共查询到20条相似文献,搜索用时 11 毫秒
1.
Surface-Piercing Propellers (SPPs) are the preferred propulsion system for light to moderately loaded high-speed applications due to the high fuel efficiency. For highly loaded applications, the efficiency of SPPs tends to decrease because of the limited submerged blade area and the presence of large suction side cavities. Moreover, it is a challenge to design large-scale SPPs that can maintain reliable fatigue strength and avoid vibration issues while maximizing the propeller thrust for a given power input. In this work, three SPP designs are presented for different size Surface Effect Ships (SESs) that can attain a maximum advance speed of 25.72 m/s (50 knots). A previously developed and validated three-dimensional (3-D) coupled boundary element method-finite element method (BEM-FEM) is used for the transient hydroelastic analysis of SPPs. The method is validated by comparing the predicted hydrodynamic performance with those obtained using a vortex-lattice method (VLM) and a Reynolds Averaged Navier-Stokes (RANS) solver. The hydrodynamic and structural dynamic performance of the SPPs are presented. Finally, challenges associated with the design related analyzes of large-scale SPPs are discussed. 相似文献
2.
A growing interest has been devoted to the contra-rotating propellers (CRPs) due to their high propulsive efficiency, torque balance, low fuel consumption, low cavitations, low noise performance and low hull vibration. Compared with the single-screw system, it is more difficult for the open water performance prediction because forward and aft propellers interact with each other and generate a more complicated flow field around the CRPs system. The current work focuses on the open water performance prediction of contra-rotating propellers by RANS and sliding mesh method considering the effect of computational time step size and turbulence model. The validation study has been performed on two sets of contra-rotating propellers developed by David W Taylor Naval Ship R & D center. Compared with the experimental data, it shows that RANS with sliding mesh method and SST k-ω turbulence model has a good precision in the open water performance prediction of contra-rotating propellers, and small time step size can improve the level of accuracy for CRPs with the same blade number of forward and aft propellers, while a relatively large time step size is a better choice for CRPs with different blade numbers. 相似文献
3.
由于前后桨的相互干扰,对转桨的推力和扭矩呈现非常明显的非定常特点。一些主要的设计参数,如前后桨叶数比、推力比以及桨盘面间距对对转桨的水动力性能皆有一定的影响。分别对它们进行系统的研究有助于减弱对转桨的不利干扰,最大程度地回收周向动能。本文采用CFD方法首先分析了叶数比的影响,推力和扭矩的预报结果与试验值吻合良好,结果显示,叶数比为4∶5的对转桨拥有较好的稳定性。另外,对转桨的效率比等效单桨高8.73%~10.2%左右。最后研究了前后桨不同间距和不同推力比的影响,结果显示,增加前后桨的间距可以有效减小前后桨的不利干扰,但是在一定间距内或者推力比在1附近,对转桨水动力均值变化影响不大。 相似文献
4.
A smoothed particle hydrodynamic (SPH) model is developed to simulate wave interaction with porous structures. The mean flow outside the porous structures is obtained by solving Reynolds Averaged Navier–Stokes (RANS) equations and the turbulence field is calculated by a large eddy simulation (LES) model. The porous flow is described by the spatially averaged Navier–Stokes type equations with the resistance effect of the porous media being represented by an empirical frictional source term. The interface boundaries between the porous flow and the outside flow are modeled by means of specifying a transition zone along the interface. The model is validated against other available numerical results and experimental data for wave damping over porous seabed with different levels of permeability. The validated model is then employed to investigate wave breaking over a submerged porous breakwater and good agreements between the SPH model results and the experimental data are obtained in terms of free surface displacement. In addition the predicted velocity, vorticity and pressure fields near the porous breakwater and in the breaking wave zone are also analyzed. 相似文献
5.
M. Söylemez 《Ocean Engineering》1996,23(5):423-445
This paper presents the derivation of a general method for calculating wave forces on the cylindrical members of offshore structures. By means of the proposed method one can calculate the wave loading on cylindrical members of fixed or floating offshore structures orientated randomly in waves. This method of calculating wave forces is based on the linear Airy wave theory. Calculation procedure of wave force components is presented in great detail on the basis of wave particle kinematic properties obtained from the linear Airy wave theory. In the procedure of calculating wave forces presented, definitions of the wave reference system for propagating wave, the structure reference system for the platform and the member reference system for the tubular members of the structure are first established, and then the calculation of wave forces is given in terms of its components, which are pressure, acceleration and velocity forces, including current forces. At the end of the paper, expressions of total heave, sway and surge forces and total roll, pitch and yaw moments acting on the platform are given as a sum of these forces acting on each member of the platform. The calculation procedure derived in this paper provides a very efficient means of calculating wave forces and moments during the time-domain simulations of a floating platform experiencing large amplitude motion in intact, progressive flooding and damaged conditions. Comparisons of the predictions with the measurements which will be presented elsewhere reveal that the calculation procedure developed can predict large amplitude oscillatory and steady motion characteristics of an intact and damaged platform in waves with an acceptable degree of accuracy. 相似文献
6.
A model for numerical simulation of nonstationary sonar reverberation using linear spectral prediction 总被引:1,自引:0,他引:1
An innovative approach to the numerical generation of nonstationery reverberation time series is presented and demonstrated. The computer simulated reverberation time series are of high quality, in that they are accurate representations of those which would result from an actual sonar system (transmit/receive and horizontal/ vertical beampatterns; pulse type, shape, length, and power; frequency and sampling rate), platform (speed and depth), and environment (wind speed and direction, backscattering strengths, and propagation loss). Volume, surface, and/or bottom reverberation as seen by a multiple beam sonar on a moving platform is generated. The approach utilizes recent developments in linear spectral prediction research in which the spectra of stochastic processes are modeled as rational functions and algorithms are used to efficiently compute optimal estimates of coefficients which specify the spectra. A two-fold sequence is formulated; first, the expected reverberation spectra for all beams are predicted and, second, the stochastic time series are generated from the expected spectra. The expected spectra are predicted using a numerical implementation, referred to as the REVSPEC (reverberation spectrum) model, of a general formulation of Faure, Ol'shevskii, and Middleton. Given the spectra, the Levinson-Durbin method is used to solve the Yule-Walker equations of the autoregressive formulation of linear spectral prediction. The numerical implementation of the approach, referred to as the REVSIM (reverberation simulation) model, produces nonstationary coherent multiple-beam reverberation time series. The formulation of the REVSIM model is presented and typical results given. A comparison is made between the simulation outputs of the REVSIM model and those of the REVGEN (reverberation generator) model, a standard well-accepted time series simulation model, to demonstrate the validity of the new approach. 相似文献
7.
采用非均匀有理B样条(NURBS)对船体曲面形状进行几何表达,所生成的网格直接用于后续的有关船体水动力性能计算工作中。对Wigley船型的线性兴波阻力和斜航操纵运动的船体,结合近似的Kutta条件作了相应的数值计算,从与试验结果的比较来看,该方法具有较好的工程精度,对船舶及海洋工程领域中的计算机辅助设计(CAD)与计算流体动力学(CFD)之间的相互集成,具有推动与促进作用。 相似文献
8.
The prediction of the total resistance of planing crafts at high speeds is very important. In this paper, a combined method is investigated for determining the hydrodynamic characteristics of planing crafts in the calm water. The study consists of a potential-based boundary element method (BEM) for the induced pressure resistance, the boundary layer theory for the frictional resistance and practical method for the spray resistance. The planing surface is represented by a number of elements with constant velocity potential at each element. The unknown-induced pressure is obtained by using the free surface elevation condition and the Kutta condition at the transom stern. Hydrodynamic-induced resistance and lift are determined by the calculated dynamic pressure distributions. The boundary layer analysis method is based on calculations of the momentum integral equation applied to obtain the frictional resistance. A particular practical approach is introduced to present the region of the upwash geometry for the spray. A numerical program has been developed for the present research and applied to the hull form of the craft. Four different hull forms of Series 62 model 4666 planing craft are presented. It is shown that the present combined method is efficient and the results are in good agreement with the experimental measurements over a wide range of volumetric Froude numbers. 相似文献
9.
A higher order panel method based on B-spline representation for both the geometry and the solution is developed for the analysis of steady flow around marine propellers. The self-influence functions due to the normal dipole and the source are desingularized through the quadratic transformation, and then shown to be evaluated using conventional numerical quadrature. By selecting a proper order for numerical quadrature, the accuracy of the present method can be increased to the machine limit. The far- and near-field influences are shown to be evaluated based on the same far-field approximation, but the near-field solution requires subdividing the panels into smaller subpanels continuously, which can be effectively implemented due to the B-spline representation of the geometry. A null pressure jump Kutta condition at the trailing edge is found to be effective in stabilizing the solution process and in predicting the correct solution. Numerical experiments indicate that the present method is robust and predicts the pressure distribution on the blade surface, including very close to the tip and trailing edge regions, with far fewer panels than existing low-order panel methods. 相似文献
10.
Numerical simulation and experimental research on hydrodynamic performance of propeller with varying shaft depths 总被引:2,自引:0,他引:2
In order to study hydrodynamic performance of a propeller in the free surface, the numerical simulation and open-water experiments are carried out with varying shaft depths of propeller. The influences of shaft depths of a propeller on thrust and torque coefficient in calm water are mainly studied. Meanwhile, this paper also studies the propeller air-ingestion under special working conditions by experiment and theoretical calculation method, and compares the calculation results and experimental results. The results prove that the theoretical calculation model used in this paper can imitate the propeller air-ingestion successfully. The successful phenomenon simulation provides an essential theoretical basis to understand the physical essence of the propeller air-ingestion. 相似文献
11.
基于浮标站海浪历史数据,利用回归分析方法建立了海浪数值模式有效波高预报产品的一元二次回归方程订正统计模型。通过2017年7月1日-2018年10月10日期间业务试运行结果发现:订正方程能有效改善有效波高数值预报产品的预报精度,且预报时效越短订正效果越显著。其中,第6~11 h预报时效内的订正前后平均绝对误差值减小0.17~0. 241 m,第6~18 h预报时效内订正前后均方根误差减小幅度为0.103~0. 28 m。这说明应用订正统计模型对海浪模式输出产品进行订正,也是改进海浪模式预报准确率的一种有效途径。 相似文献
12.
Numerical simulation for hydrodynamic characteristics of a bionic flapping hydrofoil 总被引:1,自引:1,他引:1
In order to study the propulsion mechanism of the bionic flapping hydrofoil (BFH), a 2-DoF (heave and pitch) motion model is formulated. The hydrodynamic performance of BFH with a series of kinematical parameters is explored via numerical simulation based on FLUENT. The calculated result is compared with the experimental value of MIT and that by the panel method. Moreover, the effect of inlet velocity, the angle of attack, the heave amplitude, the pitch amplitude , the phase difference, the heave biased angle, the pitch biased angle and the oscillating frequency are investigated. The study is useful for guiding the design of bionic underwater vehicle based on flapping propulsion. It is indicated that the optimal parameters combination is v=0.5m/s, θ0=40°.θ0=30°,Ψ=90°,Фbias=0°,θbias=0°and f=0.5Hz . 相似文献
13.
14.
提出了一种带纵摇前墙的新型振荡水柱式波浪能(OWC)装置,借助Open FOAM开源代码平台和waves2Foam工具包,数值模拟研究带纵摇前墙OWC装置的水动力性能和转换效率。主要研究前墙吃水d_1、前墙密度ρ、后墙吃水d_2、旋转约束力(用无量纲弹簧系数K表示)对该装置的反射系数C_r、透射系数C_t、耗散系数C_d和波能转换效率ξ的影响规律。结果表明,纵摇前墙能有效减少能量耗散,提高波能转换效率ξ;无量纲弹簧系数K对装置转换效率的影响主要集中在短波区域,且在K为0时装置具有最大的转换效率和最宽的高效频率带;前墙的密度和吃水深度对水动力系数影响不大;后墙的吃水深度对水动力系数影响较大,增加吃水深度能有效提高装置对于中短波和中长波段的波能转换效率,但对系统整体的能量耗散系数影响不大。 相似文献
15.
利用完全非线性数值波浪水槽技术研究水下平板与波浪的相互作用。假定水下平板厚度极薄、刚性,位于有限水深并且非常接近自由水面。应用四阶龙格库塔方法追踪每一时刻的波面形状,采用阻尼层来吸收反射波以保证算法的稳定性,同时引入平滑和重组的方法抑制自由表面控制点的较高梯度。通过对波浪与浮动圆柱相互作用的数值模拟证实了数值波浪水槽方法的有效性,计算结果与线性理论吻合良好。在波浪数值水槽方法中引入造波板模拟波浪产生并与水下平板发生相互作用,应用傅立叶解析方法对波面变形、波浪力作了分析。结果表明在板非常接近自由水面的情况下会表现出现很强的非线性,揭示了线性理论的局限性。 相似文献
16.
17.
A numerical method is proposed to predict the effective wake profiles of high speed underwater vehicles propelled by contra-rotating propellers (CRPs), in which the hydrodynamic effects of the CRPs are simulated by distributed body forces. First, Reynolds-averaged Navier-Stokes (RANS) simulations are conducted for identical body-force distributions in open-water and self-propulsion conditions. The effective wake profiles at the CRP disks are then obtained by subtracting the velocities induced by the body forces in the open water from those induced by the body forces in the self-propulsion condition. The effective wake profiles were then predicted for a generic underwater vehicle with an established CRP design. Next, the hydrodynamic performance of the CRPs in the effective wake was computed using an in-house vortex-lattice code. The potential-flow results agree well with those provided by the RANS simulation under the self-propulsion condition, indicating that the proposed method can predict the effective wake profiles for CRPs with reasonable accuracy. The influences of different wake components on the blade forces were investigated, determining that for CRPs, and especially for the aft propeller, the circumferential wake cannot be neglected in the design. 相似文献
18.
针对河口地区潮流特点,建立了潮流量推算一维水动力数学模型。该模型将Sa in t-V enan t方程组进行求解,并根据涨、落潮流的水动力特性,分别进行涨、落潮糙率率定,准确计算出逐时段河道各断面的水位和流量。应用该模型对宁波三江口地区的潮流量进行推算,结果表明,计算的潮流量与该地区实测的潮流量吻合得较好。 相似文献
19.
Dan Obreja Radoslav Nabergoj Liviu Crudu Săndiţa Păcuraru-Popoiu 《Ocean Engineering》2010,37(8-9):678-687
The results of numerical and experimental investigations on the manoeuvring performance of a fishing vessel, typical for Mediterranean Sea, are here presented. PMM experiments were used for evaluating hydrodynamic derivatives and implementing the theoretical model. The simulation model was validated, both with zig-zag and spiral experimental model tests results in still water and compared with Tribon Initial Design module results. 相似文献
20.
采用Galerkin加权余量法建立二维有限元环境水力学模型,采用不同类型等参数单元拟合不规则边界,采用Newton_ Raphson 法与Gauss型Front法求解方程组,采用时间方向半隐格式增强稳定性.选取海南省万宁小海作为应用区域,对照水文水质实际测验资料,在水动力、盐度和水质(可降解物质)方面展开模拟计算,模拟计算结果与实测值符合较好. 相似文献