency increases. With the increasing of wave incident angle, the horizontal displacement of the float collar increases.  相似文献   

18.
海冰表面和底层形态的特征相关性分析对海冰分类、气候研究以及海冰厚度估计等方面具有重要作用.目前,海冰底层形态的研究较少,且缺乏海冰表面和底层形态的相关性研究.针对这一问题,本文利用加拿大渔业和海洋局提供的积雪表面粗糙度高度(定义为海冰或积雪表面相对于周围平整表面的高度)、海冰底层轮廓、积雪深度以及海冰厚度数据,采用均方...  相似文献   

19.
This paper presents a simulation model based on the finite element method. The method is used to analyze the motion response and mooring line tension of the flatfish cage system in waves. The cage system consists of top frames, netting, mooring lines, bottom frames, and floats. A series of scaled physical model tests in regular waves are conducted to verify the numerical model. The comparison results show that the simulated and the experimental results agree well under the wave conditions, and the maximum pitch of the bottom frame with two orientations is about 12o. The motion process of the whole cage system in the wave can be described with the computer visualized technology. Then, the mooring line tensions and the motion of the bottom frame with three kinds of weight are calculated under different wave conditions. According to the numerical results, the differences in mooring line tensions of flatfish cages with three weight modes are indistinct. The maximum pitch of the bottom frame decreases with the increase of the bottom weight.  相似文献   

20.
The effect of random waves on the bottom friction is studied by assuming that the wave motion is a stationary Gaussian narrow-band random process. The approach is also based on simple explicit friction coefficient formulas for sinusoidal waves. The probability distribution functions of the maximum bottom shear stress for laminar flow as well as smooth turbulent and rough turbulent flow are presented. The maximum bottom shear stress follows the Rayleigh distribution for laminar flow and the Weibull distribution for smooth turbulent and rough turbulent flow. Some characteristic statistical values of the maximum bottom shear stress for the three flow regimes are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号