首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
When the shock wave of underwater explosion propagates to the surfaces of different boundaries, it gets reflected. Then, a negative pressure area is formed by the superposition of the incident wave and reflected wave. Cavitation occurs when the value of the negative pressure falls below the vapor pressure of water. An improved numerical model based on the spectral element method is applied to investigate the cavitation effect of underwater shock near different boundaries, mainly including the feature of cavitation effect near different boundaries and the influence of different parameters on cavitation effect. In the implementation of the improved numerical model, the bilinear equation of state is used to deal with the fluid field subjected to cavitation, and the field separation technique is employed to avoid the distortion of incident wave propagating through the mesh and the second-order doubly asymptotic approximation is applied to simulate the non-reflecting boundary. The main results are as follows. As the peak pressure and decay constant of shock wave increases, the range of cavitation domain increases, and the duration of cavitation increases. As the depth of water increases, the influence of cavitation on the dynamic response of spherical shell decreases.  相似文献   

2.
The dynamics of cavitation bubble is analyzed in the compressible fluid by use of the boundary integral equation considering the compressibility.After the vertical incidence of plane wave to the rigid wall,the motion characteristics of single cavitation bubble near the rigid wall with initial equilibrium state are researched with different parameters.The results show that after the driving of acoustic wave,the cavitation bubble near the rigid wall will expand or contract,and generate the jet pointing to the wall.Also,the existence of the wall will elongate time for one oscillation.With the compressible model,the oscillation amplitude is reduced,as well as the peak value of inner pressure and jet tip velocity.The effect of the wall on oscillation amplitude is limited.However with the increment of initial vertical distance,the effect of wall on the jet velocity is from acceleration to limitation,and finally to acceleration again.  相似文献   

3.
The motion of a bubble near the free surface is solved by the boundary element method based on the linear wave equation, and the influence of fluid compressibility on bubble dynamics is analyzed. Based on the solution of the bubble motion, the far-field radiation noise induced by the bubble is calculated using Kirchhoff moving boundary integral equation, and the influence of free surface on far-field noise is researched. As the results, the oscillation amplitude of the bubble is weakened in compressible fluid compared with that in incompressible fluid, and the free surface amplifies the effect of fluid compressibility. When the distance between the bubble and an observer is much larger than that between the bubble and free surface, the sharp wave trough of the sound pressure at the observer occurs. With the increment of the distance between the bubble and free surface, the time of the wave trough appearing is delayed and the value of the wave trough increase. When the distance between the observer and the bubble is reduced, the sharp wave trough at the observer disappears.  相似文献   

4.
This paper presents CCHE2D-NHWAVE, a depth-integrated non-hydrostatic finite element model for simulating nearshore wave processes. The governing equations are a depth-integrated vertical momentum equation and the shallow water equations including extra non-hydrostatic pressure terms, which enable the model to simulate relatively short wave motions, where both frequency dispersion and nonlinear effects play important roles. A special type of finite element method, which was previously developed for a well-validated depth-integrated free surface flow model CCHE2D, is used to solve the governing equations on a partially staggered grid using a pressure projection method. To resolve discontinuous flows, involving breaking waves and hydraulic jumps, a momentum conservation advection scheme is developed based on the partially staggered grid. In addition, a simple and efficient wetting and drying algorithm is implemented to deal with the moving shoreline. The model is first verified by analytical solutions, and then validated by a series of laboratory experiments. The comparison shows that the developed wave model without the use of any empirical parameters is capable of accurately simulating a wide range of nearshore wave processes, including propagation, breaking, and run-up of nonlinear dispersive waves and transformation and inundation of tsunami waves.  相似文献   

5.
It is well known that the accuracy of mesh-based numerical simulations of underwater explosion strongly relies on the mesh size adopted in the analyses. Although a numerical analysis of underwater explosion can be performed with enough accuracy by using considerably fine meshes, such fine meshes may lead to substantially increase in the CPU time and the usage of computer memory. Thus, how to determine a suitable mesh size in numerical simulations is always a problem confronted when attempting to study the shock wave propagation resulting from underwater explosion and the subsequent response of structures. Considering that there is currently no universally accepted method for resolving this problem, this paper aims to propose a simple method to determine the mesh size for numerical simulations of near field underwater explosion. To this end, the mesh size effects on the shock wave propagation of underwater explosion are carefully investigated for different charge weights, through which the correlation between mesh sizes and charge weights is identified. Based on the numerical study, a dimensionless variable (λ), defined as the ratio of the radius of charge to the side length of element, is introduced to be the criterion for determining the mesh size in simulations. It is interesting to note that the presented method is suitable for various charge weights. By using the proposed meshing rule, adequate balance between solution accuracy and computational efficiency can be achieved for different blast scenarios in numerical simulations of underwater explosion.  相似文献   

6.
It is difficult to compute far-field waves in a relative large area by using one wave generation model when a large calculation domain is needed because of large dimensions of the waterway and long distance of the required computing points. Variation of waterway bathymetry and nonlinearity in the far field cannot be included in a ship fixed process either. A coupled method combining a wave generation model and wave propagation model is then used in this paper to simulate the wash waves generated by the passing ship. A NURBS-based higher order panel method is adopted as the stationary wave generation model; a wave spectrum method and Boussinesq-type equation wave model are used as the wave propagation model for the constant water depth condition and variable water depth condition, respectively. The waves calculated by the NURBS-based higher order panel method in the near field are used as the input for the wave spectrum method and the Boussinesq-type equation wave model to obtain the far-field waves. With this approach it is possible to simulate the ship wash waves including the effects of water depth and waterway bathymetry. Parts of the calculated results are validated experimentally, and the agreement is demonstrated. The effects of ship wash waves on the moored ship are discussed by using a diffraction theory method. The results indicate that the prediction of the ship induced waves by coupling models is feasible.  相似文献   

7.
环肋圆柱壳体在水下冲击波作用下的动力弹塑性屈曲   总被引:1,自引:0,他引:1  
本文以加肋圆柱壳体为对象建立力学模型,在水下爆炸产生的冲击波作用下,考虑流体与结构的耦合效应,研究加肋圆柱壳体的弹塑性失稳变形量及动力响应特性。数值分析显示出的最终变形形状和压力变化过程与实验资料一致的  相似文献   

8.
2015年9月16日22时54分(当地时间)智利中部近岸发生Mw8.3级地震,震源深度25 km。同时,强震的破裂区长200 km,宽100 km,随之产生了中等强度的越洋海啸。海啸影响了智利沿岸近700 km的区域,局部地区监测到近5 m的海啸波幅和超过13 m的海啸爬坡高度。太平洋区域的40多个海啸浮标及200多个近岸潮位观测站详细记录了此次海啸的越洋传播过程,为详细研究此次海啸近场及远场传播及演化规律提供了珍贵的数据。本文选择有限断层模型和自适应网格海啸数值模型建立了既可以兼顾越洋海啸的计算效率又可以实现近场海啸精细化模拟的高分辨率海啸模型。模拟对比分析了海啸的越洋传播特征,结果表明采用所建立的模型可以较好地再现远场及近场海啸特征,特别是对近场海啸的模拟结果非常理想。表明有限断层可以较好地约束近场、特别是局部区域的破裂特征,可为海啸预警提供更加精确的震源信息,结合高分辨率的海啸数值预报模式实现海啸传播特征的精细化预报。本文结合观测数据与数值模拟结果初步分析了海啸波的频散特征及其对模型结果的影响。同时对观测中典型的海啸波特征进行的简要的总结。谱分析结果表明海啸波的能量主要分布在10~50 min周期域内。这些波特征提取是现行海啸预警信息中未涉及,但又十分重要的预警参数。进一步对这些波动特征的详细研究将为海啸预警信息及预警产品的完善提供技术支撑。  相似文献   

9.
The behavior of a highly deformable membrane to ocean waves was studied by coupling a nonlinear boundary element model of the fluid domain to a nonlinear finite element model of the membrane. The hydrodynamic loadings induced by water waves are computed assuming large body hydrodynamics and ideal fluid flow and then solving the transient diffraction/radiation problem. Either linear waves or finite amplitude waves can be assumed in the model and thus the nonlinear kinematic and dynamic free surface boundary conditions are solved iteratively. The nonlinear nature of the boundary condition requires a time domain solution. To implicitly include time in the governing field equation, Volterra's method was used. The approach is the same as the typical boundary element method for a fluid domain where the governing field equation is the starting point. The difference is that in Volterra's method the time derivative of the governing field equation becomes the starting point.The boundary element model was then coupled through an iterative process to a finite element model of membrane structures. The coupled model predicts the nonlinear interaction of nonlinear water waves with highly deformable bodies. To verify the coupled model a large scale test was conducted in the OH Hinsdale wave Research Laboratory at Oregon State University on a 3-ft-diameter fabric cylinder submerged in the wave tank. The model data verified the numerical prediction of the structure displacements and of the changes in the wave field.The boundary element model is an ideal modeling technique for modeling the fluid domain when the governing field equations is the Laplace equation. In this case the nonlinear boundary element model was coupled with a finite element model of membrane structures, but the model could have been coupled with other finite element models of more rigid structures, such as a pontoon floating breakwater.  相似文献   

10.
A solution is presented for the wave induced drift forces acting on a submerged sphere in a finite water depth based on linearised velocity potential theory. In order to obtain the velocity potential, use has been made of multipole expansions in terms of an infinite series of Legendre functions with unknown coefficients. The series expression for the second order mean forces (drift forces) is provided by integrating the fluid pressure over the body surface. The horizontal drift force is also expressed by a series solution obtained using the far-field method.  相似文献   

11.
12.
华莹  周香莲  张军 《海洋通报》2017,36(6):644-651
基于广义Biot动力理论和Longuet-Higgins线性叠加模型,构建波浪-海床-管线动态响应的有限元计算模型,求解随机波作用下,多层砂质海床中管线周围土体孔隙水压力和竖向有效应力的分布。采用基于超静孔隙水压力的液化判断准则,得出液化区的最大深度及横向范围,从而判断海床土体液化情况。考虑海洋波浪的随机性,将海床视为多孔介质,海床动态响应计算模型采用u-p模式,孔隙水压力和位移视为场变量。并考虑孔隙水的可压缩性、海床弹性变形、土体速度、土体加速度以及流体速度的影响,忽略孔隙流体惯性作用。参数研究表明:土体渗透系数、饱和度以及有效波高等参数对海床土体孔隙水压力、竖向有效应力和液化区域分布有显著影响。  相似文献   

13.
水下加筋圆柱壳结构声散射特性研究   总被引:1,自引:0,他引:1  
采用有限元/边界元(FEM/BEM)方法对水下加筋圆柱壳结构的声散射特性进行分析。考虑入射声场激发弹性结构振动产生二次辐射声场,总声场为入射场与散射场之和。基于Mindlin理论建立结构受迫振动的有限元模型,考虑入射声场为简谐激励,采用模态叠加法求出结构振动表面速度。根据声学边界元相关理论,利用有限元方法计算得出的弹性结构表面动力相应,可求出弹性结构的散射声场。研究结果表明,在同一波数下,不加筋结构后向散射强于加筋结构;加筋结构的散射指向性图案分叉较为明显;同种结构在波数增加的时候后向散射强度逐渐增大,前向散射强度逐渐减弱。  相似文献   

14.
The "surface roller" to simulate wave energy dissipation of wave breaking is introduced into the random wave model based on approximate parabolic mild slope equation in this paper to simulate the random wave transportation including diffraction, refraction and breaking in nearshore areas. The roller breaking random wave higher-order approximate parabolic equation model has been verified by the existing experimental data for a plane slope beach and a circular shoal, and the numerical results of random wave breaking model agree with the experimental data very well. This model can be applied to calculate random wave propagation from deep to shallow water in large areas near the shore over natu ral topography.  相似文献   

15.
The shallow-water acoustic channel supports far-field propagation in a discrete set of modes. Ocean experiments have confirmed the modal nature of acoustic propagation, but no experiment has successfully excited only one of the suite of mid-frequency trapped modes propagating in a coastal environment. The ability to excite a single mode would be a powerful tool for investigating shallow-water ocean processes. A feedback control algorithm incorporating elements of adaptive estimation, underwater acoustics, array processing, and control theory to generate a high-fidelity single mode is presented. This approach also yields a cohesive framework for evaluating the feasibility of generating a single mode with given array geometries, noise characteristics, and source power limitations. Simulations and laboratory wave guide experiments indicate the proposed algorithm holds promise for ocean experiments  相似文献   

16.
考虑边界波浪方向的缓坡方程自适应求解模型   总被引:1,自引:1,他引:0  
柳淑学  孙冰 《海洋工程》2007,25(1):35-42,56
缓坡方程是描述近岸波浪运动较好的数学模型之一。在发展的自适应有限元求解缓坡方程的基础上,采用迭代求解的方法,确定波浪相对于边界的入射方向,从而对边界条件进行改进,建立了求解缓坡方程的数值计算模型。典型算例表明,考虑波浪相对于边界的入射角度后,模型可以更好地模拟吸收波浪边界,同时对多向波对双突堤的绕射进行了模拟研究,与试验结果比较表明,所建立的数值计算模型能够适用于多向不规则波传播过程的模拟研究。  相似文献   

17.
Abstract

Blast response of submerged pipelines has been a research focus in recent years. In this article, a three-dimensional numerical model is established to investigate dynamic response of pipelines due to underwater explosion. The up approximation is integrated into finite element method (FEM) to simulate pore water effect in the seabed. Numerical continuity between hydraulic pressure in the flow field and pore pressure in the marine sediment is guaranteed to realize the blast response of submerged pipelines in ocean environment. Both fluid–structure interaction (FSI) and pipeline–seabed interaction (PSI) have been considered in the proposed model simultaneously. A comprehensive parametric study is carried out after validation of the present model with test data from underground explosion and underwater explosion, respectively. The effect of embedment depth, TNT equivalent, stand-off distance, pipeline diameter, and pipeline thickness to blast response of the submerged pipelines is investigated based on numerical results. Variation of deformation patterns and stress distribution of the pipeline with various installation and structure parameters has been illustrated and discussed to facilitate engineering practice.  相似文献   

18.
This paper,with a finite element method,studies the interaction of a coupled incompressible fluid-rigid structure system with a free surface subjected to external wave excitations.With this fully coupled model,the rigid structure is taken as "fictitious" fluid with zero strain rate.Both fluid and structure are described by velocity and pressure.The whole domain,including fluid region and structure region,is modeled by the incompressible Navier-Stokes equations which are discretized with fixed Eulerian mesh.However,to keep the structure's rigid body shape and behavior,a rigid body constraint is enforced on the "fictitious" fluid domain by use of the Distributed Lagrange Multiplier/Fictitious Domain(DLM/FD) method which is originally introduced to solve particulate flow problems by Glowinski et al.For the verification of the model presented herein,a 2D numerical wave tank is established to simulate small amplitude wave propagations,and then numerical results are compared with analytical solutions.Finally,a 2D example of fluid-structure interaction under wave dynamic forces provides convincing evidences for the method excellent solution quality and fidelity.  相似文献   

19.
基于物理模型实验研究瞬态冲击波在台阶地形上传播过程,揭示由于反射而在海脊上出现的波浪俘获现象。结果表明:在瞬态波产生区域附近,海脊上所测到的先导波即为最大波,其由泄漏至海脊外的深水波绕射至海脊所致。随着传播距离的增加,由于频散效应的影响,先导波逐渐减小,沿台阶近似直线传播的海脊俘获波和在台阶上曲折传播的海脊俘获波逐渐显现。在距离波浪产生较远区域所测的最大波晚于先导波出现,且这些由俘获波所叠加而成的最大波随着传播距离的增加而呈现出更加复杂的波面过程。  相似文献   

20.
After borrowing the idea of precise integration method, a precise integration transfer matrix method (PITMM) is proposed by modifying traditional transfer matrix method. The submarine hull can be modeled as joined conicalcylindrical-spherical shells. By considering the effect of the ring-stiffeners, the field transfer matrixes of shells of revolution are obtained accurately by PITMM. After assembling the field transfer matrixes into an entire matrix, the dynamic model is established to solve the dynamic responses of the joined shell. By describing the sound pressure in fluid by modified wave superposition method (MWSM) and collocating points along the meridian line of the joined shell, finally the structural and acoustic responses of a finite stiffened submarine hull can be predicted by coupled PITMM and MWSM. The effectiveness of the present method has been verified by comparing the structural and acoustic responses of the spherical shell with existing results. Furthermore, the effects of the model truncation, stiffness and thickness on the structural and acoustic responses of the submarine hull are studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号