首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water fluxes through the Barents Sea   总被引:14,自引:2,他引:14  
  相似文献   

2.
Mesozooplankton composition and distribution were investigated by Juday net hauls in the Pechora Sea (south-eastern Barents Sea) in July 2001. A total of 66 taxa were identified. The total mesozooplankton abundance varied between 2416 ind m−2 in the northern part and 1458?935 ind m−2 in the south. The biomass ranged between 81 and 19?078 mg DW m−2. Three groups differed greatly in composition, abundance and biomass as delineated by cluster analysis. Copepod species Calanus finmarchicus, Pseudocalanus species and Limnocalanus macrurus dominated in terms of the total biomass within each single cluster. There were significant Spearman rank correlations between mesozooplankton abundance and oceanographic variables, and phytoplankton concentration. Salinity was the main factor affecting the mesozooplankton distribution in the coastal waters, while temperature had greater influence on the abundance and biomass in the central and northern parts. The mean mesozooplankton biomass in the region was higher in comparison with some previous investigations probably due to higher water temperature in summer 2001.  相似文献   

3.
4.
通过计算机图像测定系统测定、计算获得海冰细菌的大小、面积和碳含量,研究了北极巴伦支海和拉普捷夫海的浮冰中细菌大小、丰度和生物量的垂直分布及其与海冰微藻生物量的关系.细菌在冰心中是非均匀分布的,至少有两种不同分布类型:第一类有单一的丰度峰值,在冰心底部或在冰心中部;第二类有两个丰度峰值.海冰中细菌的丰度为0.4×105~36.7×105个/cm3.不同类型海冰中的细菌大小变化极大,在多年冰中,最大的细菌与叶绿素a最大值出现在同一层,而在一年冰中,细菌大小几乎没有垂直变化.整柱冰心的细菌生物量变化为19.2~79.2mg/cm2,细菌与海冰微藻生物量之比为0.43~10.00.对固定冰比较和研究的结果发现,海冰冰心中细菌大小、丰度和生物量的垂直分布差别极大.据此,分析了对目前海冰研究采样方法的局限性,并提出了规范采样方法的设想.  相似文献   

5.
Evolution of the western Barents Sea   总被引:2,自引:0,他引:2  
Information from multichannel seismic reflection data complemented by seismic refraction, gravity and magnetics forms the basis for a regional structural and evolutionary model of the western Barents Sea during post-Caledonian times. The western Barents Sea contains a thick succession, locally > 10 km, of Upper Paleozoic to Cenozoic sedimentary rocks covering a basement of probably Caledonian origin. The area is divided into three regional geological provinces: (1) an east-west trending basinal province between 74°N and the coast of Norway; (2) an elevated platform area to the north towards Svalbard; and (3) the western continental margin. Several structural elements of different origin and age have been mapped within each of these provinces. The main stratigraphic sequence boundaries have been tentatively dated from available well information, correlation with the geology of adjacent areas, and correlation with the interregional unconformities caused by relative changes of sea level. The main structural elements were developed during three major post-Caledonian tectonic phases: the Svalbardian phase in Late Devonian to Early Carboniferous times, the Mid and Late Kimmerian phase in Mid Jurassic to Early Cretaceous times and Cenozoic tectonism related to the progressive northward opening of the Norwegian-Greenland Sea. The sediments are predicted to be of mainly clastic origin except for a thick sequence of Middle Carboniferous — Lower Permian carbonates and evaporites. Salt diapirs have developed in several sub-basins, especially in the Nordkapp Basin where they form continuous salt walls that have pierced through > 7 km of sediments.  相似文献   

6.
本文采用2003~2016年SSMI海冰密集度和NCEP气温、风场等数据,通过计算海冰覆盖率、增长期长度、冬季负积温和风拖曳力等参数,分析了巴伦支海海冰的变化特征及其与热力、动力影响因素之间的联系。结果显示,因西南部存在常年无冰区,巴伦支海14a平均的海冰覆盖率低于50%;覆盖率总体呈现下降趋势,冰情呈现"重—中等—轻"的变化过程,2012年后甚至出现夏季无冰的情况;增长期长度先增后减,起止时刻均有推迟;冬季负积温是影响巴伦支海冰情轻重的重要因素,与年平均海冰覆盖率距平和最大覆盖率的相关系数分别为-0.90和-0.89;风拖曳力的改变可在短期内引起海冰覆盖率急剧变化,是海冰边缘区产生流冰的主要原因,易对油气资源开发的海洋平台产生危害。  相似文献   

7.
8.
9.
10.
11.
Abstract

The composition and properties of glacigenic sediments in the southwestern Barents Sea are described based on data from 33 shallow boreholes (< 143 m below seabed) and 11 seabed cores (<4.2m below seabed). The cores are tied into a regional seismostratigraphic framework, illustrating the relationships between different boreholes.

A massive, muddy diamicton (silty, sandy clay with scattered gravel) is found in nearly all cores. Average clay content (<2 pm) of this lithology is about 38%, but varies between about 25% and 50%. Short intervals of finely laminated, waterlain sediments or gravelly sand are cored in a few occasions. A high content of sand and gravel in the cores from near the Norwegian coast shows an influence of sediment input from the mainland, while material eroded from sedimentary rocks dominates farther offshore.

The data presented on physical properties include undisturbed and remolded undrained shear strength, natural water content, bulk density, compressional sound velocity (P waves), Atterberg consistency limits, effective preconsolidation pressure, and consolidation coefficient.

Prediction of overconsolidation from seismic mapping of erosional surfaces is confirmed by the borehole cores. High compaction is found both in Weichselian and older deposits, with a general increase in compaction toward the east as well as toward shallower water. Cores that are “underconsolidated” at their present burial depth are also reported.

The average compressional sound velocity is about 1780 m/s for the borehole cores, 1550 m/s for the seabed cores, and increases with increasing shear strength and consolidation. Both horizontal and vertical sound velocities are measured in several cores, and although the data have a considerable scatter, a slightly aniso‐tropic sound velocity is indicated.  相似文献   

12.
13.
The present study of five wells from Upper Albian to Lower Maastrichtian succession in the southwestern Barents Sea yields the first dinoflagellate cyst-based palynological event biostratigraphy for the area. The research focuses on the Upper Cretaceous Kveite and Kviting formations due to the lack of formal palynological documentation, and enables the formation of a biozonation of greater resolution than currently achievable by micropalaeontology. Four new interval zones and one abundance subzone are described, from base upward: Palaeohystrichophora infusorioides and Palaeohystrichophora palaeoinfusa Interval Zone (intra Early Cenomanian–intra Late Cenomanian), Dinopterygium alatum Interval Zone (?intra Early Coniacian–Late Santonian), Palaeoglenodinium cretaceum Interval Zone (Early Campanian), and the Chatangiella bondarenkoi Interval Zone (Late Campanian) encompassing the Heterosphaeridium bellii Abundance Subzone (intra-Late Campanian). The zones are well correlated to existing palynological zonations from the Norwegian–Greenland Sea, where the previously described Subtilisphaera kalaalliti Interval Zone (intra Late Albian–?intra Early Cenomanian), Heterosphaeridium difficile Interval Zone (Middle Turonian to ?intra Early Coniacian) and Cerodinium diebelii Interval Zone (Early Maastrichtian) are recognised. These data also reveal the presence of three significant unconformities of Late Cenomanian–Early Turonian, Middle Campanian and Late Maastrichtian–Paleocene age.  相似文献   

14.
15.
This paper describes and analyzes the application of the precautionary principle in the regulation of operational discharges from offshore petroleum activities. Norway implemented a zero discharge policy in line with international agreements. However, companies are obliged to follow considerably stricter requirements in the Barents Sea compared to other parts of the Norwegian Continental Shelf. This paper follows the development of the zero discharge measure and analyzes what it implies for activities in the Barents Sea. Several “uncertainties of precaution” are discussed, which relate to technological issues, monitoring, compliance and unintended environmental consequences. Precautionary action should be scrutinized for its proportionality: how do the benefits of the measure relate to the technological, financial and environmental costs? It is concluded that the most (cost-) effective solutions that could lead to the lowest total environmental harm are not always the solutions that are most politically feasible.  相似文献   

16.
17.
Abundance and biomass of the most important fish species inhabited the Barents and Norwegian Sea ecosystems have shown considerable fluctuations over the last decades. These fluctuations connected with fishing pressure resulted in the trophic structure alterations of the ecosystems. Resilience and other theoretical concepts (top-down, wasp-waste and bottom-up control, trophic cascades) were viewed to examine different response of the Norwegian and Barents Sea ecosystems on disturbing forces. Differences in the trophic structure and functioning of Barents and Norwegian Sea ecosystems as well as factors that might influence the resilience of the marine ecosystems, including climatic fluctuation, variations in prey and predator species abundance, alterations in their regular migrations, and fishing exploitation were also considered. The trophic chain lengths in the deep Norwegian Sea are shorter, and energy transfer occurs mainly through the pelagic fish/invertebrates communities. The shallow Barents Sea is characterized by longer trophic chains, providing more energy flow into their benthic assemblages. The trophic mechanisms observed in the Norwegian Sea food webs dominated by the top-down control, i.e. the past removal of Norwegian Spring spawning followed by zooplankton development and intrusion of blue whiting and mackerel into the area. The wasp-waist response is shown to be the most pronounced effect in the Barents Sea, related to the position of capelin in the ecosystem; large fluctuations in the capelin abundance have been strengthened by intensive fishery. Closer links between ecological and fisheries sciences are needed to elaborate and test various food webs and multispecies models available.  相似文献   

18.
A sequence stratigraphic framework of the Triassic on the Norwegian Barents shelf is presented. The Triassic succession was subdivided into five second-order sequences based on facies analysis of 2D seismic data constrained by well data. The sequences were separated by maximum flooding surfaces that correlate seismically for hundreds of kilometers.  相似文献   

19.
本文采用1900—2010年ECMWF海冰密集度、海面温度、风场和NCAR北极涛动等长序列资料,运用EOF分解、线性回归和相关分析等统计方法,分析了巴伦支海海冰年际变化特征及其与影响因子之间的关系。结果表明:巴伦支海海冰面积4月最大,9月最小,每年减少约1653km^2;面积距平正负位相交替出现,1969年后以负距平为主,冰情先重后轻;密集度逐月不同,明显降低的区域呈现“中部偏东—中部—东北部—西北部—中部偏东”转移特点,部分区域每年减少0.006以上;密集度变化的空间特征可由密集度EOF第一主模态表示,与温度的相关系数高于风场;海冰面积与AO呈负相关。我国以往单独针对巴伦支海海冰变化的研究较少,本文丰富了这方面的资料,对浮式平台开发冰区油气资源提供初步参考。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号