首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The propulsive characteristics of auto-pitch wing-in-ground effect oscillating foil propulsors (APWIGs) were numerically investigated through an unsteady Reynolds Averaged Navier-Stokes solver. The kinematics of such a biplane configuration is characterized by the prescribed heave motion and flow-induced pitch motion restrained by a torsional spring for each foil. Based on the validated numerical model, the comparison of propulsive performance between APWIGs and single auto-pitch oscillating foil, as well as dual-foil heave-only configuration, was conducted at different advance speeds. Results show that APWIGs is advantageous in both thrust production and efficiency enhancement over other two configurations due to the resulting wing-in-ground effect and substantial reduction of flow separation by the flow-regulated pitch motion. Furthermore, the effect of torsional spring stiffness on the propulsion of APWIGs was studied under different loaded conditions. It was found that both the maximum pitching angle and phase difference of pitch with heave are dramatically affected by the spring stiffness, which has major contribution to the hydrodynamic behaviours of the foils. Under a certain operating speed, an optimal torsional spring stiffness that produces the best propulsive performance can be found. With respect to the parametric space in the current study, the APWIGs can achieve a constant high efficiency over 70% by employing an appropriate spring stiffness.  相似文献   

2.
为研究仿胸鳍推进的机理和流体动力特性及缩小机器鱼与生物原型之间的性能差距,利用浸入边界法数值模拟了做耦合旋转运动胸鳍的非定常绕流问题。详细探讨胸鳍非定常运动的三维尾涡结构演化和推进机理,并开展胸鳍推进性能与尾涡结构的参数影响分析。结果表明:迎流面在背、腹侧边缘及鳍梢部显著涡旋结构的作用下所出现的低压力区,加之鳍表面和上游来流之间好的垂直度共同造成了在动力划水阶段的高推力;在恢复划水阶段的高升力与背侧边缘涡强度的持续增加,以及因鳍表面倾斜而引起的水动力被分解到竖直方向的比重提升有关;胸鳍尾流场被一个三维双环涡结构所支配;当前的模拟为仿胸鳍推进建立了一个最优的斯特劳哈尔数St范围(在0.55附近),在此之后平均推力仍随St的增大而增加,而推进效率则表现出一个缓慢降低的趋势;当前后拍动与纵倾运动之间的相位差为90度时,胸鳍同时取得最佳的推力和效率。  相似文献   

3.
超浅吃水拖轮在浅海对钻井平台进行拖带和井位定位时,必须了解超浅吃水拖轮浅水系柱拖力特性,才能充分利用海潮条件和自身能力完成钻井平台的拖带和定位任务。  相似文献   

4.
A numerical method, the quasi-vortex-lattice method (QVLM), was applied to predict the propulsive performance of three naturally occurring oscillating propellers. These were cetacean flukes for a fin whale (Balaenoptera physalus); white-sided dolphin (Lagenorhynchus acutus); and white whale (Delphinapterus leucas). The fin whale's flukes had the highest aspect ratio (6.1) and moderate sweep angle (31°); the white-sided dolphin's flukes had the highest sweep angle (47°) and lowest aspect ratio (2.7); and the white whale's flukes had moderate aspect ratio (3.3) and the lowest sweep angle (28°). In the numerical simulations, the planforms were assumed to be rigid both in chordwise and spanwise directions, and to be oscillating harmonically in an irrotational, incompressible fluid. Calculation and comparisons of propulsive efficiency and thrust coefficient vs advance ratio for each of the planforms were made in three cases: varied heave amplitude; different pitching axis positions; and varied angular amplitude of pitch.  相似文献   

5.
In order to study the propulsion mechanism of the bionic flapping hydrofoil (BFH), a 2-DoF (heave and pitch) motion model is formulated. The hydrodynamic performance of BFH with a series of kinematical parameters is explored via numerical simulation based on FLUENT. The calculated result is compared with the experimental value of MIT and that by the panel method. Moreover, the effect of inlet velocity, the angle of attack, the heave amplitude, the pitch amplitude , the phase difference, the heave biased angle, the pitch biased angle and the oscillating frequency are investigated. The study is useful for guiding the design of bionic underwater vehicle based on flapping propulsion. It is indicated that the optimal parameters combination is v=0.5m/s, θ0=40°.θ0=30°,Ψ=90°,Фbias=0°,θbias=0°and f=0.5Hz .  相似文献   

6.
In the present study the effect of caudal length on hydrodynamic performance of flapping foil is investigated. According to reality of swimming of fishes, the kinematics of their oscillation tail is involved with two rotational motions where one of them causes the tail to move in circular direction and the other leads the tail to pitch around its pitch axis. With this concept, a generalized kinematic model is considered. According to simulation of the motion trajectory of flapping foil, it is shown that the length of caudal may affect the hydrodynamic performance. It is shown that at lower and higher Strouhal numbers (St < 0.2 and St > 0.6) the hydrodynamic performance of flapping foil is optimum when the length of caudal is infinitive. It should be noted that at higher caudal length the variation of propulsive efficiency and produced thrust are stopped and these hydrodynamic parameters are kept at constant values. Additionally, it is demonstrated that there is the possibility of improving propulsive efficiency at moderate Strouhal numbers (0.2 < St < 0.6) by manipulation of caudal length. Furthermore, it is shown that in some cases the manipulation of caudal length may increase thrust coefficient as the propulsive efficiency is also increased.  相似文献   

7.
Flapping wings located beneath or to the side of the hull of the ship are investigated as unsteady thrusters, augmenting ship propulsion in waves. The main arrangement consists of horizontal wing(s) in vertical oscillatory motion which is induced by ship heave and pitch, while rotation about the wing pivot axis is actively controlled. In this work we investigate the energy extraction by the system operating in irregular wave conditions and its performance concerning direct conversion to propulsive thrust. More specifically, we consider operation of the flapping foil in waves characterised by a spectrum, corresponding to specific sea state, taking into account the coupling between the hull and the flapping foil dynamics. The effect of the wavy free surface is accounted for through the satisfaction of the corresponding boundary conditions and the consideration of the wave velocity on the formation of the incident flow. Numerical results concerning thrust and power coefficients are presented, indicating that significant thrust can be produced under general operating conditions. The present work can be exploited for the design and optimum control of such systems extracting energy from sea waves for augmenting marine propulsion in rough seas, with simultaneous reduction of ship responses offering also dynamic stabilisation.  相似文献   

8.
The paper presents the experimental study on the influence of wall effect on the hydrodynamic forces induced by the propellers and thrusters of a ferry during the berthing. The program of the model tests was developed for the twin-propeller, twin-rudder, man-manned model of a car–passenger ferry in 1:16 scale, equipped with two bow thrusters. The different combinations of the operational settings of bow thrusters and propellers operating in the push–pull mode allowed to observe and quantify the variation of the hydrodynamic forces due to the changes of the water depth to draft ratios and distances to the quay. The results of model tests are introduced and discussed in the paper. The difference between the measured total hydrodynamic force and superposition of the component forces induced by the propellers and thrusters has been investigated. According to the structure of the generally accepted modular manoeuvring model, the proposition of the weight factors for the component forces comprising the interaction effects has been introduced and discussed.  相似文献   

9.
摆动尾鳍水动力性能的试验和数值研究   总被引:1,自引:0,他引:1  
苏玉民  张曦  杨亮 《海洋工程》2012,30(3):150-158
鱼类能够在水下高速度、低噪音、高效率地游动。鱼类出色的推进性能通过其摆动尾鳍实现。这种摆动尾鳍推进方式已经用在了水下无人航行器上。因此研究摆动尾鳍的水动力性能是非常有意义的。对摆动尾鳍的推进水动力性能进行了详尽的研究。设计、装配了一套仿尾鳍推进系统,并对其进行了相应的水动力试验。在试验中研究了运动参数对摆动尾鳍水动力性能的影响。与此同时,采用基于雷诺平均N-S方程的数值方法对摆动尾鳍的水动力性能进行了研究。在数值计算中采用了k-ωSST湍流模型和有限体积法。数值计算结果和水动力试验结果进行了比较。对尾鳍表面的压力分布和流场中的尾涡结构进行了分析。水动力试验和数值计算都表明摆动尾鳍可以产生推进力和较高的推进效率。  相似文献   

10.
采用非定常势流理论,对高游速海洋动物所具有的新月形尾推进进行了分析,着重考虑了推进力能量的频率特性,并理论估算了一种海豚的实际游动状况。  相似文献   

11.
张玉强  朱平 《海岸工程》2004,23(3):52-60
浮式系船柱槽是万年闸船闸的重要组成部分。介绍了浮式系船柱槽的详细施工方案和质量保证措施。  相似文献   

12.
The hydrodynamic interaction between an Autonomous Underwater Vehicle (AUV) manoeuvring in close proximity to a larger underwater vehicle can cause rapid changes in the motion of the AUV. This interaction can lead to mission failure and possible vehicle collision. Being self-piloted and comparatively small, an AUV is more susceptible to these interaction effects than the larger body. In an aim to predict the manoeuvring performance of an AUV under the effects of the interaction, the Australian Maritime College (AMC) has conducted a series of computer simulations and captive model experiments. A numerical model was developed to simulate pure sway motion of an AUV at different lateral and longitudinal positions relative to a larger underwater vehicle using Computational Fluid Dynamics (CFDs). The variables investigated include the surge force, sway force and the yaw moment coefficients acting on the AUV due to interaction effects, which were in turn validated against experimental results. A simplified method is presented to obtain the hydrodynamic coefficients of an AUV when operating close to a larger underwater body by transforming the single body hydrodynamic coefficients of the AUV using the steady-state interaction forces. This method is considerably less time consuming than traditional methods. Furthermore, the inverse of this method (i.e. to obtain the steady state interaction force) is also presented to obtain the steady-state interaction force at multiple lateral separations efficiently. Both the CFD model and the simplified methods have been validated against the experimental data and are capable of providing adequate interaction predictions. Such methods are critical for accurate prediction of vehicle performance under varying conditions present in real life.  相似文献   

13.
The use of an unsteady computational fluid dynamic analysis of the manoeuvring performance of a self-propelled ship requires a large computational resource that restricts its use as part of a ship design process. A method is presented that significantly reduces computational cost by coupling a blade element momentum theory (BEMT) propeller model with the solution of the Reynolds averaged Navier Stokes (RANS) equations. The approach allows the determination of manoeuvring coefficients for a self-propelled ship travelling straight ahead, at a drift angle and for differing rudder angles. The swept volume of the propeller is divided into discrete annuli for which the axial and tangential momentum changes of the fluid passing through the propeller are balanced with the blade element performance of each propeller section. Such an approach allows the interaction effects between hull, propeller and rudder to be captured. Results are presented for the fully appended model scale self-propelled KRISO very large crude carrier 2 (KVLCC2) hull form undergoing static rudder and static drift tests at a Reynolds number of 4.6×106 acting at the ship self-propulsion point. All computations were carried out on a typical workstation using a hybrid finite volume mesh size of 2.1×106 elements. The computational uncertainty is typically 2–3% for side force and yaw moment.  相似文献   

14.
The present paper describes results of the experimental investigation of a small-scale mono-hull model boat propelled by a localised flexural wave propagating along the plate of finite width forming the boat's keel. Forward propulsion of the boat was achieved through flexural wave propagation in the opposite direction, which is similar to the aquatic propulsion used in nature by stingrays. The model boat under consideration underwent a series of tests both in a Perspex water tank and in an experimental pool. In particular, the forward velocity of the boat has been measured for different frequencies and amplitudes of the flexural wave. The highest velocity achieved was 32 cm/s. The thrust and propulsive efficiency have been measured as well. The obtained value of the propulsive efficiency in the optimum regime was 51%. This indicates that the efficiency of this type of aquatic propulsion is comparable to that of dolphins and sharks (around 75%) and to that of a traditional propeller (around 70%). In contrast with a propeller though, the wave-like aquatic propulsion has the following advantages: it does not generate underwater noise and it is safe for people and marine animals.  相似文献   

15.
In an attempt to contribute to efforts for a robust and effective numerical tool addressing ship motion in astern seas, this paper presents the development of a coupled non-linear 6-DOF model with frequency dependent coefficients, incorporating memory effects and random waves. A new axes system that allows straightforward combination between seakeeping and manoeuvring, whilst accounting for extreme motions, is proposed. Validation of the numerical model with the results of benchmark tests commissioned by ITTC's Specialist Group on Stability demonstrated qualitative, yet not fully satisfactory agreement between numerical and experimental results in line with other predictive tools. The numerical results indicate that the inclusion of frequency coefficients definitely affects the accuracy of the predictions. In order to enhance further the numerical model and obtain useful information on motion coupling, extensive captive and free running model tests were carried out. Good agreement with the experimental results was achieved. These studies provide convincing evidence of the capability of the developed numerical model to predict the dangerous conditions that a ship could encounter in extreme astern seas. As a result, it could offer new insights towards establishing relationships linking ship behaviour to design, environmental and operational parameters.  相似文献   

16.
The results of numerical and experimental investigations on the manoeuvring performance of a fishing vessel, typical for Mediterranean Sea, are here presented. PMM experiments were used for evaluating hydrodynamic derivatives and implementing the theoretical model. The simulation model was validated, both with zig-zag and spiral experimental model tests results in still water and compared with Tribon Initial Design module results.  相似文献   

17.
The flow mechanism of contractive and dilative motion was numerically investigated to obtain a propulsive force in a highly viscous fluid. The computing program for the analysis of complicated motions was numerically developed with a cell-centered, unstructured grid scheme. The developed program was validated by the well-known equation of an oscillating plane below viscous fluid for an unsteady problem, which is known as Stokes’ second problem. Validation has continued through comparison with the experimental results.In this case, sinusoidal motion was applied to the validation, instead of trochoidal motion, because it was very difficult to actually simulate trochoidal motion in this experiment. Finally, the validation and comparison with the nodal-point scheme was accomplished by Stokes’ problem, which is the famous problem at a low Reynolds number. The validated code was applied to contractive and dilative motion in a narrow tube, whose motion was embodied by trochoidal movement. In a highly viscous fluid, such as a very sticky honey or a swamp, the computed results show that a viscous force can be used for propulsion instead of a dynamic force.From the present results, it was found that a propulsive force can be obtained by contractive and dilative motion at a low Reynolds number, which can be applied to the propulsion of micro-robots in a highly viscous fluid such as a blood vessel or a swamp. This research could also be considered fundamental research for the propulsion of micro-hydro robots, which are expected to be actively studied in the future in accord with further development of nanotechnology.  相似文献   

18.
Studying the sandwich composite propeller (SCMP) is of great significance since the sandwich structure is lightweight and possesses high strength. This study proposes and verifies a fluid–structure interaction (FSI) method for a 3D underwater sandwich composite structure to calculate the performance of the propeller. The Reynolds-averaged Navier–Stokes formula-based computational fluid dynamics is adopted to solve for propeller loads, whereas the finite element method (FEM) is applied to solve for propeller deformations. ANSYS Workbench’s system coupling is utilized to deliver the loads and deformations in the FSI. The paper also compares the propulsive performance and structural response of the SCMP and conventional composite propeller (CMP). The impact of the structural form and core material on the SCMP is explored. The results show that the weight reduction effect of the SCMP is better than that of the CMP, the propulsive efficiency of the SCMP is higher at low advance coefficients and lower at high advance coefficients, and the maximum pitch angles of the SCMP decrease at all conditions, unlike the case for the CMP. Moreover, the thinner the facing of the SCMP, the greater the influence of the higher twist–deformation ratio of the resulting structural form on the intrinsic frequency.  相似文献   

19.
This paper describes how to estimate the uncertainty of manoeuvring sea trial results without performing repeated tests using only a simulation model. The approach is based on the Monte Carlo method of uncertainty propagation. Moreover, the global sensitivity analysis procedure based on variance decomposition is described. As an example, the method is applied to estimate the uncertainty of 10°/10° zigzag overshoot angles and a 20° turning circle advance and tactical diameter for a small research vessel. The estimated uncertainty is compared with corresponding experimental uncertainty assessed from repeated tests. The method can be useful for validation studies and other studies that involve the uncertainty of sea trial results.  相似文献   

20.
波浪滑翔机直接利用波浪能实现大范围长距离的机动运动观测,在海洋环境观测中可以发挥重要的作用。本文对波浪滑翔机推进装置在启动阶段的翼片的水动力学行为进行了研究。以波浪滑翔机水下推进装置的翼片为研究对象,运用雷诺平均Navier-Stokes方程(RANS),对给定垂荡和摆动运动的翼片水动力学进行了水动力分析和仿真,模拟了单个翼片、纵向阵列多翼片的运动状况,得到推进装置翼片附近的压力分布和整体推进动力,分析翼片间距变化在启动阶段对推进力的影响作用。通过该研究工作为深入理解波浪滑翔机推进装置工作状态提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号