首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
从地球流体中非线性波动所的方程经行波变换所得的平面自治动力系统出发,利用微分方程几何理论,揭示了地球流体中几种非线性波动均具有周期解,而不存在孤波解的普遍性质,采用在平面自治系统的平衡点附近作Taylor展开方法,论述了分式简谐函数是有限振幅波解的一般形式的结论。  相似文献   

2.
Tasbozan  Orkun 《中国海洋工程》2019,33(5):593-600
In this article, the author sets up the abundant traveling wave solutions for time fractional Benjamin–Ono equation which was introduced to describe internal waves in stratified fluids by using Jacobi elliptic function expansion method. The traveling wave solutions are expressed in terms of the hyperbolic functions, the trigonometric functions and the rational functions. It can be seen that the obtained results are found to be important for the statement of some physical demonstrations of problems in mathematical physics and ocean engineering. In ocean engineering Benjamin–Ono equations are generally used in computer simulation for the water waves in deep water and open seas.  相似文献   

3.
本文研究了1类具梯度项的次线性椭圆型方程大解和完全有界解的存在性问题。运用上下解方法和极值原理分别得到了Rn上方程存在完全大解的充分必要条件和存在完全有界解的充分条件,并且证明了该方程在Rn中光滑有界区域Ω上不存在大解。  相似文献   

4.
本文研究在圆环区域上带梯度项和完全非线性项的半线性椭圆型方程边值问题径向大解的爆破速率。在证明一些重要极限的基础上,与常微分方程分析法相结合得到了当完全非线性项满足Keller-Osserman条件,梯度项的指数范围分别在0~1和大于2时径向大解的爆破速率及在加强的条件下大解边界行为的第二次影响.  相似文献   

5.
李彦敏  梅凤翔 《海洋学报》2010,32(9):5930-5933
场方法和最终乘子法是求解运动微分方程的基本方法. 本文将这两种方法应用于广义Birkhoff系统,求出了场方法的基本偏微分方程和该方程的完全积分; 根据Jacobi最终乘子定理求出了广义Birkhoff方程的解. 并举例说明结果的应用.  相似文献   

6.
非结构化网格下椭圆型缓坡方程的数值求解   总被引:4,自引:4,他引:0  
魏美芳  唐军  沈永明 《海洋学报》2009,31(2):159-164
椭圆型缓坡方程是一种用线性波浪理论研究近岸波浪传播变形的有效波浪数学模型。非结构化网格下的有限容积法不仅对复杂边界的适应性好,还能保证迭代求解过程的守恒性。建立了非结构化网格下的椭圆型缓坡方程数值模型。在模型中采用非结构化网格下的有限容积法对椭圆型缓坡方程进行了数值离散,结合GPBiCG(m,n)算法求解离散方程。数值计算结果表明,该数值模型可有效地用于模拟近岸缓坡区域复杂边界下波浪的传播。  相似文献   

7.
In the present paper, by introducing the effective wave elevation, we transform the extended ellip- tic mild-slope equation with bottom friction, wave breaking and steep or rapidly varying bottom topography to the simplest time-dependent hyperbolic equation. Based on this equation and the empirical nonlinear amplitude dispersion relation proposed by Li et al. (2003), the numerical scheme is established. Error analysis by Taylor expansion method shows that the numerical stability of the present model succeeds the merits in Song et al. (2007)’s model because of the introduced dissipation terms. For the purpose of verifying its performance on wave nonlinearity, rapidly vary- ing topography and wave breaking, the present model is applied to study: (1) wave refraction and diffraction over a submerged elliptic shoal on a slope (Berkhoff et al., 1982); (2) Bragg reflection of monochromatic waves from the sinusoidal ripples (Davies and Heathershaw, 1985); (3) wave transformation near a shore attached breakwater (Watanabe and Maruyama, 1986). Comparisons of the numerical solutions with the experimental or theoretical ones or with those of other models (REF/DIF model and FUNWAVE model) show good results, which indicate that the present model is capable of giving favorably predictions of wave refraction, diffraction, reflection, shoaling, bottom friction, breaking energy dissipation and weak nonlinearity in the near shore zone.  相似文献   

8.
On the evaluation of time-domain Green function   总被引:1,自引:0,他引:1  
An analytical method has been developed to evaluate the wave part of the time-domain Green function and its derivatives. Based on Taylor series expansion, the Green function is obtained by solving a fourth-order ordinary differential equation. The method accelerates the convergence of the summation of an infinite series in the numerical computation. The accuracy of this method was demonstrated by its comparison with other method and its application to solve the radiation problem of a floating hemisphere using a panel-free method. The computed hydrodynamic coefficients agree well with the analytical solutions.  相似文献   

9.
《Coastal Engineering》2005,52(6):513-533
Using the perturbation method, a time dependent parabolic equation is developed based on the elliptic mild slope equation with dissipation term. With the time dependent parabolic equation employed as the governing equation, a numerical model for wave propagation including dissipation term in water of slowly varying topography is presented in curvilinear coordinates. In the model, the self-adaptive grid generation method is employed to generate a boundary-fitted and varying spacing mesh. The numerical tests show that the effects of dissipation term should be taken into account if the distance of wave propagation is large, and that the outgoing boundary conditions can be treated more effectively by introduction of the dissipation term into the numerical model. The numerical model is able to give good results of simulating wave propagation for waters of complicatedly boundaries and effectively predict physical processes of wave propagation. Moreover, the errors of the analytical solution deduced by Kirby et al. (1994) [Kirby, J.T., Dalrymple, R.A., Kabu, H., 1994. Parabolic approximation for water waves in conformal coordinate systems. Coastal Engineering 23, 185–213.] from the small-angle parabolic approximation of the mild-slope equation for the case of waves between diverging breakwaters in a polar coordinate system are corrected.  相似文献   

10.
Numerical solutions for the hydroelastic problems of bodies are studied directly in the time domain using Neumann–Kelvin formulation. In the hydrodynamic part of problem, the exact initial boundary value problem is linearized using the free stream as a basis flow, replaced by the boundary integral equation applying Green theorem over the transient free surface Green function. The resultant boundary integral equation is discretized using quadrilateral elements over which the value of the potential is assumed to be constant and solved using the trapezoidal rule to integrate the memory or convolution part in time. In the structure part of the problem, the finite element method is used to solve the hydroelastic problem. The Mindlin plate as a bending element, which includes transverse shear effect and rotary inertia effect are used. The present numerical results show acceptable agreement with experimental, analytical, and other published numerical results.  相似文献   

11.
Sloshing, or liquid free surface oscillation, in containers has many important applications in a variety of engineering fields. The modal method can be used to solve linear sloshing problems and is the most efficient reduced order method that has been used during the previous decade. In the present article, the modal method is used to solve a nonlinear sloshing problem. The method is based on a potential flow solution that implements a two-phase analysis on sloshing in a rectangular container. According to this method, the solution to the mass conservation equation, with a nonpenetration condition at the tank walls, results in velocity potential expansion; this is similar to the mode shapes used in modal method. The kinematic and dynamic boundary conditions create a set of two-space-dimensional differential equations with respect to time. The numerical solution of this set of differential equations, in the time domain, predicts the time response of interfacial oscillations. Modal method solutions for the time response of container sloshing due to lateral harmonic oscillations show a good agreement with experimental and numerical results reported in the literature.  相似文献   

12.
非结构化网格下近岸波生流数值模拟   总被引:5,自引:2,他引:3  
唐军  魏美芳 《海洋学报》2010,32(6):41-46
波浪破碎产生的近岸流是近岸海域关键的水动力因素之一。基于近岸波浪的椭圆型缓坡方程和二维近岸波生流方程,建立了非结构化网格下近岸波浪破碎形成的近岸流数值模型。数值模型中,在空间上采用有限体积法进行数值离散,在时间上采用欧拉向前格式数值离散。数值计算结果表明,该数值模型可以有效地模拟近岸波浪破碎产生的近岸流。  相似文献   

13.
Cnoidal wave theory is appropriate to periodic wave progressing in water whose depth is less than 1/10 wavelength. However, the cnoidal wave theory has not been widely applied in practical engineering because the formula for wave profile involves Jacobian elliptic function. In this paper, a cnoidal wave-seabed system is modeled and discussed in detail. The seabed is treated as porous medium and characterized by Biot's partly dynamic equations (up model). A simple and useful calculating technique for Jacobian elliptic function is presented. Upon specification of water depth, wave height and wave period, Taylor's expression and precise integration method are used to estimate Jacobian elliptic function and cnoidal wave pressure. Based on the numerical results, the effects of cnoidal wave and seabed characteristics, such as water depth, wave height, wave period, permeability, elastic modulus, and degree of saturation, on the cnoidal wave-induced excess pore pressure and liquefaction phenomenon are studied.  相似文献   

14.
In this paper, the generalised two-dimensional differential transform method (DTM) of solving the time-fractional coupled KdV equations is proposed. The fractional derivative is described in the Caputo sense. The presented method is a numerical method based on the generalised Taylor series expansion which constructs an analytical solution in the form of a polynomial. An illustrative example shows that the generalised two-dimensional DTM is effective for the coupled equations.  相似文献   

15.
四叉树网格下的椭圆型缓坡方程数值模型研究   总被引:1,自引:1,他引:0  
唐军  李巧生  沈永明 《海洋学报》2013,35(5):162-168
波浪是近岸海域关键的水动力因素之一。考虑到近岸地形复杂、波浪演化显著的特点,建立了四叉树网格体系下的椭圆型缓坡方程数值模型,采用有限体积法对模型进行数值离散,应用GPBiCG(m, n)算法求解离散后的控制方程。模型中根据波浪波长布局计算网格,生成多层次四叉树网格,对复杂计算域有较好的适应性,并且在离散和方程求解中无需引入形函数、不产生复杂的交叉项,节约了存储空间和计算时间。将模型成功应用于物理模型实验及Acapulco海湾的波浪场数值模拟,结果表明该模型能够准确、高效地模拟近岸波浪场,可为近岸波浪场的模拟提供一定的理论和技术支持。  相似文献   

16.
In the present study,a semi-implicit finite difference model for non-bydrostatic,free-surface flows is analyzed and discussed.The governing equations are the three-dimensional free-surface Reynolds-averaged Navier-Stokes equations defined on a general,irregular domain of arbitrary scale.At outflow,a combination of a sponge layer technique and a radiation boundary condition is applied to minimize wave reflection.The equations are solved with the fractional step method where the hydrostatic pressure component is determined first,while the non-hydrostatic component of the pressure is computed from the pressure Poisson equation in which the coefficient matrix is positive definite and symmetric.The advectiou and horizontal viscosity terms are discretized by use of a semi-Lagrangian approach.The resulting model is computationally efficient and unrestricted to the CFL condition.The developed model is verified against analytical solutions and experimental data,with excellent agreement.  相似文献   

17.
《Coastal Engineering》1999,38(1):47-52
We derive a general linear, weakly dispersive, Boussinesq-type equation that can be used to study edge waves on beaches with slow cross-shore variation of the depth and the alongshore current. The equation is more accurate than the non-dispersive shallow water equations and simpler than the fully dispersive elliptic mild slope equation (especially for a non-zero alongshore current). The improved performance of the new Boussinesq-type model is demonstrated using analytic solutions for edge waves on a plane beach with zero alongshore current.  相似文献   

18.
本文研究了一类具有非对称项和有界扰动项的Duffing方程。当扰动项是拟周期函数时,利用典则变换和光滑拟周期扭转映射的不变曲线定理,证明了方程任意解的有界性和拟周期解的存在性。  相似文献   

19.
The elliptic mild slope equation is used to simulate linear wave propagation over variable seabed topography with mild slopes.The governing equation is discretized by the finite difference method.Ba-sed on the BI-CGSTAB technique.an attractive variant of BI-Conjugate Gradients(BI-CG)method,theobtained linear algebraic system of equations is solved.Numerical experiments show that the BI-CGSTABmethod is efficient for solving the elliptic mild slope equation.The results obtained by the BI-CGSTAB-Ba-sed method are much the same as those obtained by other authors with different solution methods,but theconvergence rate is much faster than that of other methods.  相似文献   

20.
本文研究带梯度项的半线性椭圆型方程正径向整大解的存在性.先利用Banach不动点定理和反证法得出正径向解的局部及整体存在性,进而得到正径向整大解的存在性结论.结果发现,正径向整大解的存在性依赖于梯度项的系数符号和指数的范围.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号