首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
The hydrodynamic problem of a hydrofoil travelling at constant speed in water waves has been investigated through velocity potential theory. The boundary conditions on the free surface have been linearized, and the effects are accounted for through the Green function. The overall problem is decomposed into the steady forward speed problem and periodic wave radiation and diffraction problems. Each of these problems is solved using the boundary integral equation over the hydrofoil surface together with a vortex sheet behind the trailing edge. The body surface boundary condition is imposed on its mean position. As a result the steady potential will contribute a well-known mj term to the body surface boundary condition on the radiation problem. The numerical difficulty in dealing with this term is effectively resolved through a difference method. The effects of the thickness on the wave radiation and diffraction are investigated. The applicability of various reciprocity relationships in this problem is discussed.  相似文献   

2.
A plane problem of free stationary gravitational waves in a horizontal current with vertical shear of the velocity is studied in the linear statement. The determination of the parameters of waves is reduced to the solution of the Sturm–Liouville boundary-value problem. For some vertical distributions of current velocity, we obtain analytic solutions. We propose a numerical algorithm for finding the parameters of waves. On the basis of the performed analysis, we establish the possibility of existence of stationary surface waves in currents for certain ranges of the Froude number. As the Froude number decreases, the waves become shorter, which leads to a faster attenuation of waves disturbances with depth. Under the actual conditions, the waves are short and suffer the influence of shear currents only in the subsurface layer of the ocean.  相似文献   

3.
A panel-free method (PFM), based on the desingularized Green’s formulae proposed by Landweber and Macagno, has been developed to solve the radiation problem of a floating body in the time domain. The velocity potential due to a non-impulsive velocity is obtained by solving the boundary integral equation in terms of source strength distribution. The singularity in the Rankine source term of the time-dependent Green function is removed. The geometry of a body surface is mathematically represented by NURBS surfaces. The integral equation can be globally discretized over the body surface by Gaussian quadratures. No assumption is needed for certain degree of approximation of distributed source strength on the body surface. The accuracy of PFM was demonstrated by its application to a classical problem of uniform flow past a sphere. The response function of a hemisphere at zero speed was then computed by PFM. The computed response function, added-mass and damping coefficients are compared with other published results.  相似文献   

4.
To describe the phenomenon of cold surges in the Black Sea in winter, we study the problem of atmospheric response to a local heat source on the surface in two simple formulations. In the shallow-water model, the planetary boundary layer of the atmosphere is homogeneous with variable upper bound. In the second model, the boundary layer has a constant thickness and its stratification is homogeneous. In the one-dimensional problem, for a constant wind blowing perpendicularly to the sea coast, the atmospheric response is determined by a single dimensionless parameter called the Froude number. Depending on its value, there are two possible different modes of the response. The range Fr < 1 (subcritical mode) corresponds to gentle winds, strong stratifications, thick boundary layers, and high velocities of inertial gravitational waves. The range Fr > 1 (supercritical mode) corresponds to strong winds, weak stratifications, thin boundary layers, and low wave velocities. In the two-dimensional problem for a round sea, there are four qualitatively different types of response depending on the combination of two dimensionless parameters: the Froude number and the ratio of the radius of the sea to the radius of deformation. Translated from Morskoi Gidrofizicheskii Zhurnal, No. 5, pp. 3–22, September–October, 2008.  相似文献   

5.
极限波浪运动特性的非线性数值模拟   总被引:1,自引:0,他引:1  
宁德志  滕斌  姜立明  臧军 《海洋学报》2008,30(3):126-132
利用时域高阶边界元方法建立了模拟极限波浪运动的完全非线性数值模型,其中自由水面满足完全非线性自由水面条件.采用半混合欧拉-拉格朗日方法追踪流体瞬时水面,运用四阶Runge-Kutta方法更新下一时间步的波面和速度势,同时应用镜像格林函数消除水槽两个侧面和底面上的积分.研究中利用波浪聚焦的方法产生极限波浪,并且在水槽中开展了物理模型实验,将测点试验数据与数值结果进行了对比,两者吻合得很好.对极限波浪运动的非线性和流域内速度分布进行了研究.  相似文献   

6.
A potential based panel method for the hydrodynamic analysis of 2-D hydrofoils moving beneath the free surface with constant speed without considering cavitation is described. By applying Green's theorem and the Green function method, an integral equation for the perturbation velocity potential is obtained under the potential flow theory. Dirichlet type boundary condition is used instead of Neumann type boundary condition. The 2-D hydrofoil is approximated by line panels which have constant source strength and constant doublet strength distributions. The free surface condition is linearized and the method of images is used for satisfying this free surface condition. All the terms in fundamental solution (Green function) of perturbation potential are integrated over a line panel. Pressure distribution, lift, residual drag and free surface deformations are calculated for NACA4412, symmetric Joukowski and van de Vooren profile types of hydrofoil. The results of this method show good agreement with both experimental and numerical methods in the literature for the NACA4412 and symmetric Joukowski profile types. The lift and residual drag values of the van de Vooren profile are also presented. The effect of free surface is examined by a parametric variation of Froude number and depth of submergence.  相似文献   

7.
《Ocean Engineering》1999,26(4):343-361
A potential based panel method for the hydrodynamic analysis of 2-D hydrofoils moving beneath the free surface with constant speed without considering cavitation is described. By applying Green's theorem and the Green function method, an integral equation for the perturbation velocity potential is obtained under the potential flow theory. Dirichlet type boundary condition is used instead of Neumann type boundary condition. The 2-D hydrofoil is approximated by line panels which have constant source strength and constant doublet strength distributions. The free surface condition is linearized and the method of images is used for satisfying this free surface condition. All the terms in fundamental solution (Green function) of perturbation potential are integrated over a line panel. Pressure distribution, lift, residual drag and free surface deformations are calculated for NACA4412, symmetric Joukowski and van de Vooren profile types of hydrofoil. The results of this method show good agreement with both experimental and numerical methods in the literature for the NACA4412 and symmetric Joukowski profile types. The lift and residual drag values of the van de Vooren profile are also presented. The effect of free surface is examined by a parametric variation of Froude number and depth of submergence.  相似文献   

8.
S. V. Muzylev 《Oceanology》2006,46(4):465-471
Edge waves in an ice-covered sea at a straight coast with a sloping beach are analyzed within the linearized theory. Such waves propagate along the coast with an amplitude which exponentially decays offshore. The problem is examined without using the hydrostatic assumption. The seawater is considered to be a homogeneous, inviscid, nonrotating, and incompressible fluid. Ice with a uniform thickness is considered, with constant values of density, cylindrical rigidity, Poisson ratio, and compressive stress in the ice. The normal velocity at the bottom is zero; the linearized kinematic and dynamic boundary conditions are satisfied at the lower surface of the ice. Explicit solutions for the edge flexural-gravity waves and the corresponding dispersion equations are obtained and analyzed.  相似文献   

9.
Run-up on a large fixed body in waves and current have been calculated using both a fully nonlinear time-domain boundary element model and a finite-order time-domain boundary element model, the latter being correct to second order in the wave steepness and to first-order in the current strength. The results from the two models agree well in the low Froude number and low wave steepness regime. This serves as a cross-validation of the two boundary element models. Furthermore, the two sets of data provide an excellent method for examining the domain of validity for the second-order method. Such limits are, for the case studied, given in terms of maximum Froude number and maximum wave steepness.  相似文献   

10.
A model problem of the flow under an air-cushion vessel is studied. Two different numerical techniques are used to determine the solution of the free-surface elevation and the wave resistance for a range of Froude number, Reynolds number, value of the pressure applied in the cushion, and depth of the water. The first numerical technique uses a velocity potential that satisfies linearized free-surface boundary conditions, whereas the second employs a finite-volume method to find a solution that satisfies the fully nonlinear free-surface boundary conditions. The results clearly show that for high Froude number and practical values of the cushion pressure, the linear-theory solution is in excellent agreement with the more exact nonlinear prediction. For lower Froude number the solution becomes unsteady, and the disagreement between the two methods is larger.  相似文献   

11.
大深度分层流体中二维淹没浮体的波浪力分析   总被引:2,自引:0,他引:2  
研究了大深度分层流体中二维任意形状淹没浮体的波浪力特性。首先基于一种合适的格林函数,采用边界积分方程法研究了流体中浮体对水波散射问题,然后通过单个淹没圆柱体的透射能和反射能与解析方法结果的比较,对所提出的方法进行了验证,最后分析了在不同的几何和物理条件下几种形状的浮体对波浪力的特有影响,得到了一些有意义的结果,这对分层海洋中淹没浮体的设计具有重要的参考价值。  相似文献   

12.
Strains in the ice cover of a frozen channel, which are caused by a body moving under the ice at a constant speed along the channel, are studied. The channel is of rectangular cross section, the fluid in the channel is inviscid and incompressible. The ice cover is modeled by a thin viscoelastic plate clamped to the channel walls. The underwater body is modeled by a three-dimensional dipole. The intensity of the dipole is related to the speed and size of the underwater body. The problem is considered within the linear theory of hydroelasticity. For small deflections of the ice cover the velocity potential of the dipole in the channel is obtained by the method of images without account for ice deflection in the leading order. The problem of a dipole moving in the channel with rigid walls provides the hydrodynamic pressure on the upper boundary of the channel, which corresponds to the ice cover. This pressure distribution does not depend on the deflection of the ice cover in the leading approximation. The deflections of ice and the strains in the ice cover are independent of time in the coordinate system moving together with the dipole. The problem is solved numerically using the Fourier transform along the channel, the method of normal modes across the channel, and the truncation method for resulting infinite systems of linear equations. It was revealed that the strains in the ice strongly depend on the speed of the dipole with respect to the critical speeds of the hydroelastic waves propagating along the frozen channel. The width of the channel matters even it is much larger than the characteristic length of the ice cover.  相似文献   

13.
A fully nonlinear numerical model based on a time-domain higher-order boundary element method (HOBEM) is founded to simulate the kinematics of extreme waves. In the model, the fully nonlinear free surface boundary conditions are satisfied and a semi-mixed Euler-Lagrange method is used to track free surface; a fourth-order Runga-Kutta technique is adopted to refresh the wave elevation and velocity potential on the free surface at each time step; an image Green function is used in the numerical wave tank so that the integrations on the lateral surfaces and bottom are excluded. The extreme waves are generated by the method of wave focusing. The physical experiments are carried out in a wave flume. On the horizontal velocity of the measured point, numerical solutions agree well with experimental results. The characteristics of the nonlinear extreme-wave kinematics and the velocity distribution are studied here.  相似文献   

14.
Vessels operating in shallow waters require careful observation of the finite-depth effect. In present study, a Rankine source method that includes the shallow water effect and double body steady flow effect is developed in frequency domain. In order to verify present numerical methods, two experiments were carried out respectively to measure the wave loads and free motions for ship advancing with forward speed in head regular waves. Numerical results are systematically compared with experiments and other solutions using the double body basis flow approach, the Neumann-Kelvin approach with simplified m-terms, and linearized free surface boundary conditions with double-body m-terms. Furthermore, the influence of water depths on added mass and damping coefficients, wave excitation forces, motions and unsteady wave patterns are deeply investigated. It is found that finite-depth effect is important and unsteady wave pattern in shallow water is dependent on both of the Brard number τ and depth Froude number Fh.  相似文献   

15.
A numerical solution is developed to investigate the generation and propagation of small-amplitude water waves in a semi-infinite rectangular wave basin. The three-dimensional wave field is produced by the prescribed “snake-like” motion of an array of segmented wave generators located along the wall at one end of the tank. The solution technique is based on the boundary element approach and uses an appropriate three-dimensional Green function which explicitly satisfies the tank-wall boundary conditions. The Green function and its derivatives which appear in the integral equation formulation can be shown to be slowly convergent when the source and field points are in close proximity. Therefore, when computing the velocity potentials on the wave generators, the source points are chosen outside the fluid domain, thereby ensuring the rapid convergence of these functions and rendering the integral equations non-singular. Numerical results are shown which illustrate the influence of the various wavemaker and basin parameters on the generated wave field. Finally, the complete wave field produced by the diffraction of oblique waves by a vertical circular cylinder in a basin is presented.  相似文献   

16.
Nan Xie  Dracos Vassalos   《Ocean Engineering》2007,34(8-9):1257-1264
The purpose of the present paper is to develop a potential-based panel method for determining the steady potential flow about three-dimensional hydrofoil under free surface. The method uses constant-strength doublets and source density distribution over the foil body surface and thereby Dirichlet-type boundary condition is used instead of Neumann-type condition. On the undisturbed free surface source density is used to meet the free surface condition that is linearised in terms of double-body model approach and is discretised by a one-side, upstream, four-point finite difference operator. After solving the doublets on the foil and sources on the free surface, the numerical results of pressure, lift and resistance coefficients and also wave profiles can then be calculated for different Froude number and depth of submergence to demonstrate the influence of free surface and aspect ratio effects on performance of the hydrofoil.  相似文献   

17.
In this paper, the three-dimensional water exit of a sphere with different vertical velocities is investigated numerically using the lattice Boltzmann method (LBM). In this method, the liquid-gas two-phase flow is simplified as a single-phase free surface flow. To capture the free surface, a mass tracking algorithm is incorporated into the LBM. The gravity as a body force is introduced in the form of calculating the equilibrium distribution with an altered velocity, while the surface tension is neglected. Besides, the employed bounce-back boundary conditions are used for a moving sphere. What’s more, the Wall-Adapting Local Eddy (WALE) viscosity model is employed to capture the turbulent structures of the flow and stabilize the simulation. The accuracy of the numerical results is demonstrated through comparisons with the previous numerical and experimental results in the literature. The results show that the spike height is significantly influenced under the Froude number (Fr) below 4.12 and slightly affected under the Fr varying from 4.12 to 8.24. After the sphere exits water totally, the evolution of the free surface waterfall can be described as two phases and becomes more intense with the Froude number increasing. The non-uniform distribution of velocity results in the breaking of the free surface after the sphere completely exits the water. Moreover, the Reynolds number greatly affects the wake dynamics and hydrodynamics acting on the sphere when it moves beneath the water surface.  相似文献   

18.
The hydrodynamic aspects of the motion of a viscous fluid having a free surface in a rolling tank have been investigated. In a sequence of three papers, an analytical technique together with a numerical solution method will be presented to describe the sloshing phenomenon accurately and efficiently. This first paper introduces a linear theory of viscous liquid sloshing and formulates a boundary value problem subject to appropriate conditions. Viscosity is included in the problem formulation and its effects are properly accounted for. The second paper will describe a solution of the problem in function space by the truncation of infinite series. Boundary conditions are satisfied through the use of Fourier series expansions. However, the no-slip condition at the side walls can also be treated in a least-squares sense.Among the results that will be reported in the third paper are the effects of viscosity on liquid sloshing phenomenon and the dependence of viscous dissipation on the Reynolds and Froude numbers. Furthermore, the influence of the tank aspect ratio on viscous dissipation has been explored. These results demonstrate some unknown features of the functional relationships that exist between the dissipated energy and the Reynolds and Froude numbers. Similarly, the dependence of the dissipated energy on the aspect ratio has been analytically studied. The results obtained agree with the physical laws for the range of parameters investigated.  相似文献   

19.
The hydrodynamic aspects of the motion of a viscous fluid having a free surface in a rolling tank have been investigated. In a sequence of three papers, an analytical technique together with a numerical solution method will be presented to describe the sloshing phenomenon accurately and efficiently. This first paper introduces a linear theory of viscous liquid sloshing and formulates a boundary value problem subject to appropriate conditions. Viscosity is included in the problem formulation and its effects are properly accounted for. The second paper will describe a solution of the problem in function space by the truncation of infinite series. Boundary conditions are satisfied through the use of Fourier series expansions. However, the no-slip condition at the side walls can also be treated in a least-squares sense.Among the results that will be reported in the third paper are the effects of viscosity on liquid sloshing phenomenon and the dependence of viscous dissipation on the Reynolds and Froude numbers. Furthermore, the influence of the tank aspect ratio on viscous dissipation has been explored. These results demonstrate some unknown features of the functional relationships that exist between the dissipated energy and the Reynolds and Froude numbers. Similarly, the dependence of the dissipated energy on the aspect ratio has been analytically studied. The results obtained agree with the physical laws for the range of parameters investigated.  相似文献   

20.
A fast time-domain method is developed in this paper for the real-time prediction of the six degree of freedom motions of a vessel traveling in an irregular seaway in infinitely deep water. The fully coupled unsteady ship motion problem is solved by time-stepping the linearized boundary conditions on both the free surface and body surface. A velocity-based boundary integral method is then used to solve the Laplace equation at every time step for the fluid kinematics, while a scalar integral equation is solved for the total fluid pressure. The boundary integral equations are applied to both the physical fluid domain outside the body and a fictitious fluid region inside the body, enabling use of the fast Fourier transform method to evaluate the free surface integrals. The computational efficiency of the scheme is further improved through use of the method of images to eliminate source singularities on the free surface while retaining vortex/dipole singularities that decay more rapidly in space. The resulting numerical algorithm runs 2–3 times faster than real time on a standard desktop computer. Numerical predictions are compared to prior published results for the transient motions of a hemisphere and laboratory measurements of the motions of a free running vessel in oblique waves with good agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号