首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The paper deals with the non-linear dynamic response in the transverse direction of vertical marine risers or a tensioned cable legs subjected to parametric excitation at the top of the structure. The dynamic model contains both elastic and bending effects. The analytical approach reveals that the dynamic lateral response is governed by effects originated from the coupling of modes in transverse direction. The mathematical model is being treated numerically by retaining a sufficient number of transverse modes. Numerical results are given for specific case studies and refer both to the time histories of the lateral response for all modes of motion, and to the corresponding power spectral densities obtained through FFT. The numerical predictions are suitably plotted and discussed. The calculations concern both the undamped and the damped dynamic system. The damping in the system is a non-linear Morison type term, which describes the effect of the hydrodynamic drag. Both coupled and uncoupled equations are treated and points as well as regions of coupled and uncoupled stability and instability are defined. It is shown that the impacts originated from the coupling, evaluate new instabilities for the respective undamped system. The numerical results obtained through FFT of the time histories, provide qualitative conclusions for the features of the dynamic response for the modes of motions considered. Special attention has been paid to the effect of the hydrodynamic drag for the parametric excitation frequencies that guide the dynamic system to lie within a region of coupled instability.  相似文献   

2.
Steel catenary risers (SCRs) are usually cost-effective solutions in the development of offshore fields and the transferring of the hydrocarbons from the seabed to the floating facilities. These elements are subjected to the fatigue loads particularly in the touchdown zone (TDZ), where the oscillating SCR is exposed to cyclic contact with the seabed. The slug-induced oscillation is a significant contributor to the fatigue loads in the TDZ. The cyclic seabed soil softening under the wave-induced riser oscillations and the gradual penetration of the SCR into the seabed are widely accepted to have a significant influence on SCR fatigue performance. However, this has never been investigated for slug-induced oscillations due to the lack of integrated access to comprehensive numerical models enabling the simulation of the riser slugging and nonlinear hysteretic riser-seabed interaction at the same time. In this paper, an advanced interface was developed and verified using the multi-point moving tie constraint in order to examine the influence of cyclic seabed soil softening on slug-induced oscillations of SCR. The interface was integrated with a pre-developed user subroutine for modeling of the nonlinear hysteretic riser-seabed interaction and incorporated into a global SCR model in ABAQUS. A comprehensive parametric study was conducted to investigate the influence of slug characteristics and nonlinear seabed soil model on slug-induced, wave-induced, and combined wave/slug induced oscillations of SCR in the TDZ. It was observed that the nonlinear seabed model could significantly affect the embedment of the SCR into the seabed under the slug-induced oscillations and consequently improve the fatigue life. The developed user interface was found to be a strong framework for modeling riser slugging.  相似文献   

3.
The riser-seabed interaction resulting in a trench formed in the touchdown zone (TDZ) of steel catenary risers (SCR) has a significant influence on accumulated fatigue damage. Several studies have used different trench modeling approaches to investigate the trench effect on fatigue. However, contradictory observations have been reported with no coherent agreement on the beneficial or detrimental effect of the trench on fatigue. In this study, the significance of trench geometry in fatigue damage evaluation was investigated. Using analytical and numerical approaches, a meaningful relationship was observed between the trench slope in different zones and the peak fatigue damage. A new set of rules was proposed for the qualitative assessment of the overall trend of trench effect on the variation of fatigue damage. The proposed assessment rules were validated by performing comprehensive numerical fatigue analysis. A comparison with samples of published experimental and numerical studies was also completed. It was observed that depending on the direction of the low-frequency vessel excursions, the peak fatigue damage may increase towards the near offsets and decrease towards the far vessel offset. This implied that the case dependency of the trench effect on fatigue response in different geographical locations with various environmental loads was a potential source for the contradictory results reported in previously published studies.  相似文献   

4.
This work presents a semi-analytical methodology to select design environmental conditions based on long-term cross-section utilization ratios at the TDZ (Touchdown Zone) for steel catenary risers. This approach uses simplified analytical models to calculate time series of short-term utilization ratios, defined according to the DnV-OS-F201 (2010) standard. After processing these time series, long-term utilization ratios can be determined with relatively low computational cost. By evaluating long-term utilization ratios, it is possible to define short-term design environmental conditions, defined as short-term conditions for which the extreme riser responses are equal to the long-term ones. This kind of methodology may represent a substantial change to the traditional focus given to riser design, which is based on responses obtained from extreme environmental conditions, instead of on the extreme responses.  相似文献   

5.
A finite differences (FD) solution method is proposed for the numerical treatment of the dynamic equilibrium problem of 2D catenary risers. The method is based on the so-called Box approximation, which in the scope of the present contribution is applied to the complete nonlinear model as well as to the reduced linearized formulation. The application of the Box method transforms the original governing systems into convenient sets of algebraic equations, which in turn are solved efficiently by the relaxation method. Extensive numerical calculations are presented that describe the dynamic behaviour of the structure and evaluate the amplification in loading due to the dynamic components. The effect of the geometric nonlinearities is assessed through comparative calculations that concern both mathematical formulations examined in the present, i.e. the complete nonlinear, and the reduced linearized model. Special attention is paid to the heave excitations as they amplify significantly the magnitudes of the loading components.  相似文献   

6.
针对深海立管在理想环境和外部水环境中发生碰撞的情况,从立管碰撞最大径向位移和应力峰值两方面展开研究,充分利用ABAQUS仿真得到的数据,基于数值模拟和回归分析,提出四因素三水平的立管碰撞响应面分析方法。采用Design-Expert软件的BOX设计,对立管的非线性碰撞过程中的碰撞应力峰值和最大径向位移等两个试验指标进行回归分析并分别建立二次响应面回归模型。通过将响应面分析所得最优化解与有限元计算结果的对比,最终验证了响应面分析方法及所得模型的准确性。  相似文献   

7.
Fatigue response of steel catenary risers (SCR) in the touchdown zone (TDZ) is significantly affected by riser-seabed interaction. Non-linear hysteretic riser-seabed interaction models have been recently developed to simulate the SCR cyclic embedment into the seabed. Despite the advancements achieved in the prediction of non-linear hysteretic riser-seabed interaction, several inconsistencies have been recently identified in the nodal performance of some of the popular models. These limitations need to be resolved by proposing new models or improving the existing models. However, it is necessary to evaluate the influence of the identified shortcomings of the existing models on the global performance of the riser. In this paper, the influence of nodal inconsistencies observed in a popular riser-seabed interaction model on the global performance of the riser was comprehensively examined in the TDZ. The riser embedment profile, cyclic contact stress, contact stress envelop, mean shear force, cyclic bending moment, and consequently the cumulative fatigue damage was investigated. The study showed that the soil model overestimates the riser embedment and other global responses. Recommendations were made to overcome the identified shortcomings of the existing models in future developments.  相似文献   

8.
This paper proposes an enhanced approach for evaluating the fatigue life of each metallic layer of unbonded flexible risers. Owing to the complex structure of unbonded flexible risers and the nonlinearity of the system, particularly in the critical touchdown zone, the traditional method is insufficient for accurately evaluating the fatigue life of these risers. The main challenge lies in the transposition from global to local analyses, which is a key stage for the fatigue analysis of flexible pipes owing to their complex structure. The new enhanced approach derives a multi-layer stress-decomposition method to meet this challenge. In this study, a numerical model validated experimentally is used to demonstrate the accuracy of the stress-decomposition method. And a numerical case is studied to validate the proposed approach. The results demonstrate that the multi-layer stress-decomposition method is accurate, and the fatigue lives of the metallic layers predicted by the enhanced multi-layer analysis approach are rational. The proposed fatigue-analysis approach provides a practical and reasonable method for predicting fatigue life in the design of unbonded flexible risers.  相似文献   

9.
Full-rangenonlinearanalysisoffatiguebehaviorsofreinforcedconcretestructuresbyfiniteelementmethod¥SongYupu;ZhaoShunbo;WangRuim...  相似文献   

10.
浮力块分布和外径等参数直接影响柔性立管在环境载荷作用下的动力响应,对某深水柔性立管进行陡波型布置,开展时域内的整体动态有限元分析,得到浮力块分布和外径对柔性立管动力响应的影响规律,表明浮力块参数是陡波型柔性立管整体设计的一个重要因素。立管动力响应是弯曲加强器的设计载荷,根据上述规律,构造具有不同浮力块参数的柔性立管模型,进行多工况动态分析,通过对比弯曲加强器设计载荷对(T,θ)的散点图,得到弯曲加强器设计载荷优化方法及最优设计载荷。  相似文献   

11.
基于钢悬链式立管(SCR)动力分析程序CABLE3D,采用大挠度柔性梁理论建立SCR的运动方程,将线性海床模型扩展为考虑海床土吸力的非线性海床模型,采用非线性有限元方法对控制方程进行离散,时域内积分采用Newmark-β法,开发出新的计算程序。通过算例分析上部浮体垂荡运动幅值、海床土剪切强度、海床土剪切强度梯度对SCR触地点区域动力响应和疲劳损伤的影响。分析结果表明:SCR触地点区域动力响应和疲劳损伤对上部浮体垂荡运动幅值和海床土剪切强度的变化较为敏感,疲劳损伤在触地点区域最大,远大于悬垂段和流线段,在设计过程中应采取一定的加强措施。  相似文献   

12.
API规范推荐的简化疲劳方法在渤海湾导管架平台使用中一直存在标定的问题。根据简化疲劳原理,利用渤海湾的环境数据,推导了渤海湾允许疲劳应力的表达式,在此基础上提出了计算设计疲劳年限的概念。既解决了标定的问题,又可以利用现有设计软件直接进行计算,具有很高的实用性。  相似文献   

13.
This paper presents a numerical analysis of lateral responses of a long slender marine structure under combined parametric and forcing excitations. In the development of the 3-D numerical program, a finite element method is implemented in the time domain using the Newmark constant acceleration method. Some example studies are performed for various water depths, environmental conditions and vessel motions. The relative amplitudes of combined excitations to a conventional forcing excitation are examined. The response amplitude of a combined excitation is much greater than that of a forcing excitation in the even number of instability regions of the Mathieu stability chart. The results demonstrate that a combined excitation needs to be considered for the accurate dynamic analysis of long slender marine structures subjected to a surface vessel motion.  相似文献   

14.
Feasible numerical method for a structural analysis of a pipeline configuration during the installation process is presented. The method considers the whole pipeline, which is partially suspended and partially laid-on a seabed, as a single continuous segment, and is valid for a complete range of laying angles between 0°–90°, i.e., valid for both S-lay and J-lay configurations. The method accounts for a pipeline–seabed interaction and the pipeline is modeled by means of nonlinear large deformation beam theory. The numerical solution is carried out in an incremental-iterative manner by following the actual pipeline installation process, and thus allowing efficient treatment of pipeline-seabed interaction circumventing the further complexities with contact detection. At each increment, the length of the pipeline is increased and new sequential equilibrium configuration is assessed by direct minimization of a total potential energy approximated as a Riemann sum, which yields algebraic system of nonlinear finite difference equations that is further solved by iterations with Newton-Raphson technique. The simplicity, flexibility and robustness of the proposed method allow to enhance the efficiency of engineering calculations and design. Accounting for a bending stiffness in a suspended part allows analyzing variations in laying angle and lay tension independently. The method convergence is validated and compared with Abaqus. The results are in an excellent agreement. Moreover, the comparison with Abaqus shows that for the selected parameters the assumption that the pipeline is inextensible and unshearable is very reasonable. Representative parametric study is conducted to demonstrate the feasibility of the method. Parametric study considers the effects of laying angle (0°–90°), lay tension, laying water depth (up to 3000 m) and seabed stiffness.  相似文献   

15.
A new hybrid method for the time-domain nonlinear simulation of the hydroelastic load effects and the peak-over-threshold (POT) method for the calculation of the short-term extreme responses are briefly described and applied to a flexible containership of the latest design. Statistical analysis has been carried out to study the sensitivity of the predicted extreme vertical bending moments and vertical shear forces to the changes in the threshold of the POT method, as well as the statistical uncertainty in the prediction due to the limited duration of the nonlinear simulation. It is recommended that 90%–95% quantile should be used as the threshold in the POT method and more than 100 h of time-domain simulation should be carried out in order to obtain satisfactory predictions of the short-term extreme nonlinear load effects.  相似文献   

16.
作为S型铺管作业的关键性装备,托管架长期承受着交变载荷的作用,随着海洋开发向超深水发展,结构疲劳破坏问题不容忽视。采用疲劳谱分析的方法并结合线性累积损伤理论,对托管架结构频域下的变形进行了分析,计算了正常海况下和极端海况下托管架疲劳损伤度并对疲劳寿命进行了评估。研究发现托管架在正常海况下作业符合安全要求,在极端海况下局部结构会受到破坏。并从托管架结构安全监测角度,筛选了结构疲劳分析关键点位,为监测点位的选取提供了依据。  相似文献   

17.
Stress Joint(SJ) plays a key role in the Top Tensioned Riser(TTR) system for deep water engineering.A preliminary design method of tapered SJ is proposed in the paper,which could help designers obtain accurate design data.After a further sensitive analysis is carried out,the related parameters choice and control methods are recommended in the engineering practice.By taking the extreme environment conditions into consideration,the effects of bending stress reduction and curve control are analyzed,and the 3-D FE models are established by ABQOUS for numerical evaluation to verify the correctness of design results.At last,dynamic analysis and fatigue analysis,based on actual project,are carried out with designed stress joint.The analysis results prove the feasibility and guidance of this method in the practical engineering applications.  相似文献   

18.
海洋导管架平台随机响应混合分析方法   总被引:1,自引:1,他引:1  
金伟良  郑忠双等 《海洋工程》2001,19(1):14-18,37
采用将结构的解析分析和数值求解方法相结合的固定式海洋平台随机响应混合求解方法,考虑波浪-结构相互作用和基于最小二乘法原理的非线性曳力的影响。采取两个步骤,第一步进行与结构有关的特征值分析;第二基于谱方程进行响应估计,进行海洋平台的线性和非线性数值分析。  相似文献   

19.
Fatigue analysis of the taut-wire mooring system applied for deep waters   总被引:1,自引:0,他引:1  
Precisely predicting the fatigue life of taut-wire mooring systems has become an interesting and important problem for scientists and engineers since there are still difficulties in the inspection and maintenance of mooring lines in a rough sea environment especially in deep waters. In this paper, a comprehensive fatigue analysis is performed for a polyester taut-wire mooring system of an FPSO based on the time domain dynamic theory, rainflow cycle counting method and linear damage accumulation rule of Palmgren-Miner. Three influential factors in the fatigue analysis including the pre-tension, dynamic stiffness and T-N curve are investigated in detail. Two polyester T-N curves, one is from the DNV- OS-E301 and the other is from the API-RP-2SM, are adopted in the calculation. The fatigue analysis of the mooring system after one-line failure is also carried out. The calculation results indicate that the fatigue life is significantly affected by the T-N curve. The fatigue life decreases with increasing pre-tension, and is largely reduced if taking into account the dynamic stiffness caused by cyclic loading. The analysis also proves that one-line failure has remarkable effects on the fatigue lives of other mooring lines. The present parametric and comparative study is believed to be meaningful to further understanding of the taut-wire mooring system for deepwater applications.  相似文献   

20.
A panel-free method (PFM), based on the desingularized Green’s formulae proposed by Landweber and Macagno, has been developed to solve the radiation problem of a floating body in the time domain. The velocity potential due to a non-impulsive velocity is obtained by solving the boundary integral equation in terms of source strength distribution. The singularity in the Rankine source term of the time-dependent Green function is removed. The geometry of a body surface is mathematically represented by NURBS surfaces. The integral equation can be globally discretized over the body surface by Gaussian quadratures. No assumption is needed for certain degree of approximation of distributed source strength on the body surface. The accuracy of PFM was demonstrated by its application to a classical problem of uniform flow past a sphere. The response function of a hemisphere at zero speed was then computed by PFM. The computed response function, added-mass and damping coefficients are compared with other published results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号