首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The large roll motion of ships sailing in the seaway is undesirable because it may lead to the seasickness of crew and unsafety of vessels and cargoes, thus it needs to be reduced. The aim of this study is to design a rudder roll stabilization system based on Radial Basis Function Neural Network (RBFNN) control algorithm for ship advancing in the seaway only through rudder actions. In the proposed stabilization system, the course keeping controller and the roll damping controller were accomplished by utilizing modified Unscented Kalman Filter (UKF) training algorithm, and implemented in parallel to maintain the orientation and reduce roll motion simultaneously. The nonlinear mathematical model, which includes manoeuvring characteristics and wave disturbances, was adopted to analyse ship’s responses. Various sailing states and the external wave disturbances were considered to validate the performance and robustness of the proposed roll stabilizer. The results indicate that the designed control system performs better than the Back Propagation (BP) neural networks based control system and conventional Proportional-Derivative (PD) based control system in terms of reducing roll motion for ship in waves.  相似文献   

2.
This technical communication is concerned with the design of inland ship-steering autopilots characterized by turning rate regulation rather than heading regulation found on most ocean-going vessel autopilots. The autopilot design is based on the internal model control approach which allows clear connections between the controller structure and that of the ship model to be established. To fully utilize the limited rudder power without introducing the controller wind-up, which may lead to undesirable long transients, an inverse of the rudder saturation (SAT) and slew rate limitation (SRL) is implemented in the controller. Specifically, an inversion by feedback technique is employed by implementing the noninverted dynamics in a local feedback loop. This resolves the difficulty associated with inversion of the SAT and SRL mathematically. Consequently, high turning rate maneuver can be achieved in case of emergency encounters without causing the controller wind-up. This feature is particularly important for inland ships, since unexpected encounters with other ships are quite common and the capability of quick response is vital to ensure safe maneuvers  相似文献   

3.
The NDRE-AUV flight control system   总被引:1,自引:0,他引:1  
The flight control system of an autonomous underwater vehicle (AUV) developed at the Norwegian Defence Research Establishment (NDRE) is presented. A mathematical model of the vehicle is derived and discussed. The system is separated into lightly interacting subsystems, and three autopilots are designed for steering, diving, and speed control. The design of the separate controllers is based on PID techniques. Results from extensive sea testing show robust performance and stability for the autopilot  相似文献   

4.
This paper is concerned with the robust control synthesis of autonomous underwater vehicle(AUV) for general path following maneuvers.First,we present maneuvering kinematics and vehicle dynamics in a unified framework.Based on H∞ loop-shaping procedure,the 2-DOF autopilot controller has been presented to enhance stability and path tracking.By use of model reduction,the high-order control system is reduced to one with reasonable order,and further the scaled low-order controller has been analyzed in both the frequency and the time domains.Finally,it is shown that the autopilot control system provides robust performance and stability against prescribed levels of uncertainty.  相似文献   

5.
A six-degree-of-freedom model for the maneuvering of an underwater vehicle is used and a sliding-mode autopilot is designed for the combined steering, diving, and speed control functions. In flight control applications of this kind, difficulties arise because the system to be controlled is highly nonlinear and coupled, and there is a good deal of parameter uncertainty and variation with operational conditions. The development of variable-structure control in the form of sliding modes has been shown to provide robustness that is expected to be quite remarkable for AUV autopilot design. It is shown that a multivariable sliding-mode autopilot based on state feedback, designed assuming decoupled modeling, is quite satisfactory for the combined speed, steering, and diving response of a slow AUV. The influence of speed, modeling nonlinearity, uncertainty, and disturbances, can be effectively compensated, even for complex maneuvering. Waypoint acquisition based on line-of-sight guidance is used to achieve path tracking  相似文献   

6.
基于AIS信息校准的双频地波雷达的船只融合跟踪   总被引:2,自引:0,他引:2  
高频地波雷达(HFSWR)和自动船只确认系统(AIS)是船只跟踪的重要传感器。高频地波雷达可以用来跟踪探测区域的所有船只,而AIS只能用来确认合作船只的信息。由于海杂波的干扰,使用单频率地波雷达的船只跟踪会淹没在布拉格峰值的盲区里,改变探测频率是克服这一缺点的有效手段。在这种背景下,我们提出一种基于AIS校准的双频雷达融合探测算法。因为不同频率的地波雷达测量与AIS的测量值存在系统误差,所以AIS信息可以用来估计和校准地波雷达的每个频率的系统误差。首先,将合作目标的点迹测量与地波雷达的点迹测量通过JVC分配算法进行点迹关联。从合作船只的点迹关联结果中,双频雷达的系统误差可以估计和校准。其次,基于校准的双频雷达数据,使用融合JPDA-UKF算法进行船只跟踪。通过真实探测的数据的实验结果显示所提算法可以实时跟踪船只,相比单频率跟踪可以进一步提高跟踪能力和跟踪精度。  相似文献   

7.
China Ocean Engineering - In this paper, a new control system is proposed for dynamic positioning (DP) of marine vessels with unknown dynamics and subject to external disturbances. The control...  相似文献   

8.
This paper presents a model predictive control (MPC) for a way-point tracking of underactuated surface vessels with input constraints. A three-degree-of-freedom dynamic model of surface vessels has been used for the controller design. In order for the control action to render good helmsman behavior, a MPC scheme with line-of-sight (LOS) path generation capability is formulated. Quadratic programming (QP) is used to solve a linear MPC by successive linearization along the LOS model of the surface vessel. Furthermore, we show that an LOS decision variable can be incorporated into the MPC design to improve the path following performance. The effectiveness of the developed control law is demonstrated via computer simulations.  相似文献   

9.
This paper presents the features of newly designed hydrodynamics test for the scaled model of 4500 m deepsea open-framed remotely operated vehicle(ROV),which is being researched and developed by Shanghai Jiao Tong University.Accurate hydrodynamics coefficients measurement and spatial modeling of ROV are significant for the maneuverability and control algorithm.The scaled model of ROV was constructed by 1:1.6.Hydrodynamics coefficients were measured through VPMM and LAHPMM towing test.And dynamics model was derived as a set of equations, describing nonlinear and coupled 5-DOF spatial motions.Rotation control motion was simulated to verify spatial model proposed.Research and application of hydrodynamics coefficients are expected to enable ROV to overcome uncertainty and disturbances of deepsea environment,and accomplish some more challengeable and practical missions.  相似文献   

10.
Efficient control of ships in a designed trajectory is always a significant charge for ship maneuverings. The purpose of this paper is to design a robust H controller and a reliability analysis for a container ship in a way-point tracking. First, the H controller is designed for a container ship because of model parameters’ uncertainties and external disturbances such as waves, winds and ocean currents. Then, to evaluate the reliability of the designed controller, a well-known reliability analysis technique is employed to achieve the predefined heading angle overshoot (that is less than 20%) in way-point tracking. To do this, three random variables including wind speed, wind direction and wave direction are considered as the inputs due to their significant effect on overshoot, compared to other variables. The results demonstrate the capability of the designed H controller against modeling uncertainties and external disturbances in way point tracking control.  相似文献   

11.
As the capability of polar plots becomes better understood, improved dynamic positioning (DP) systems are possible since the control algorithms greatly depend on the accuracy of the aerodynamic and hydrodynamic models. The measurements and estimation of the environmental disturbances have an important role in the optimal design and selection of a DP system for a marine vessel. The main objective of this work is to present a new software program capable of estimating the environmental forces, thrusters capability calculations, and capability polar plots for marine vessels. A flowchart illustrating the logic and data flow of a developed software program, the Capability Polar Plot Program (CPPP), and the estimated results for two case studies for a scientific drilling vessel and a survey vessel are presented. It is obvious from the obtained results that the developed program has a future potential for the estimation of the Capability Polar Plots for marine vessels. Moreover, the developed software program would be considered as a marine tool for the thrusters' selection and their configuration for marine vessels and floating production units for the Oil and Gas industries.  相似文献   

12.
This paper develops an adaptive course controller for time-varying parametric uncertain nonlinear ships with completely unknown time-varying bounded control coefficient. The proposed design method does not require any a priori knowledge of the sign of the unknown time-varying control coefficient. The designed adaptive autopilot can guarantee the regulation of the ship course to any prescribed accuracy and the global uniform ultimate boundedness of all signals in the closed-loop system. The effectiveness of the presented autopilot has been demonstrated in a simulation involving a ship of 45 m in length.  相似文献   

13.
A real time kinematic (RTK), GPS-based, track-keeping control of a small boat is discussed in this paper. The internal model control (IMC) method is adopted in the autopilot design and the controller is recast in the PID controller format that is characterized by its simple structure and relative ease of implementation. The track-keeping mission is achieved through a sequence of course-changing maneuvers and the reference heading is computed with the line-of-sight (LOS) guidance law. Path planning based on Bezier curves to achieve obstacle avoidance is investigated. First, computer simulations are carried out to find the feasible controller design parameter that achieves satisfactory simulation results. Then the feasible controller design parameter is applied in the small-boat-based experiments to demonstrate the practical use of the proposed autopilot design method.  相似文献   

14.
The effectiveness of subsea intervention has been found to be dependent upon the capability of an autonomous underwater vehicle's (AUV's) or remotely operated underwater vehicle's (ROV's) auto-positioning system. However, these vessel's dynamics vary considerably with operating condition, and are strongly coupled; they are expensive and difficult to derive, theoretically or through conventional testing, making the design of conventional autopilots difficult to achieve. Multi-input-multi-output self-tuning controllers offer a possible solution. Two such schemes are presented. The first is an implicit linear quadratic online, self-tuning controller, and the other uses a robust control law based on a first-order approximation of the open-loop dynamics and online recursive identification. The controllers' performance is evaluated by examining their behavior when controlling a comprehensive nonlinear simulation of an ROV and its navigation system. An interesting offshoot of this study is the application of recursive system identification techniques to the derivation of ROV models from data gathered from the trials; the potential advantages of this method are discussed  相似文献   

15.
In this work a method for estimating parameters of practical ship manoeuvring models based on the combination of RANSE computations and System Identification procedure is investigated, considering as test case a rather slender twin screw and two rudders ship. The approach consists in the estimation of the hydrodynamic coefficients applying System Identification to a set of free running manoeuvres obtained from an in-house unsteady RANS equations solver, which substitute the usually adopted experimental tests at model or full scale. In this alternative procedure the numerical quasi-trials (in terms of kinematic parameters time histories and, if needed, forces time histories) are used as input for the System Identification procedure; the aim of this approach is to reduce external disturbances that, if not properly considered in the mathematical model, may compromise the identification results, or at least amplify the well-known “cancellation effects”. Furthermore, the CFD results provide information both in terms of flow field variables and hydrodynamic forces on the manoeuvring ship. These data may be adopted for a better understanding of the complex flow during manoeuvres, especially at stern, providing also additional information about the interaction between the various appendages (including rudders) and the hull. The identification procedure is based on an off-line genetic algorithm used for minimizing the discrepancy between the reference manoeuvres from CFD and those simulated with the system based modular model. The discrepancy was measured considering different metric functions and simplified formulations which consider only the main macroscopic parameters of the manoeuvre; the metrics have been analyzed in terms of their capability in reproducing the time histories and in limiting the cancellation effect of the hydrodynamic derivatives.  相似文献   

16.
Real sea conditions are characterized by multidirectional sea waves. However, the prediction of hull load responses in oblique waves is a difficult problem due to numeral divergence. This paper focuses on the investigation of numerical and experimental methods of load responses of ultra-large vessels in oblique regular waves. A three dimensional nonlinear hydroelastic method is proposed. In order to numerically solve the divergence problem of time-domain motion equations in oblique waves, a proportional, integral and derivative (PID) autopilot model is applied. A tank model measurement methodology is used to conduct experiments for hydroelastic responses of a large container ship in oblique regular waves. To implement the tests, a segmented ship model and oblique wave testing system are designed and assembled. Then a series of tests corresponding to various wave headings are carried out to investigate the vibrational characteristics of the model. Finally, time-domain numerical simulations of the ship are carried out. The numerical analysis results by the presented method show good agreement with experimental results.  相似文献   

17.
新型双船起重拆除平台试验研究   总被引:1,自引:1,他引:0  
拆除大型海上结构物是一项非常复杂且充满挑战的工程。现提出一种新型海上平台拆除方案,该方案利用三条半潜船来代替具有重型起重装置的单一船舶,通过两艘相同的半潜船将平台上层建筑托起,随后运至第三艘半潜船上完成平台拆除。在风浪流作用下,半潜船和平台的所处方位和运动姿态一直处于动态变化中,这对船舶调节压载的稳定性以及双船运动的同步性提出了要求。为了确保该方案的高效性和安全性,设计了一套完整的模型试验装置,包括船舶模型、平台拆卸辅助设备、六自由度运动采集与分析系统、控制系统、无线通讯系统以及测量系统。开展了相应的水池试验,试验结果验证了双船起重拆除平台方案中双船协同运输这一关键环节的可行性和安全性。  相似文献   

18.
This paper develops an adaptive fuzzy controller for the dynamic positioning (DP) system of vessels with unknown dynamic model parameters and unknown time-varying environmental disturbances. The controller is designed by combining the adaptive fuzzy system with the vectorial backstepping method. An adaptive fuzzy system is employed to approximate the uncertain term induced by unknown dynamic model parameters and unknown time-varying environmental disturbances. It is theoretically proved that the proposed adaptive fuzzy DP controller can make the vessel be maintained at the desired values of its position and heading with arbitrary accuracy, while guaranteeing the uniform ultimate boundedness of all signals in the closed-loop DP control system of vessels. Simulation studies with comparisons on a supply vessel are carried out, and the results illustrate the effectiveness of the proposed control scheme.  相似文献   

19.
Computational fluid dynamics, CFD, is becoming an essential tool in the prediction of the hydrodynamic efforts and flow characteristics of underwater vehicles for manoeuvring studies. However, when applied to the manoeuvrability of autonomous underwater vehicles, AUVs, most studies have focused on the determination of static coefficients without considering the effects of the vehicle control surface deflection. This paper analyses the hydrodynamic efforts generated on an AUV considering the combined effects of the control surface deflection and the angle of attack using CFD software based on the Reynolds-averaged Navier–Stokes formulations. The CFD simulations are also independently conducted for the AUV bare hull and control surface to better identify their individual and interference efforts and to validate the simulations by comparing the experimental results obtained in a towing tank. Several simulations of the bare hull case were conducted to select the kω SST turbulent model with the viscosity approach that best predicts its hydrodynamic efforts. Mesh sensitivity analyses were conducted for all simulations. For the flow around the control surfaces, the CFD results were analysed according to two different methodologies, standard and nonlinear. The nonlinear regression methodology provides better results than the standard methodology does for predicting the stall at the control surface. The flow simulations have shown that the occurrence of the control surface stall depends on a linear relationship between the angle of attack and the control surface deflection. This type of information can be used in designing the vehicle's autopilot system.  相似文献   

20.
In the paper, a hydrodynamic numerical model including wave effect is developed to simulate ship autopilot systems by using the time domain analysis. The PD controller and the sliding mode controller are adopted as the autopilot systems. The differences of simulation results between two controllers are analyzed by cost function composed of heading angle error and rudder deflection, either in calm water or in waves. The results in calm water show that both controllers are tracking well for the desired route with the similar cost function value by tuning the key design parameters. However, the course tracking ability of the controller using sliding mode in waves is generally better even the cost function value is similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号